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Abstract 

 
In this paper, a novel packet classification scheme 

optimized for multi-core network processors is 
proposed. The algorithm, Explicit Cuttings (ExpCuts), 
adopts a hierarchical space aggregation technique to 
significantly reduce the memory usage. Consequently, 
without burst of memory usages, the time-consuming 
linear search in the conventional decision-tree based 
packet classification algorithms is eliminated, and an 
explicit worst-case search time is achieved. To 
evaluate the performance of ExpCuts, we implement 
the algorithm, as well as HiCuts and HSM, on the Intel 
IXP2850 network processor. Experimental results 
show that ExpCuts outperforms the existing best-
known algorithms in terms of memory usage and 
classification speed.  
 
1. Introduction 

To reach multi-Gbps packet classification speed, 
there are currently two major types of implementations 
on commercialized products: Software-based 
implementation on general-purpose processor (such as 
CPU) and hardware-based implementation on 
application specific integrated circuits (ASIC). 
However, both of these two types of implementations 
have inherent limitations: 
♦ Software-based implementation: Software-based 
algorithmic solutions embrace the practice of 
leveraging the statistical structure of classification rule 
sets to improve average performance. While current 
algorithms for packet classification constantly improve 
the search speed and reduce the memory usage, their 
performance in software-based implementation is not 
adequate for practical high-end deployment. The chief 
problem is, due to the diversity of incoming packet 
headers, most memory accesses occur to different 
memory locations. So the probability of CPU cache hit 
is not high, and thus access to main memory becomes 
the bottleneck [1].  

♦ Hardware-based implementation: Although 
traditional routers and switches based on ASIC can 
perform packet classification at multi-Gbps speed, 
these devices are limited in backbone networks. This is 
because most hardware-based solutions trade off the 
programmability for processing speed, and the usage of 
special memory chips, such as Ternary CAMs, requires 
too much power and board area to support large 
number of rules. Therefore, hardware-based solutions 
usually mean higher production cost, longer time-to-
market, and more difficulties in upgrade to support 
new applications. These drawbacks left the hardware-
based packet classification products only to the 
backbones (10Gbps ~ 40Gbps) [2]. 

Thus, the challenge of combining intelligent 
software-based algorithms and hardware-based 
architectures to minimize the unfavorable 
characteristics of existing solutions motivates the 
research today. With the advent of powerful network 
processors (NPs) in the market, many computation 
intensive tasks can be accomplished more easily in 
network services. As an emerging class of 
programmable processors highly optimized for fast 
packet processing operations, network processors 
deliver hardware-level performance to software-
programmable systems. In this paper, we propose an 
NP-optimized packet classification algorithm to 
achieve near line-rate classification speed.  

Main contributions of this paper are:  
♦ An algorithm optimized for multi-core network 
processor: The algorithm proposed in this paper, 
Explicit Cuttings (ExpCuts), adopts a hierarchical 
space aggregation technique to significantly reduce the 
memory usage. Thus, without burst of memory usage, 
the time-consuming linear search in common decision-
tree algorithms is eliminated, and an explicit worst-
case search time is achieved. When multi-channel 
memory is provided, ExpCuts can be further optimized 
by populating different level of tree-nodes on multiple 
memory channels. 



♦ Performance evaluation on Intel IXP2850 NP: 
To objectively evaluate the performance of ExpCuts, 
we built not only a packet classification building block, 
but also a whole packet processing application on the 
Intel IXP2850. ExpCuts, as well as previous work 
HiCuts and HSM are implemented with Intel 
microcode assembly, and evaluated both on software 
simulator and hardware platform. Experimental results 
show that ExpCuts outperforms these existing best-
known algorithms in terms of both packet 
classification speed and memory usage. 
 
2. Existing Work 
 

Existing algorithmic solutions for packet 
classification can be categorized based on two 
classification strategies [11]: 
♦ Field-independent search: Algorithms like RFC 
[7] and HSM [8] perform independent parallel searches 
on indexed tables; the results of the table searches are 
combined in multiple phases to yield the final 
classification result. All the entries of a lookup table 
are stored consecutively in memory. The indices of a 
table are obtained by space mapping and each entry 
corresponds to a particular sub-space and stores the 
search result at current stage. Algorithms using parallel 
search are very fast in term of classification speed 
while they may require comparatively large memories 
to store the big cross-producting tables.  
♦ Field-dependent search: HiCuts [3] and 
HyperCuts [9] are examples of algorithms employing 
field-dependent searches, i.e., the results of fields that 
have already been searched influence the way in which 
subsequent fields will be searched. The main 
advantage of this approach is that the intelligent and 
relatively simple decision-tree classifier can be used. 
Although in most cases, decision-tree algorithms 
require less memory than field-independent search 
algorithms [12], they tend to result in implicit worst-
case search time and thus cannot ensure a stable worst-
case classification speed. 

Because field-independent search algorithms often 
need tens of megabytes memory to store the large 
cross-producting table [4, 12], the large memory 
requirement sometimes can hardly be satisfied with 

current SRAM chips [13]. In comparison, algorithms 
using field-dependent searches are commonly more 
flexible in terms of memory and speed tradeoffs, and 
hence are more flexible to be optimized for network 
processor implementations.  

In this paper, the proposed algorithm is based on the 
well-known field-dependent search algorithm HiCuts. 
By employing an effective hierarchical space 
compression technique, the proposed algorithm 
eliminates the time-consuming linear search in HiCuts 
and provides with an explicit worst-case bound for 
search to guarantee near line-speed packet 
classification speed.  

Because all the optimizations are towards multi-
core network processors, before describing the 
algorithm, we give a brief introduction to the 
architecture and programming challenges of a typical 
multi-core network processor in the next section. 
 
3. Intel IXP2850 Network Processor 
 

Network processors are typically characterized as 
distributed, multi-processor, multi-threaded 
architectures designed for hiding memory latencies in 
order to scale up to very high data rates. This section 
gives a brief overview of the hardware architecture of 
Intel IXP2850. 
3.1. Architecture of IXP2850 

The architecture of IXP2850 is motivated by the 
need to provide a building block for multi-Gbps packet 
processing applications. A simplified block diagram 
and its description of the Intel IXP2850 are shown in 
Figure 1 and Table 1 respectively. Details of IXP2850 
can be found in [17-20]. 

 
Table 1: Hardware overview of IXP2850  

Intel XScale 
core: 

Each IXP2850 includes an XScale core. The 
Intel XScale core is a general purpose 32-bit 
RISC processor. 

Multithreaded 
microengines 

The IXP2850 network processor has 16 MEs 
working in parallel on the fast packet-processing 
path, running at 1.4 GHz clock frequency. 

Memory 
hierarchy 

IXP2850 has 4 channels of QDR SRAM 
running at 233 MHz and 3 channels of RDRAM 
running at 127.3 MHz. 

Build-in media 
interfaces 

IXP2850 has flexible 32-bit media switch 
interfaces. Each interface is configurable as 
media standard SPI-4 or CSIX-L1 interfaces. 

 
3.2. Programming Challenges 

Network processing applications are targeted at 
specific data rates. In order to meet these throughput 
requirements, a NP must complete the packet 
processing tasks on a given packet before another 
packet arrives. To keep up with the back-to-back 
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Figure 1. Block diagram of the IXP2850. 



arrival of minimum size packets at line rate, the NP 
faces the following programming challenges [21]: 
♦ Achieving a deterministic bound on packet 
processing operation:  Due to the line rate constraint, 
we need to design the network algorithms in such a 
way that the number of clock cycles to process the 
packet on each microengine (ME) does not exceed an 
upper bound. The key issue is to design network 
algorithms using the right kind of data structures, and 
limiting the total number of memory accesses. 
♦ Masking memory latency through multi-
threading: Even if the data structures are designed to 
complete packet processing within a definite time 
interval, it is not sufficient to meet the line rate 
processing requirements because memory latencies are 
typically much higher than the amount of processing 
budget. Therefore, the second important challenge is to 
utilize the multiple hardware threads effectively to 
mask memory latencies. 
♦ Maintaining packet ordering in spite of parallel 
processing: Another significant challenge in 
programming the NPs is to maintain packet ordering. 
This is extremely critical for applications like media 
gateways and traffic management. Packet ordering can 
be guaranteed using sequence numbers and/or strict 
thread ordering.  

In the next section, we will propose an NP-
optimized packet classification algorithm according to 
the IXP2850 architecture and the programming 
challenges. 
 
4. Algorithm Optimization 
 

4.1. The HiCuts Algorithm 
The proposed algorithm is based on one of the well-

known packet classification algorithm Hierarchical 
Intelligent Cuttings (HiCuts). HiCuts preprocesses the 
packet classification rules to build a decision-tree for 
field-dependent search, and in each leaf-node of the 
decision-tree, a small number of rules bounded by a 
threshold (binth in [3]) are stored for linear search. 
Packet header fields are used to traverse the decision-
tree until a leaf-node is reached. The rules stored in 
that leaf are then linearly searched for a match.  

Geometrically, HiCuts decomposes the multi-
dimensional search space by heuristics that exploit the 
characteristic of real-life rule sets. At each internal-
node, the current search space is segmented into certain 
number of equal-sized sub-spaces along a particular 
dimension. The number of cuttings and the dimension 
to cut is determined by heuristics [3]. The sub-spaces 
obtained on each fields are intersected and each 
intersection generates a child node. To link the current 
node with its children, HiCuts stores a pointer array at 
each internal-node. Each pointer in the array 
corresponds to a sub-space and is sequentially stored 
according to the order of the sub-spaces.  

Because different child-nodes may share the same 
sub-ruleset, multiple pointers can be aggregated to 
point to a single child node. Figure 2 shows how to 
aggregate sub-spaces using pointer array: Sub-spaces 0 
through 3 are aggregated to SS0 by pointers P0~P3. 
Sub-spaces 4 through 16 are aggregated to SS1 by 
pointers P4~P15. SS0 and SS1 are the search space for 
child-node Ch0 and Ch1 respectively. 
4.2. Explicit Cuttings  
4.2.1 Motivation 

Although HiCuts has good time/space tradeoffs and 
works well for real-life rule sets, direct implementation 
of HiCuts without NP-aware optimization on multi-
core network processors may suffer from: 
♦ Non-deterministic worst-case search time: 
Because the number of cuttings varies at different tree 
nodes, the decision-tree does not have deterministic 
worst-case depth. Thus, although worst-case search 
time is the most important performance metric in 
packet classification applications, HiCuts does not 
have an explicit bound for search. 
♦ Excessive memory access by linear search: 
Experimental results (in section 6.6) show that linear 
search is very time-consuming. Although the number 
of rules for linear search is limited to binth (4~16), it 
still requires tens of memory accesses to off-chip 
SRAM chips. Such an amount of memory accesses 
will result in a serious system bottleneck and thus 
significantly impair the performance of HiCuts. 

 
Figure 2: HiCuts space aggregation  

 

 
Figure 3: ExpCuts space aggregation 



Thus the design objectives of packet classification 
algorithm optimized for NPs requires an explicit worst-
case bound for search and the elimination of the linear 
search at leaf-nodes.  

Motivations to design such an algorithm are: 
♦ Fix the number of cuttings at internal-nodes: If 
the number of cuttings is fixed to 2w (w is a constant 
referred as stride), the current search space is then 
always segmented into 2w sub-spaces at each internal-
node. This guarantees a worst-case bound of O(W/w), 
where W is the bit-width of the packet header. 
♦ Eliminate linear search at leaf-nodes: Linear 
search can be eliminated if we “keep cutting” until 
every sub-space is full-covered by a certain set of 
rules. The rule with the highest priority in the set is 
then the final match.  
4.2.2 Optimization 

Because both motivations tend to result in memory 
burst due to the fixed stride and the minimized binth 
(Elimination of linear search is equivalent to set 
binth=1 in [3]), the main optimization task therefore 
becomes how to effectively reduce the memory usage.  

Note that in HiCuts, in order to maximize the reuse 
of child nodes, the sub-spaces with identical rules are 
aggregated by employing pointer arrays to lead the 
way for search. However, the use of pointer arrays will 
dramatically increase the memory storage because the 
size of each array is considerably large when the 
number of cuttings is fixed. For example, if w=8 is 
fixed, each internal-node must store 256 pointers for 
search. If a decision-tree contains tens of thousands 
internal-nodes, the total memory usage to store the 
pointer arrays may exceed tens of mega-bytes, which is 
too large for current SRAM chips [18]. 

To effectively compress the size of these pointer 
arrays, some employ bit-string technique to aggregate 
consecutive pointers [11, 13, 22]: First, an Aggregation 
Bit String (ABS) is used to track the appearance of 
unique elements in the pointer array, and then 
compress a sequence of consecutively identical 
pointers as one element in a Compressed Pointer Array 
(CPA). More specifically, each bit of an ABS 
corresponds to an entry in the original pointer array, 
with the least significant bit corresponding to the first 
entry. A bit in an ABS is set to ‘1’ if its corresponding 
entry in the original pointer array is different from its 
previous one, i.e. bit set in an ABS indicates that a 

different sequence of consecutively identical pointer 
starts at the corresponding position. Whenever a bit is 
set, its corresponding unique pointer is appended in the 
CPA. Accordingly, the n-th pointer in the original 
point array can be found by: add the first n bits in the 
ABS to get an index, and then use the index to load the 
pointer from CPA.  

Ideally, all the pointer arrays should be compressed 
using ABS and CPA. However, loading such a bit 
string also may cause excessive memory accesses. 
Fortunately, in our experiments on various real-life 
rule sets, we found that the number of child nodes of a 
certain internal tree node is commonly very small: with 
256 cuttings at each internal-node, the average number 
of child nodes is less than 10. This observation is very 
consistent to the results reported earlier [3, 9, 10]. Such 
small number of child nodes indicates that the pointer 
array is very sparse, i.e. the number of bits set in ABS 
is also sparse. Thus, this observation motivates us to 
further compress the ABS to effectively reduce the 
number of memory accesses.  

Figure 3 illustrates the Hierarchical Aggregation 
Bit-String (HABS) we proposed to further compress 
the data structure: The 4-bit HABS is set to “1100" 
because sub-spaces 4~7, 8~11 and 12~15 all belongs to 
SS1. If a packet falls in sub-space 9, the corresponding 
child-node pointer can be located by 
(1+1+0)<<2+(9&0x11)=5, i.e., P5.  

Define the size of HABS as 2v, the number of 
pointers as 2w, and u=w-v. To compress the 2w 
pointers: First, divide the 2w pointers into 2v sub-arrays. 
Then set the bits in HABS to ‘1’ if the 2u consecutive 
pointers in its corresponding sub-array are different 
from the pointers in previous sub-array, i.e. a bit set in 
an HABS indicates that a different sequence of 
consecutively identical sub-array of pointers starts at 
the corresponding position. At the same time, 
whenever a bit is set, its corresponding sub-array of 
pointers is appended in the CPA. According to this 
scheme, the nth pointer in the original point array can 
be located by: 1) extract the higher v bits of n to get a 
v-bit value m; 2) extract the lower u bits of n to form a 
u-bit value j; 3) add 0~m bits of the HABS to get an 
sub-array index i; 4) use ((i<<u)+j) as the index to load 
the corresponding pointer from CPA. 

In the implementation of ExpCuts, the size of 
HABS is set to be 16, and HABS is stored together 
with the cutting information within a single 32-bit 
long-word (see Figure 4). Such a data-structure can be 
effectively loaded by the word-oriented SRAM 
controller on IXP2850 without any excessive memory 
accesses. Implementation and evaluation of ExpCuts 
on IXP2850 will be discussed in the next two sections. 
 

 
Figure 4: Data-structure of ExpCuts 



5 Implementation of Packet Classification 
on IXP2850 
 

Previous study about packet classification on 
network processor is either on limited number of rules 
[23] or just by software simulation [13]. In this paper, 
an entire packet processing application is implemented 
on the Intel IXP2850 and the packet classification 
algorithms added to this application can support large 
real-life rule sets. The overall application has been 
tested and evaluated not only by software simulator but 
also on a hardware platform.  

 
Table 2: Multi-processing vs. Context-

pipelining 
Task 

partitioning Advantages Disadvantages 

Multi-
processing 

Adding more 
functionality or scaling 
to higher data rates 
simply involves using 
more MEs in parallel. 

Packet header and 
descriptors can be read 
in once, cached in local 
memory, and used by 
all the packet-
processing tasks. 

Access to data 
structures shared across 
multiple packets needs 
to be synchronized 
across multiple MEs. 

Every packet-
processing ME must 
contain code for all 
packet-processing tasks. 

Context-
pipelining 

Access to data 
structures shared across 
multiple packets only 
needs to be 
synchronized on the 
threads running on 
single ME. 

Each microengine 
only needs to contain 
code for the task runs 
on it. 

Adding more 
functionality or scaling 
to higher data rates to 
an existing task may 
involve restructuring 
the code to run on 
multiple MEs. 

Per-packet state has 
to be passed from one 
ME to the other by 
shared memory or 
scratch/NN rings. 

 
5.1 Task Partitioning Methods 

There are two general ways to partition tasks onto 
multiple MEs on the Intel IXP2850 [1, 21]: multi-
processing and context-pipelining. In the multi-
processing approach, each ME executes all the 
functions of the application, while in the context-
pipelining approach, each function is allocated to a 
different ME. Advantages and disadvantages of these 
two general methods are shown in Table 2. 

5.2. Mapping Packet Processing in a Typical 
Application 

The application on IXP2850 receives Ethernet 
frames that carry IPv4 packets. The frames are 
reassembled into packets and the Layer-2 (Ethernet) 
headers are removed. Then packet classification and 
forwarding are performed. Finally, packets are 
segmented into CSIX c-frames and transmitted to the 
CSIX fabric. Figure 5 and Table 3 show the application 
design mapped to an IXP2850 network processor.  

 
Table 3: Microengine Allocation 

Task Receive Processing Scheduling Transmit 
#MEs 2 1~9 3 2 
 

Table 4: Optimized Memory Allocations 
 SRAM#0 SRAM#1 SRAM#2 SRAM#3 
Utilization 56% 0% 47% 31% 
Headroom 44% 100% 53% 69% 
Allocation level 0~1 level 2~6 level 7~9 level 10~13 
 
5.3. Memory Allocation 

As described in section 3, SRAM and DRAM are 
two types of commonly used NPU memory. Although 
Intel IXP2850 network processor supports up to 2GB 
DRAM, which is 8 times larger than the maximum size 
of SRAM, the latency of DRAM is about twice as long 
as that of SRAM. In addition, different access 
granularities must be considered as well as memory 
size and latency [16]. On the Intel IXP2850, SRAM is 
word-oriented (optimized for 4-byte access), while 
DRAM is burst-oriented (optimized for 16-byte 
access). Thus to effectively speed up the packet 
classification speed, all the data-structures for packet 
classification should be stored in SRAM. 

There are 4 SRAM controllers on the IXP2850, 
allowing independent parallel access. To maximize the 
performance, we propose to distribute different level of 
the decision-tree nodes on different SRAM channels 
according to the bandwidth headroom of each channel. 
Here the bandwidth headroom refers to the memory 
bandwidth not utilized by the application without 
adding the packet classification code. For example, if 
the stride w=8, the tree depth is then 104/8=13. In 
proportion to the memory bandwidth headroom of each 
SRAM channel, the 13 levels of tree nodes are 
allocated in a way described by Table 4.  
5.4. Instruction Selection 

To compute the sum of the HABS, indeterminist 
and time-consuming iterations by traditional RISC 
instructions are required. It usually takes more than 
100 RISC instructions (ADD, SHIFT, AND, and 
BRANCH) to compute the number of bits set in the 
HABS. Therefore, without hardware support, the 
computation burden will become a new performance 

 
Figure 5: Application Mappings 



bottleneck for the proposed ExpCuts algorithm. 
Fortunately, IXP2850 provides with a hardware 
instruction named POP_COUNT, which can count the 
number of ‘1’s in a 32-bit bit-string within only 3 
system cycles [24]. Thus, using POP_COUNT 
instruction with an ALU AND instruction to mask off 
undesired bits, the total number of cycles required by 
HABS computation can be reduced by more than 90% 
compared to other RISC implementations [16]. This is 
essential for the ExpCuts algorithm to achieve the line 
rate. 

 
6. Experiments and Performance Analysis 
 
6.1. Rule Sets and Traffics 

Our study focuses on real-life rule sets because 
experimental results on these rule sets are more 
convincing than those obtained on synthetic rules [22]. 
We evaluate all the packet classification algorithms on 
real-life firewall and core router rule sets. These rule 
sets are the same as those used in paper [6] and [22]: 
firewall rule sets are named as FW01, FW02, FW03; 
core router rule sets are named as CR01, CR02, CR03 
and CR04. The largest real-life ruleset (CR04) contains 
1945 rules. All rules are 5-dimensional with 32-bit 
source/destination IP addresses (represented as 
prefixes), 16-bit source/destination port numbers 
(represented as ranges) and 8-bit transport layer 
protocol (represented as discrete values).  
6.2. Development Kits 

There are two basic programming choices in the 
Intel Software Developer Kit (Intel SDK): 
programming in assembly language (Microcode) or 
programming in C language (MicroC). To make better 
compatibility with Intel SDK, and to avoid dependency 
on compiler optimizations, all the application and 
algorithms are developed using Microcode assembly 
with the software framework provided by Intel SDK4.0 
[25].  

To evaluate the performance, the application was 
tested and run in the IXP2850 Developer Workbench, 
which offers a cycle-accurate simulator of the 
IXP2850. It provides access to several performance 
metrics that reflect the actual IXP2850 hardware. The 
application was also tested on a dual-IXP2850 
platform to ensure the code accuracy and compatibility 
on hardware.  
6.3. Space Aggregation Evaluation 

The memory requirements with and without space 
aggregation of the 7 real-life rule sets by ExpCuts are 
shown in Figure 6. The memory requirement of 
different rule sets increases along with the increasing 
number of rules and extent of rule-overlapping. 
ExpCuts with space aggregation (using HABS and 

CPT) only requires approximately 15% of the SRAM 
consumed by ExpCuts without space aggregation. 
Because the IXP2850 hardware platform only has four 
8MB SRAM chips, ExpCuts without space aggregation 
cannot support CR02, CR03 and CR04 due to their 
excessive memory usage. In comparison, even for the 
largest ruleset CR04, ExpCuts with space aggregation 
only require 11.5MB memory, which can be easily 
distributed on the four 8MB SRAM chips. 

6.4. Relative Speedups 
Figure 7 shows the packet classification rates and 

relative speedups of ExpCuts using the 64-byte TCP 
packets on the largest ruleset CR04. The results were 
collected after all optimizations had been applied and 
all the four channels of SRAM were used to store the 
decision-tree data-structure. The speedup is almost 
linear and classification speed reaches up to 7Gbps for 
71 parallel threads (9 MEs, each running in 8 thread 
mode; 1 thread is reserved to handle exceptional 
packets). Such linear speedups indicate that the 
memory bandwidths of all the 4 SRAM channels are 
not full used, i.e., the overall memory accesses 
required by ExpCuts algorithm are considerably small 
so that the packet classification rate always increases 
as more multi-processing threads are added. 
6.5. SRAM Channel Impacts 

Table 5 shows the SRAM channel impacts of 
IXP2850. From this table we can see that: 1) even if 
the overall data-structure is stored in a single channel 
with 100% bandwidth headroom, the throughput 
cannot reach 5Gbps. This is because the bandwidth of 
only one SRAM channel is not enough to support the 
13 times of memory accesses; 2) the packet 
classification speed (throughput) does not increase 
linearly as more SRAM channels are added. This is not 
only caused by the difference of SRAM bandwidth 
headroom (shown in Table 5), but also by the 
saturation of command request FIFO and SRAM buses 
[13] [16]. 

 
Table 5: SRAM Channel Impacts 

Num. of Channels 1 2 3 4 
Throughput (Gbps) 4963 5357 6483 7261 
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Figure 6: Space aggregation effect 



 

6.6. Comparison with Other Algorithms 
To make objective evaluations, we compare 

ExpCuts with existing best-known packet classification 
algorithms: HiCuts and HSM, where HiCuts represents 
a popular field-dependent search scheme and HSM 
represents a popular field-independent search 
algorithm. 

As discussed in section 4.1, HiCuts leverages the 
advantages of both linear search and decision-tree 
search, reaching considerably fast classification speed 
with modest memory storage. However, in the worst-
case, the linear search done at leaf-nodes needs up to 
binth (in our experiment, binth=8) times of memory 
accesses and each memory access refers to 6 
consecutive 32-bits words. Figure 8 illustrates the 
impact of linear search at leaf-nodes. We can see from 
this figure that, if the number of rules for linear search 
is greater than 8, the maximum throughput will be less 
than 3Gbps.  

ExpCuts is also compared with HSM, which is one 
of the fastest packet classification algorithms [8]. 
Because HSM only requires (log )NΘ  memory 

accesses, and each access only refers to a single 32-bit 
long-word of SRAM read, the overall memory access 
is much smaller than HiCuts. Figure 9 compares the 
throughput of ExpCuts, HiCuts and HSM on the 7 real-
life rule sets. We conclude from this figure that: 1) 
ExpCuts has the best average performance over all rule 
sets. No matter how large the rule sets are, ExpCuts 
obtains stable throughput. 2) HSM algorithm is also 
fast, especially for small number of rules. However, 
due to the (log )NΘ  search time, the performance 
decreases as the number of rules increases. 3) The 
performance of HiCuts is limited under 3Gbps because 
of the time-consuming linear search. To obtain 
practical speed using HiCuts algorithm, the platform 
might need certain amount of on-chip memory to store 
all the leaf-nodes for fast data access. 
6.7. Summary of Memory Effects 

Reducing the effects of memory latency and 
memory access is critical to the performance of packet 
classification algorithms on NPs. From the above 
evaluations, we summarize two performance 
bottlenecks of NP implementations: 
♦ SRAM Bandwidth: Memory bandwidth is simply 
the raw frequency of the memory units measured in 
Gbps. In packet classification applications, processing 
one packet needs to read certain amount of memory. 
For example, linear search requires reading N*6 (N 
rules, 6-word size) 32-bit words to classify an 
incoming packet in the worst-case. Because system 
memory bandwidth is limited, reading fewer amounts 
of memory words will hence lead to higher 
performance. In addition, data movement between the 
SRAM and the Microengines is through the memory 
push/pull buses, the bandwidth of these buses also 
limited the maximum performance of NPs. 
♦ I/O Instructions: The SRAM controller enqueues 
a command from each command bus in each cycle. If 
the microengine issues too many I/O operations at a 
time, the enqueue and dequeue mechanisms in SRAM 
controller will slow down the I/O operations due to the 
limitation of its processing capability. Thus, a new 
system bottleneck yields even if there is still SRAM 
bandwidth headroom. This means not only the total 
amount of memory words, but also the number of 
memory accesses affects the overall system 
performance. 
 
7. Conclusion 
 

In this paper, we proposed a high-performance 
packet classification algorithm, ExpCuts, which is 
based on the well-known HiCuts algorithm but 
optimized for multi-core network processors. ExpCuts 
adopts an efficient bit-string aggregation technique to 
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Figure 7: ExpCuts relative speedups 
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Figure 8: Linear Search Effect 
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Figure 9: Algorithm Comparison 



avoid excessive memory usage. Consequently, without 
burst of memory usages, the time-consuming linear 
searches in common decision-tree algorithms are 
eliminated, and an explicit worst-case search time is 
achieved. When multi-channel SRAM is provided, 
ExpCuts can be further optimized by populating 
different level of tree-node on multiple memory banks. 

To objectively evaluate the performance of 
ExpCuts, we built a complete packet processing 
application, not just a packet classification building 
block, on the Intel IXP2850 multi-core network 
processor. ExpCuts, as well as HiCuts and HSM 
algorithms are implemented with Intel Microcode 
assembly, and evaluated both on software simulator 
and hardware platform. Experimental results show that 
ExpCuts outperforms the existing best-known 
algorithms in terms of both packet classification speed 
and memory usage. 
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