
Towards Optimized Packet Classification Algorithms for
Multi-Core Network Processors

Yaxuan Qi1, 3, Bo Xu1, 2, Fei He1, 2, Xin Zhou1, 2, Jianming Yu1, 2 and Jun Li1, 3

1Research Institute of Information Technology, Tsinghua University
2Department of Automation, Tsinghua University

3Tsinghua National Lab for Information Science and Technology
yaxuan@ tsinghua.edu.cn

Abstract

In this paper, a novel packet classification scheme

optimized for multi-core network processors is
proposed. The algorithm, Explicit Cuttings (ExpCuts),
adopts a hierarchical space aggregation technique to
significantly reduce the memory usage. Consequently,
without burst of memory usages, the time-consuming
linear search in the conventional decision-tree based
packet classification algorithms is eliminated, and an
explicit worst-case search time is achieved. To
evaluate the performance of ExpCuts, we implement
the algorithm, as well as HiCuts and HSM, on the Intel
IXP2850 network processor. Experimental results
show that ExpCuts outperforms the existing best-
known algorithms in terms of memory usage and
classification speed.

1. Introduction

To reach multi-Gbps packet classification speed,
there are currently two major types of implementations
on commercialized products: Software-based
implementation on general-purpose processor (such as
CPU) and hardware-based implementation on
application specific integrated circuits (ASIC).
However, both of these two types of implementations
have inherent limitations:
♦ Software-based implementation: Software-based
algorithmic solutions embrace the practice of
leveraging the statistical structure of classification rule
sets to improve average performance. While current
algorithms for packet classification constantly improve
the search speed and reduce the memory usage, their
performance in software-based implementation is not
adequate for practical high-end deployment. The chief
problem is, due to the diversity of incoming packet
headers, most memory accesses occur to different
memory locations. So the probability of CPU cache hit
is not high, and thus access to main memory becomes
the bottleneck [1].

♦ Hardware-based implementation: Although
traditional routers and switches based on ASIC can
perform packet classification at multi-Gbps speed,
these devices are limited in backbone networks. This is
because most hardware-based solutions trade off the
programmability for processing speed, and the usage of
special memory chips, such as Ternary CAMs, requires
too much power and board area to support large
number of rules. Therefore, hardware-based solutions
usually mean higher production cost, longer time-to-
market, and more difficulties in upgrade to support
new applications. These drawbacks left the hardware-
based packet classification products only to the
backbones (10Gbps ~ 40Gbps) [2].

Thus, the challenge of combining intelligent
software-based algorithms and hardware-based
architectures to minimize the unfavorable
characteristics of existing solutions motivates the
research today. With the advent of powerful network
processors (NPs) in the market, many computation
intensive tasks can be accomplished more easily in
network services. As an emerging class of
programmable processors highly optimized for fast
packet processing operations, network processors
deliver hardware-level performance to software-
programmable systems. In this paper, we propose an
NP-optimized packet classification algorithm to
achieve near line-rate classification speed.

Main contributions of this paper are:
♦ An algorithm optimized for multi-core network
processor: The algorithm proposed in this paper,
Explicit Cuttings (ExpCuts), adopts a hierarchical
space aggregation technique to significantly reduce the
memory usage. Thus, without burst of memory usage,
the time-consuming linear search in common decision-
tree algorithms is eliminated, and an explicit worst-
case search time is achieved. When multi-channel
memory is provided, ExpCuts can be further optimized
by populating different level of tree-nodes on multiple
memory channels.

♦ Performance evaluation on Intel IXP2850 NP:
To objectively evaluate the performance of ExpCuts,
we built not only a packet classification building block,
but also a whole packet processing application on the
Intel IXP2850. ExpCuts, as well as previous work
HiCuts and HSM are implemented with Intel
microcode assembly, and evaluated both on software
simulator and hardware platform. Experimental results
show that ExpCuts outperforms these existing best-
known algorithms in terms of both packet
classification speed and memory usage.

2. Existing Work

Existing algorithmic solutions for packet
classification can be categorized based on two
classification strategies [11]:
♦ Field-independent search: Algorithms like RFC
[7] and HSM [8] perform independent parallel searches
on indexed tables; the results of the table searches are
combined in multiple phases to yield the final
classification result. All the entries of a lookup table
are stored consecutively in memory. The indices of a
table are obtained by space mapping and each entry
corresponds to a particular sub-space and stores the
search result at current stage. Algorithms using parallel
search are very fast in term of classification speed
while they may require comparatively large memories
to store the big cross-producting tables.
♦ Field-dependent search: HiCuts [3] and
HyperCuts [9] are examples of algorithms employing
field-dependent searches, i.e., the results of fields that
have already been searched influence the way in which
subsequent fields will be searched. The main
advantage of this approach is that the intelligent and
relatively simple decision-tree classifier can be used.
Although in most cases, decision-tree algorithms
require less memory than field-independent search
algorithms [12], they tend to result in implicit worst-
case search time and thus cannot ensure a stable worst-
case classification speed.

Because field-independent search algorithms often
need tens of megabytes memory to store the large
cross-producting table [4, 12], the large memory
requirement sometimes can hardly be satisfied with

current SRAM chips [13]. In comparison, algorithms
using field-dependent searches are commonly more
flexible in terms of memory and speed tradeoffs, and
hence are more flexible to be optimized for network
processor implementations.

In this paper, the proposed algorithm is based on the
well-known field-dependent search algorithm HiCuts.
By employing an effective hierarchical space
compression technique, the proposed algorithm
eliminates the time-consuming linear search in HiCuts
and provides with an explicit worst-case bound for
search to guarantee near line-speed packet
classification speed.

Because all the optimizations are towards multi-
core network processors, before describing the
algorithm, we give a brief introduction to the
architecture and programming challenges of a typical
multi-core network processor in the next section.

3. Intel IXP2850 Network Processor

Network processors are typically characterized as
distributed, multi-processor, multi-threaded
architectures designed for hiding memory latencies in
order to scale up to very high data rates. This section
gives a brief overview of the hardware architecture of
Intel IXP2850.
3.1. Architecture of IXP2850

The architecture of IXP2850 is motivated by the
need to provide a building block for multi-Gbps packet
processing applications. A simplified block diagram
and its description of the Intel IXP2850 are shown in
Figure 1 and Table 1 respectively. Details of IXP2850
can be found in [17-20].

Table 1: Hardware overview of IXP2850

Intel XScale
core:

Each IXP2850 includes an XScale core. The
Intel XScale core is a general purpose 32-bit
RISC processor.

Multithreaded
microengines

The IXP2850 network processor has 16 MEs
working in parallel on the fast packet-processing
path, running at 1.4 GHz clock frequency.

Memory
hierarchy

IXP2850 has 4 channels of QDR SRAM
running at 233 MHz and 3 channels of RDRAM
running at 127.3 MHz.

Build-in media
interfaces

IXP2850 has flexible 32-bit media switch
interfaces. Each interface is configurable as
media standard SPI-4 or CSIX-L1 interfaces.

3.2. Programming Challenges

Network processing applications are targeted at
specific data rates. In order to meet these throughput
requirements, a NP must complete the packet
processing tasks on a given packet before another
packet arrives. To keep up with the back-to-back

Hash
Unit

Me dia Switch
Fabric

SRAM
Controlle rs

Crypto
Units

XScale
Core

PCI
Interface

Microengines

DRAM
Controllers

SRAM
Controllers

Figure 1. Block diagram of the IXP2850.

arrival of minimum size packets at line rate, the NP
faces the following programming challenges [21]:
♦ Achieving a deterministic bound on packet
processing operation: Due to the line rate constraint,
we need to design the network algorithms in such a
way that the number of clock cycles to process the
packet on each microengine (ME) does not exceed an
upper bound. The key issue is to design network
algorithms using the right kind of data structures, and
limiting the total number of memory accesses.
♦ Masking memory latency through multi-
threading: Even if the data structures are designed to
complete packet processing within a definite time
interval, it is not sufficient to meet the line rate
processing requirements because memory latencies are
typically much higher than the amount of processing
budget. Therefore, the second important challenge is to
utilize the multiple hardware threads effectively to
mask memory latencies.
♦ Maintaining packet ordering in spite of parallel
processing: Another significant challenge in
programming the NPs is to maintain packet ordering.
This is extremely critical for applications like media
gateways and traffic management. Packet ordering can
be guaranteed using sequence numbers and/or strict
thread ordering.

In the next section, we will propose an NP-
optimized packet classification algorithm according to
the IXP2850 architecture and the programming
challenges.

4. Algorithm Optimization

4.1. The HiCuts Algorithm
The proposed algorithm is based on one of the well-

known packet classification algorithm Hierarchical
Intelligent Cuttings (HiCuts). HiCuts preprocesses the
packet classification rules to build a decision-tree for
field-dependent search, and in each leaf-node of the
decision-tree, a small number of rules bounded by a
threshold (binth in [3]) are stored for linear search.
Packet header fields are used to traverse the decision-
tree until a leaf-node is reached. The rules stored in
that leaf are then linearly searched for a match.

Geometrically, HiCuts decomposes the multi-
dimensional search space by heuristics that exploit the
characteristic of real-life rule sets. At each internal-
node, the current search space is segmented into certain
number of equal-sized sub-spaces along a particular
dimension. The number of cuttings and the dimension
to cut is determined by heuristics [3]. The sub-spaces
obtained on each fields are intersected and each
intersection generates a child node. To link the current
node with its children, HiCuts stores a pointer array at
each internal-node. Each pointer in the array
corresponds to a sub-space and is sequentially stored
according to the order of the sub-spaces.

Because different child-nodes may share the same
sub-ruleset, multiple pointers can be aggregated to
point to a single child node. Figure 2 shows how to
aggregate sub-spaces using pointer array: Sub-spaces 0
through 3 are aggregated to SS0 by pointers P0~P3.
Sub-spaces 4 through 16 are aggregated to SS1 by
pointers P4~P15. SS0 and SS1 are the search space for
child-node Ch0 and Ch1 respectively.
4.2. Explicit Cuttings
4.2.1 Motivation

Although HiCuts has good time/space tradeoffs and
works well for real-life rule sets, direct implementation
of HiCuts without NP-aware optimization on multi-
core network processors may suffer from:
♦ Non-deterministic worst-case search time:
Because the number of cuttings varies at different tree
nodes, the decision-tree does not have deterministic
worst-case depth. Thus, although worst-case search
time is the most important performance metric in
packet classification applications, HiCuts does not
have an explicit bound for search.
♦ Excessive memory access by linear search:
Experimental results (in section 6.6) show that linear
search is very time-consuming. Although the number
of rules for linear search is limited to binth (4~16), it
still requires tens of memory accesses to off-chip
SRAM chips. Such an amount of memory accesses
will result in a serious system bottleneck and thus
significantly impair the performance of HiCuts.

Figure 2: HiCuts space aggregation

Figure 3: ExpCuts space aggregation

Thus the design objectives of packet classification
algorithm optimized for NPs requires an explicit worst-
case bound for search and the elimination of the linear
search at leaf-nodes.

Motivations to design such an algorithm are:
♦ Fix the number of cuttings at internal-nodes: If
the number of cuttings is fixed to 2w (w is a constant
referred as stride), the current search space is then
always segmented into 2w sub-spaces at each internal-
node. This guarantees a worst-case bound of O(W/w),
where W is the bit-width of the packet header.
♦ Eliminate linear search at leaf-nodes: Linear
search can be eliminated if we “keep cutting” until
every sub-space is full-covered by a certain set of
rules. The rule with the highest priority in the set is
then the final match.
4.2.2 Optimization

Because both motivations tend to result in memory
burst due to the fixed stride and the minimized binth
(Elimination of linear search is equivalent to set
binth=1 in [3]), the main optimization task therefore
becomes how to effectively reduce the memory usage.

Note that in HiCuts, in order to maximize the reuse
of child nodes, the sub-spaces with identical rules are
aggregated by employing pointer arrays to lead the
way for search. However, the use of pointer arrays will
dramatically increase the memory storage because the
size of each array is considerably large when the
number of cuttings is fixed. For example, if w=8 is
fixed, each internal-node must store 256 pointers for
search. If a decision-tree contains tens of thousands
internal-nodes, the total memory usage to store the
pointer arrays may exceed tens of mega-bytes, which is
too large for current SRAM chips [18].

To effectively compress the size of these pointer
arrays, some employ bit-string technique to aggregate
consecutive pointers [11, 13, 22]: First, an Aggregation
Bit String (ABS) is used to track the appearance of
unique elements in the pointer array, and then
compress a sequence of consecutively identical
pointers as one element in a Compressed Pointer Array
(CPA). More specifically, each bit of an ABS
corresponds to an entry in the original pointer array,
with the least significant bit corresponding to the first
entry. A bit in an ABS is set to ‘1’ if its corresponding
entry in the original pointer array is different from its
previous one, i.e. bit set in an ABS indicates that a

different sequence of consecutively identical pointer
starts at the corresponding position. Whenever a bit is
set, its corresponding unique pointer is appended in the
CPA. Accordingly, the n-th pointer in the original
point array can be found by: add the first n bits in the
ABS to get an index, and then use the index to load the
pointer from CPA.

Ideally, all the pointer arrays should be compressed
using ABS and CPA. However, loading such a bit
string also may cause excessive memory accesses.
Fortunately, in our experiments on various real-life
rule sets, we found that the number of child nodes of a
certain internal tree node is commonly very small: with
256 cuttings at each internal-node, the average number
of child nodes is less than 10. This observation is very
consistent to the results reported earlier [3, 9, 10]. Such
small number of child nodes indicates that the pointer
array is very sparse, i.e. the number of bits set in ABS
is also sparse. Thus, this observation motivates us to
further compress the ABS to effectively reduce the
number of memory accesses.

Figure 3 illustrates the Hierarchical Aggregation
Bit-String (HABS) we proposed to further compress
the data structure: The 4-bit HABS is set to “1100"
because sub-spaces 4~7, 8~11 and 12~15 all belongs to
SS1. If a packet falls in sub-space 9, the corresponding
child-node pointer can be located by
(1+1+0)<<2+(9&0x11)=5, i.e., P5.

Define the size of HABS as 2v, the number of
pointers as 2w, and u=w-v. To compress the 2w
pointers: First, divide the 2w pointers into 2v sub-arrays.
Then set the bits in HABS to ‘1’ if the 2u consecutive
pointers in its corresponding sub-array are different
from the pointers in previous sub-array, i.e. a bit set in
an HABS indicates that a different sequence of
consecutively identical sub-array of pointers starts at
the corresponding position. At the same time,
whenever a bit is set, its corresponding sub-array of
pointers is appended in the CPA. According to this
scheme, the nth pointer in the original point array can
be located by: 1) extract the higher v bits of n to get a
v-bit value m; 2) extract the lower u bits of n to form a
u-bit value j; 3) add 0~m bits of the HABS to get an
sub-array index i; 4) use ((i<<u)+j) as the index to load
the corresponding pointer from CPA.

In the implementation of ExpCuts, the size of
HABS is set to be 16, and HABS is stored together
with the cutting information within a single 32-bit
long-word (see Figure 4). Such a data-structure can be
effectively loaded by the word-oriented SRAM
controller on IXP2850 without any excessive memory
accesses. Implementation and evaluation of ExpCuts
on IXP2850 will be discussed in the next two sections.

Figure 4: Data-structure of ExpCuts

5 Implementation of Packet Classification
on IXP2850

Previous study about packet classification on
network processor is either on limited number of rules
[23] or just by software simulation [13]. In this paper,
an entire packet processing application is implemented
on the Intel IXP2850 and the packet classification
algorithms added to this application can support large
real-life rule sets. The overall application has been
tested and evaluated not only by software simulator but
also on a hardware platform.

Table 2: Multi-processing vs. Context-

pipelining
Task

partitioning Advantages Disadvantages

Multi-
processing

Adding more
functionality or scaling
to higher data rates
simply involves using
more MEs in parallel.

Packet header and
descriptors can be read
in once, cached in local
memory, and used by
all the packet-
processing tasks.

Access to data
structures shared across
multiple packets needs
to be synchronized
across multiple MEs.

Every packet-
processing ME must
contain code for all
packet-processing tasks.

Context-
pipelining

Access to data
structures shared across
multiple packets only
needs to be
synchronized on the
threads running on
single ME.

Each microengine
only needs to contain
code for the task runs
on it.

Adding more
functionality or scaling
to higher data rates to
an existing task may
involve restructuring
the code to run on
multiple MEs.

Per-packet state has
to be passed from one
ME to the other by
shared memory or
scratch/NN rings.

5.1 Task Partitioning Methods

There are two general ways to partition tasks onto
multiple MEs on the Intel IXP2850 [1, 21]: multi-
processing and context-pipelining. In the multi-
processing approach, each ME executes all the
functions of the application, while in the context-
pipelining approach, each function is allocated to a
different ME. Advantages and disadvantages of these
two general methods are shown in Table 2.

5.2. Mapping Packet Processing in a Typical
Application

The application on IXP2850 receives Ethernet
frames that carry IPv4 packets. The frames are
reassembled into packets and the Layer-2 (Ethernet)
headers are removed. Then packet classification and
forwarding are performed. Finally, packets are
segmented into CSIX c-frames and transmitted to the
CSIX fabric. Figure 5 and Table 3 show the application
design mapped to an IXP2850 network processor.

Table 3: Microengine Allocation

Task Receive Processing Scheduling Transmit
#MEs 2 1~9 3 2

Table 4: Optimized Memory Allocations
 SRAM#0 SRAM#1 SRAM#2 SRAM#3
Utilization 56% 0% 47% 31%
Headroom 44% 100% 53% 69%
Allocation level 0~1 level 2~6 level 7~9 level 10~13

5.3. Memory Allocation

As described in section 3, SRAM and DRAM are
two types of commonly used NPU memory. Although
Intel IXP2850 network processor supports up to 2GB
DRAM, which is 8 times larger than the maximum size
of SRAM, the latency of DRAM is about twice as long
as that of SRAM. In addition, different access
granularities must be considered as well as memory
size and latency [16]. On the Intel IXP2850, SRAM is
word-oriented (optimized for 4-byte access), while
DRAM is burst-oriented (optimized for 16-byte
access). Thus to effectively speed up the packet
classification speed, all the data-structures for packet
classification should be stored in SRAM.

There are 4 SRAM controllers on the IXP2850,
allowing independent parallel access. To maximize the
performance, we propose to distribute different level of
the decision-tree nodes on different SRAM channels
according to the bandwidth headroom of each channel.
Here the bandwidth headroom refers to the memory
bandwidth not utilized by the application without
adding the packet classification code. For example, if
the stride w=8, the tree depth is then 104/8=13. In
proportion to the memory bandwidth headroom of each
SRAM channel, the 13 levels of tree nodes are
allocated in a way described by Table 4.
5.4. Instruction Selection

To compute the sum of the HABS, indeterminist
and time-consuming iterations by traditional RISC
instructions are required. It usually takes more than
100 RISC instructions (ADD, SHIFT, AND, and
BRANCH) to compute the number of bits set in the
HABS. Therefore, without hardware support, the
computation burden will become a new performance

Figure 5: Application Mappings

bottleneck for the proposed ExpCuts algorithm.
Fortunately, IXP2850 provides with a hardware
instruction named POP_COUNT, which can count the
number of ‘1’s in a 32-bit bit-string within only 3
system cycles [24]. Thus, using POP_COUNT
instruction with an ALU AND instruction to mask off
undesired bits, the total number of cycles required by
HABS computation can be reduced by more than 90%
compared to other RISC implementations [16]. This is
essential for the ExpCuts algorithm to achieve the line
rate.

6. Experiments and Performance Analysis

6.1. Rule Sets and Traffics

Our study focuses on real-life rule sets because
experimental results on these rule sets are more
convincing than those obtained on synthetic rules [22].
We evaluate all the packet classification algorithms on
real-life firewall and core router rule sets. These rule
sets are the same as those used in paper [6] and [22]:
firewall rule sets are named as FW01, FW02, FW03;
core router rule sets are named as CR01, CR02, CR03
and CR04. The largest real-life ruleset (CR04) contains
1945 rules. All rules are 5-dimensional with 32-bit
source/destination IP addresses (represented as
prefixes), 16-bit source/destination port numbers
(represented as ranges) and 8-bit transport layer
protocol (represented as discrete values).
6.2. Development Kits

There are two basic programming choices in the
Intel Software Developer Kit (Intel SDK):
programming in assembly language (Microcode) or
programming in C language (MicroC). To make better
compatibility with Intel SDK, and to avoid dependency
on compiler optimizations, all the application and
algorithms are developed using Microcode assembly
with the software framework provided by Intel SDK4.0
[25].

To evaluate the performance, the application was
tested and run in the IXP2850 Developer Workbench,
which offers a cycle-accurate simulator of the
IXP2850. It provides access to several performance
metrics that reflect the actual IXP2850 hardware. The
application was also tested on a dual-IXP2850
platform to ensure the code accuracy and compatibility
on hardware.
6.3. Space Aggregation Evaluation

The memory requirements with and without space
aggregation of the 7 real-life rule sets by ExpCuts are
shown in Figure 6. The memory requirement of
different rule sets increases along with the increasing
number of rules and extent of rule-overlapping.
ExpCuts with space aggregation (using HABS and

CPT) only requires approximately 15% of the SRAM
consumed by ExpCuts without space aggregation.
Because the IXP2850 hardware platform only has four
8MB SRAM chips, ExpCuts without space aggregation
cannot support CR02, CR03 and CR04 due to their
excessive memory usage. In comparison, even for the
largest ruleset CR04, ExpCuts with space aggregation
only require 11.5MB memory, which can be easily
distributed on the four 8MB SRAM chips.

6.4. Relative Speedups
Figure 7 shows the packet classification rates and

relative speedups of ExpCuts using the 64-byte TCP
packets on the largest ruleset CR04. The results were
collected after all optimizations had been applied and
all the four channels of SRAM were used to store the
decision-tree data-structure. The speedup is almost
linear and classification speed reaches up to 7Gbps for
71 parallel threads (9 MEs, each running in 8 thread
mode; 1 thread is reserved to handle exceptional
packets). Such linear speedups indicate that the
memory bandwidths of all the 4 SRAM channels are
not full used, i.e., the overall memory accesses
required by ExpCuts algorithm are considerably small
so that the packet classification rate always increases
as more multi-processing threads are added.
6.5. SRAM Channel Impacts

Table 5 shows the SRAM channel impacts of
IXP2850. From this table we can see that: 1) even if
the overall data-structure is stored in a single channel
with 100% bandwidth headroom, the throughput
cannot reach 5Gbps. This is because the bandwidth of
only one SRAM channel is not enough to support the
13 times of memory accesses; 2) the packet
classification speed (throughput) does not increase
linearly as more SRAM channels are added. This is not
only caused by the difference of SRAM bandwidth
headroom (shown in Table 5), but also by the
saturation of command request FIFO and SRAM buses
[13] [16].

Table 5: SRAM Channel Impacts

Num. of Channels 1 2 3 4
Throughput (Gbps) 4963 5357 6483 7261

0

10000

20000

30000

40000

50000

60000

70000

80000

FW01 FW02 FW03 CR01 CR02 CR03 CR04

Rule Sets

S
R

A
M

 U
sa

ge
 (K

B
)

without aggregation
with aggregation

Figure 6: Space aggregation effect

6.6. Comparison with Other Algorithms
To make objective evaluations, we compare

ExpCuts with existing best-known packet classification
algorithms: HiCuts and HSM, where HiCuts represents
a popular field-dependent search scheme and HSM
represents a popular field-independent search
algorithm.

As discussed in section 4.1, HiCuts leverages the
advantages of both linear search and decision-tree
search, reaching considerably fast classification speed
with modest memory storage. However, in the worst-
case, the linear search done at leaf-nodes needs up to
binth (in our experiment, binth=8) times of memory
accesses and each memory access refers to 6
consecutive 32-bits words. Figure 8 illustrates the
impact of linear search at leaf-nodes. We can see from
this figure that, if the number of rules for linear search
is greater than 8, the maximum throughput will be less
than 3Gbps.

ExpCuts is also compared with HSM, which is one
of the fastest packet classification algorithms [8].
Because HSM only requires (log)NΘ memory

accesses, and each access only refers to a single 32-bit
long-word of SRAM read, the overall memory access
is much smaller than HiCuts. Figure 9 compares the
throughput of ExpCuts, HiCuts and HSM on the 7 real-
life rule sets. We conclude from this figure that: 1)
ExpCuts has the best average performance over all rule
sets. No matter how large the rule sets are, ExpCuts
obtains stable throughput. 2) HSM algorithm is also
fast, especially for small number of rules. However,
due to the (log)NΘ search time, the performance
decreases as the number of rules increases. 3) The
performance of HiCuts is limited under 3Gbps because
of the time-consuming linear search. To obtain
practical speed using HiCuts algorithm, the platform
might need certain amount of on-chip memory to store
all the leaf-nodes for fast data access.
6.7. Summary of Memory Effects

Reducing the effects of memory latency and
memory access is critical to the performance of packet
classification algorithms on NPs. From the above
evaluations, we summarize two performance
bottlenecks of NP implementations:
♦ SRAM Bandwidth: Memory bandwidth is simply
the raw frequency of the memory units measured in
Gbps. In packet classification applications, processing
one packet needs to read certain amount of memory.
For example, linear search requires reading N*6 (N
rules, 6-word size) 32-bit words to classify an
incoming packet in the worst-case. Because system
memory bandwidth is limited, reading fewer amounts
of memory words will hence lead to higher
performance. In addition, data movement between the
SRAM and the Microengines is through the memory
push/pull buses, the bandwidth of these buses also
limited the maximum performance of NPs.
♦ I/O Instructions: The SRAM controller enqueues
a command from each command bus in each cycle. If
the microengine issues too many I/O operations at a
time, the enqueue and dequeue mechanisms in SRAM
controller will slow down the I/O operations due to the
limitation of its processing capability. Thus, a new
system bottleneck yields even if there is still SRAM
bandwidth headroom. This means not only the total
amount of memory words, but also the number of
memory accesses affects the overall system
performance.

7. Conclusion

In this paper, we proposed a high-performance
packet classification algorithm, ExpCuts, which is
based on the well-known HiCuts algorithm but
optimized for multi-core network processors. ExpCuts
adopts an efficient bit-string aggregation technique to

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

7 15 23 31 39 47 55 63 71

Number of Threads

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput

Figure 7: ExpCuts relative speedups

0
1000

2000
3000

4000

5000
6000

7000
8000

9000
10000

1 3 5 8 10 13 15 18 20
Number of Rules

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput

Figure 8: Linear Search Effect

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

FW01 FW02 FW03 CR01 CR02 CR03 CR04
Rule Sets

Th
ro

ug
hp

ut
 (M

bp
s)

ExpCuts HiCuts HSM

Figure 9: Algorithm Comparison

avoid excessive memory usage. Consequently, without
burst of memory usages, the time-consuming linear
searches in common decision-tree algorithms are
eliminated, and an explicit worst-case search time is
achieved. When multi-channel SRAM is provided,
ExpCuts can be further optimized by populating
different level of tree-node on multiple memory banks.

To objectively evaluate the performance of
ExpCuts, we built a complete packet processing
application, not just a packet classification building
block, on the Intel IXP2850 multi-core network
processor. ExpCuts, as well as HiCuts and HSM
algorithms are implemented with Intel Microcode
assembly, and evaluated both on software simulator
and hardware platform. Experimental results show that
ExpCuts outperforms the existing best-known
algorithms in terms of both packet classification speed
and memory usage.

8. References

[1] U. R. Naik and P. R. Chandra, “Designing High-
performance Networking Applications,” Intel Press, 2004.
[2] T. Sherwood, G. Varghese, and B. Calder, “A Pipelined
Memory Architecture for High Throughput Network
Processors,” Proc. the 30th International Symposium on
Computer Architecture, 2003.
[3] P. Gupta and N. McKeown, “Packet Classification Using
Hierarchical Intelligent Cuttings,” Proc. Hot Interconnects,
1999.
[4] P. Gupta and N. McKewon, “Algorithms for Packet
Classification,” IEEE Network, March/April, 2001.
[5] M. H. Overmars and A. F. van der Stappen, “Range
Searching and Point Location among Fat Objects,” Journal of
Algorithms, vol. 21, no. 3, 1996.
[6] Y. Qi, B. Xu, and J. Li, “Evaluation and Improvement of
Packet Classification Algorithms,” Proc. the 1st International
Conference on Network and Services (ICNS), 2005.
[7] P. Gupta and N. McKeown, “Packet Classification on
Multiple Fields,” Proc. ACM SIGCOMM, 1999.
[8] B. Xu, D. Jiang, and J. Li, “HSM: A Fast Packet
Classification Algorithm,” Proc. the 19th International
Conference on Advanced Information Networking and
Applications (AINA), 2005.
[9] S. Singh, F. Baboescu, G. Varghese, and J. Wang,
“Packet Classification Using Multidimensional Cutting,”
Proc. ACM SIGCOMM, 2003.
[10] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A.
T. Campbell, “Directions in Packet Classification for

Network Processors,” Proc. the 2nd Workshop on Network
Processors (NP2), 2003.
[11] J. van Lunteren and T. Engbersen, “Dynamic Multi-
Field Packet Classification,” Proc. IEEE GLOBECOM 2002,
vol. 3, 2002.
[12] D. E. Taylor, “Survey & Taxonomy of Packet
Classification Techniques,” Technical Report, Washington
University in Saint-Louis, USA, 2004.
[13] D. Liu, B. Hua, X. Hu, and X. Tang, “High-performance
Packet Classification Algorithm for Many-core and
Multithreaded Network Processor,” Proc. the 6th IEEE
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), 2006.
[14] P. Piyachon and Y. Luo, “Efficient Memory Utilization
on Network Processors for Deep Packet Inspection,” ACM
Symposium on Architectures for Network and
Communications System (ANCS), 2006.
[15] L. Zhao, Y. Luo, L. Bhuyan, and R. Iyer, “SpliceNP: A
TCP Splicer using A Network Processor,” ACM Symposium
on Architectures for Network and Communications System
(ANCS), 2005.
[16] X. Hu, X. Tang, and B. Hua, "High-Performance IPv6
Forwarding Algorithm for Multi-core and Multithreaded
Network Processor," Proc. ACM SIGPLAN 2006
Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2006.
[17] Intel Corporation, “Intel IXP2850 Network Processor
Hardware Reference Manual,” 2004.
[18] Intel Corporation, “Intel IXDP2850 Advanced
Development Platform System User’s Manual,” 2004.
[19] B. Carlson, “Intel Internet Exchange Architecture and
Applications,” Intel Press, 2003.
[20] E. J. Johnson and A. R. Kunze, “IXP2400/2850
Programming,” Intel Press, 2003.
[21] M. Venkatachalam, P. Chandra, and R. Yavatkar, “A
Highly Flexible, Distributed Multiprocessor Architecture for
Network Processing,” Computer Networks, vol. 41, no. 5,
2003.
[22] Y. Qi and J. Li, “Towards Effective Packet
Classification,” Proc. IASTED Conference on
Communication, Network, and Information Security (CNIS),
2006.
[23] D. Srinivasan and W. Feng, “Performance Analysis of
Multi-dimensional Packet Classification on Programmable
Network Processors,” Proc. the 29th Annual IEEE
International Conference on Local Computer Networks
(LCN), 2004.
[24] Intel Corporation, “Intel IXP2400 and IXP2800
Network Processor Programmer’s Reference Manual,” 2004.
[25] http://www.intel.com/design/network/products/npfamily

