
ABSTRACT
Packet filtering plays an important role in network devices
such as firewalls, routers, security gateways and intrusion
detection systems. Numerous schemes have been proposed
to improve packet filtering techniques. Many previous
works struggled to utilize the characteristics of filtering
rule-sets as optimization heuristics. However, there are
rarely efforts excavating network traffic characteristics.
This paper focuses on analyzing the statistical
characteristics of network traffic and imposing it to
optimize packet filtering algorithms. Contribution of the
paper includes two aspects: first, the skewness and time
correlation in real-life traffic is presented to illustrate
network traffic statistics; second, an adaptive packet
filtering algorithm, AHSM, is proposed based on HSM
algorithm for improving average packet filtering speed.
AHSM takes traffic statistics as heuristics and constructs
statistical search trees for single field searching.
Experimental results show that the optimized algorithm
reduces 20%~50% of the single field matching overhead
compared with the HSM algorithm and improves the
overall performance by 35%~45%, while retaining the same
memory usage.

KEY WORDS
Packet filtering, traffic statistics, binary trees

1. Introduction
Packet filtering plays a critical role in Internet services
including access control, policy-based routing, service
differentiation and load balancing. With the rapid
increasing of network bandwidth, packet filtering is
required to cope with the link speed upgrade of Internet
backbone devices. However, the packet filtering problem is
inherently difficult to solve from a theoretical point of view.
It is proved that the computational complexity bounds for
searching N rules with F fields is (log)O N best in time
but ()FO N in space, or ()O N best in space with

1(log)FO N− in time [1]. Thereby, it is easy to perform
packet filtering at high speed with large memory occupation
or at low speed with small memory occupation. It is rather
difficult to achieve high filtering speed with small memory
occupation. Researchers have been working hard to find out

modest trade-off between time and space. Many previous
works have been done to utilize the intrinsic rule-set
characteristics as optimization heuristics.
This paper proposes a novel algorithm that improves packet
filtering speed with modest memory requirement. The new
packet filtering scheme adopts the network traffic statistics
as heuristics in building up statistical search trees to reduce
rule fields searching time. Besides, the proposed AHSM
algorithm intersects the field searching results with
recursive space mapping tables based on the ideas of the
Hierarchical Space Mapping (HSM) algorithm [2], which
was proposed by Xu, Jiang and Li in 2005. Main
contributions of this paper include:

 Novel Ideas: This paper excavates the network traffic
statistical heuristics to improve real time packet filtering
speed. The authors acquire network traffic from real-life
circumstances and carefully analyze the network statistical
characteristics including field distribution skewness and
time correlation. The statistical characteristics are then
employed to construct statistical search trees to improve
single filed searching speed.

 New Algorithm: The proposed AHSM algorithm
engages the alphabetic search trees in each packet header
field to improve single field searching speed. It then
combines the field matching results with recursive
intersecting tables, which have better time performance
than trees. As a result, AHSM improves filtering speed by
optimized binary trees and recursive intersecting tables
while preserves memory usage at a modest level.
2. Previous Work
In recent years, the packet filtering problem has been
studied intensively. The original approach for packet
filtering is to search the sequential rules linearly until a
match is found. Though this approach consumes very little
memory, its performance is quite challenged and not
scalable since the search time is proportional to the rule-set
size. Many algorithms have been proposed recently and
they can be classified into three categories: hardware-based
solutions, geometric algorithms and heuristic-based
algorithms.
Hardware-based solutions mainly utilize the parallelism of
Content Addressable Memory (CAM) to perform rule
matching in parallel. Zheng et al. proposed a TCAM-based
IP lookup algorithm using prefix match in 2004 and then

Bo Xu1, 2, Guangyu Zhou1, Yibo Xue2, 3, Jun Li2, 3

1Department of Automation, Tsinghua University, Beijing, China
2Research Institute of Information Technology (RIIT), Tsinghua University, Beijing, China

3Tsinghua National Lab for Information Science and Technology, Beijing, China

AHSM: ADAPTIVE PACKET FILTERING WITH NETWORK TRAFFIC
STATISTICS

631-041 258

debbie
New Stamp

further extended the filtering engine to support range match
using the TCAM wildcard. [5] It is claimed that both the
solutions can reach the filtering requirement of OC-192 line
speed. However, the solutions cannot afford middle to large
rule-set because of the high cost, power consumption and
size limitations of CAMs.
A variety of geometric algorithms have been proposed for
packet filtering. Trie based schemes, including Grid-of-tries
[6], Hierarchical tries [7] and Set-pruning tries [6], all
construct searching tries based on the geometric layout of
the search space. Bit vector algorithms such as BV [8] and
ABV [8] also use trie lookup on each header field, followed
by a combining phase of bit vectors, which indicates the
potential matching rules.
Heuristic-based algorithms are introduced by Gupta and
McKeown [7] and Woo [9]. Hierarchical Intelligent
Cuttings (HiCuts) [10] builds a decision tree based on the
structural characteristics of the rule-set and uses
optimization decisions to decide the next dimension to cut
at each node.
Gupta and Mckeown proposed another heuristic scheme
call Recursive Flow Classification (RFC) [11] in 1999.
RFC simplifies packet filtering by reducing structural
redundancy in the rule matching. RFC needs only 9
memory accesses for one packet filtering and it can be
pipelined due to its structure. However, RFC does not scale
well with medium or large rule-sets because of exponential
increase of memory demand.
HSM improved RFC by using binary trees to replace the
first phase indexing tables. As a result, the improved
algorithm remarkably reduces the memory requirement
with the expense of slightly increased searching time.
Although the previous work contribute significantly to
packet filtering research, they mainly design algorithms
based on the geometric layout or structural characteristics
of the rule-set. Therefore, they have not exploited the
network statistical characteristics to improve the average
packet filtering speed.
The related work closest to our approach is Dynamic
Cuttings (D-Cuts) [3] and the paper by Hamed et al [4].
D-Cuts adopts network statistics into decision trees and thus
achieves higher average filtering speed than HiCuts. The
work by Hamed builds alphabetic trees on each field and
proposes two methods to form the final statistical matching
tree. However, both the schemes suffer from the relative
long term tree searching, compared with table-based space
mapping algorithms such as RFC and HSM. Our work
inherits the hierarchical space mapping tables from HSM
and thus transfers the tree combinations into fast table
indexing.

3. Network Traffic Statistics
This section analyzes the statistical characteristics of the
traffic passing through firewalls. The traffic analysis is
performed on real-life traces captured at the edge firewall of
a research institute in Tsinghua University. Furthermore, we
tick out the beginning packets of the flows to generate the

testing traces, as in today’s stateful firewalls, only the first
packet of each flow is processed by the packet filtering
module, while the subsequent packets are processed in the
stateful inspection module, or session filtering module. The
traces of Friday and Sunday are taken to represent the
realistic network conditions of working day and weekend.
Each trace contains the header information of 15M to 20M
packets, and correspondingly 3M to 5M SYN packets.
The observed statistical characteristics lie in two aspects: (1)
the traffic skewness in each header field; (2) the time
correlation of field value. The single field skewness
motivates us to employ statistical search trees to accelerate
single field searching. Besides, the time correlation gives us
the idea that how long the skewness will last and thus
choose a proper update frequency. The two statistics are
illustrated in the following.
3.1. Traffic Skewness in Packet Filtering
Previous studies [4] have shown that the majority of
Internet flows have short flow sizes in terms of number of
packets, while most of the traffic is contributed by the long
flows. In packet filtering problem, we focus on the
distribution of the beginning packets of flows, since today’s
firewalls use sessions to handle the subsequent packets of
flows. Based on our observation, we argue that the
scattering of the beginning packets also show considerable
degree of skewness, which motivates the engagement of
statistical heuristics in packet filtering.
The field value frequency distribution is said to be skewed
if the distribution is non-uniform. It means part of the
values have higher hit frequencies while others have lower.
To evaluate the degree of skewness, we use the entropy
formulation in information theory [12]. The entropy returns
a value between 0 and 1, where 0 corresponds to uniform
distribution and 1 corresponds to a completely skewed
distribution. Higher entropy refers to higher skewness in the
frequency distribution. The skewness factor of a header
field f is denoted as fS defined by Formula 1, where

ip is the probability of field value iv and n is the
number of possible values of field f .

1
lg

1
lg

n
i ii

f

p p
S

n
== − ∑ (1)

The skewness of frequency distribution is calculated for all
field values at different sampling time intervals. Since only
the beginning packets of flows are concerned here, the time
intervals are measured in number of packets instead of time
in seconds.
Figure 1-(a) and Figure 1-(b) show the skewness of field
value frequency distribution of traffic passing through the
real-life firewall. Figure 1-(a) gives the skewness of the
four header fields on Friday and Figure 1-(b) gives that of
Sunday. It is shown in the two figures that the skewness
factor of the source address ranges from 0.55 to 0.85, while
the skewness factor of the destination address ranges from
0.15 to 0.7. It also shows that the source port has a
skewness factor of 0.03-0.5, while the destination port has a
skewness factor of 0.15-0.7.

259

It is observed from Figure 1 that the source address have the
highest skewness, and the destination address along with
the destination port have moderate skewness, while the
source port has the lowest skewness. Figure 1 also shows
that the skewness of all fields grows remarkably with the
increasing of sampling period. Moreover, the skewness on
Friday is similar to that of Sunday, which provides
compelling evidence that the skewness in network traffic
constantly exists, no matter it is working day or weekend.
The four head fields have skewness larger than 0.40 when
the sampling period is longer than 10,000 packets, except
the source port field. Thus, it will be rather appealing if we
can use the skewness to optimize the single field searching
tree structures.
3.2. Time Correlation of Field Frequencies
To measure how long the skewness will last, we investigate
the correlation of the frequency distribution of packet
header fields over two consecutive time intervals. If the
field frequency distribution is similar between consecutive
intervals, then is will be said to be time-correlated over the
two intervals. The correlation factor of field f is calculated
as Formula 2 [4], where ip is the probability of iv in a
certain time interval, and iq is the probability in the
following interval. pμ and qμ represent the mean value
of the two probability distributions while pσ and qσ
represent their standard deviation. The correlation factor

fC returns a value between 0 and 1, where 0 indicates an
uncorrelated distribution and 1 indicates a completely
correlated distribution.

1
()()n

i p i qi
f

p q

p q
C

n
μ μ

σ σ
=

− −
=

⋅ ⋅
∑ (2)

Figure 2-(a) and Figure 2-(b) show the time correlation of
the header fields over consecutive time intervals. Figure

2-(a) illustrates the time correlation of the four header fields
on Friday and Figure 2-(b) gives that of Sunday. It is shown
that the source address field has the highest time correlation
factor ranging from 0.9 to 1. The destination address field
has moderate time correlation factor ranging from 0.75 to
0.95. The destination port field has a moderate time
correlation factor from 0.7 to 0.95 when the sampling
period is smaller than 20,000 packets. However, the
correlation factor of destination port deceases rapidly if the
sampling period exceeds 20,000 packets. Besides, the
source port field has the lowest time correlation factor,
which grows smoothly when the sampling period is smaller
than 50,000 packets but decreases rapidly if the sampling
period exceeds this value. This is because that the ports are
likely to be reused if the sampling period is too long.
It is also observed in Figure 2 that the correlation factors of
the source and destination address fields tend to increase
slowly with the increasing of sampling period. But it does
not mean that the longer sampling period is always better,
since the time correlation will decrease when the sampling
period exceeds certain threshold. The correlation reduction
with sampling periods larger than 50,000 in Figure 2-(b)
demonstrates this affirmation, which is consistent with
intuitive opinions. We argue that this kind of decease in
correlation factor is due to the inherent rhythm of the
network traffic. The characteristics of the traffic determine
an intrinsic time correlation frequency, longer or shorter
sampling periods will both cause the decline in time
correlation. Moreover, Figure 2 shows that the time
correlation of the four header fields on Friday is similar to
that of Sunday, while it may have different inflexions of
time correlation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000
Sampling Period(packets)

Sk
ew

ne
ss

 o
f D

is
tri

bu
tio

n

SrcIP

DstIP

SrcPort

DstPort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000
Sampling Period(packets)

C
or

re
la

tio
n

be
tw

ee
n

pe
rio

ds

SrcIP

DstIP

SrcPort

DstPort

Figure 1-(a). Skewness of Distribution on Friday Figure 2-(a). Time Correlation on Friday

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000
Sampling Period(packets)

Sk
ew

ne
ss

 o
f D

is
tri

bu
tio

n

SrcIP

DstIP

SrcPort

DstPort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000
Sampling Period(packets)

C
or

re
la

tio
n

be
tw

ee
n

pe
rio

ds

SrcIP

DstIP

SrcPort

DstPort

Figure 1-(b). Skewness of Distribution on Sunday Figure 2-(b). Time Correlation on Sunday

260

Based on these observations, we can see that the source
address, destination address and destination port fields all
have high and stable time correlation factors. Nevertheless,
the source port field has a wide time correlation range that
varies according to the sampling period. However, the time
correlation factor of the source port could reach a high
value if we can pick a suitable sampling period.
As a result, according to the network traffic statistics
observed from the real-life traces, it can be concluded that
the four header fields, including the source address, the
destination address, the source port, and the destination port,
do have considerable skewness in their frequency
distributions and the distributions last for consecutive time
intervals with high correlation. These statistical
characteristics significantly motivate our work described in
the following section.

4. Adaptive Filtering Algorithm
This section proposes an adaptive packet filtering algorithm
called AHSM, which utilizes the network traffic statistical
characteristics for improving the average filtering speed in
real-life circumstances. The basic ideas are based on the
algorithm HSM.
4.1. Basic Ideas
HSM performs binary search at each header field using
balanced binary trees, and then searches the hierarchical
space mapping tables for possible combinations of results
from single field binary searches. Figure 3 shows the data
structure of HSM, where the four header fields (source

address, destination address, source port and destination
port) are searched via balanced binary trees and after that
Address Mapping Table (AMT) and Port Mapping Table
(PMT) are indexed respectively by the combining the
searching results of the two address fields and the two port
fields. At last, Policy Lookup Table (PLT) is indexed by
combining AMT and PMT lookup results.
Although HSM is superior to RFC in space complexity by
using binary trees to replace the indexing tables of RFC in
the first phase of searching, it slightly degrades filtering
speed due to the time-consuming single field binary
searches. If the number of rules is N , the time for f field
binary searches will be 2log 2f N , while the search in the
subsequent hierarchical space mapping tables only takes 3
memory accesses [2]. Thus, aiming at improving packet
filtering speed of HSM, we must reduce the single filed
search time. Fortunately, based on the analysis in Section 3,
we believe that the average searching speed can be
accelerated by employing statistical heuristics.
4.2. AHSM Algorithm
The proposed AHSM algorithm is an optimization of HSM
algorithm. Its basic idea is to use the alphabetic search trees
to replace the balanced binary trees in HSM to improve the
single field search speed, while retaining the subsequent
hierarchical space mapping tables. This section analyzes the
skewness in header filed segments and constructs the
alphabetic trees for single filed searching. At last, it
discusses the reconstruction and update of the alphabetic
trees.

Figure 3. HSM Data Structure

Table 1. Example Statistics of Destination Port Filed

Segments Value Statistics

S1 0-19 0.01

S2 20-21 0.01

S3 22-52 0.02

S4 53 0.10

S5 54-79 0.12

S6 80-88 0.60

S7 89-65535 0.14

Figure 4-(a). Binary Search Tree for Table 1

Figure 4-(b). Alphabetic Search Tree for Table 1

261

4.2.1. Skewness in Header Field Segments
It has been observed in Section 3 that the network traffic
has certain degree of skewness in the header field value
frequencies and the skewness will last for certain period of
time. Apparently, this kind of skewness will also cause the
skewness in the header field segments generated by the
rules. To demonstrate this deduction, we choose one
real-life rule-set with 2,180 rules and take 10,000 packets
from the firewall traffic to observe the data locality. The
rule-set splits the source address sub-space into 840
segments, the destination address sub-space 959 segments,
the source port sub-space 7 segments and the destination
port sub-space 339 segments. Figure 6-(a) to (b) shows the
segment hit rates of the source port and destination port
header fields in a decreasing order, where it can be seen that
the majority of the hits belong to a small part of the
segments. This kind of skewness makes it possible to
construct statistical search trees for the header field
searches.
4.2.2. AHSM Matching Phases
AHSM algorithm engages similar matching phases with
HSM algorithm. As shown in Figure 3, HSM takes four
balanced binary tree searches in Phase 1, and then perform
table indexing in AMT, PMT and PLT. AHSM improves
HSM by replacing the balanced binary trees with statistical
search trees, while keeping the hierarchical space mapping
tables.
Alphabetic search trees: There are several types of
statistical search trees that can be adopted to minimize the
weighted tree depth. AHSM chooses the Alphabetic Search
Trees [13] mainly because it has lower tree construction
complexity when compared with the Optimal Binary Search
Trees and has less searching overhead when compared with
Huffman Trees [14]. The alphabetic search tree stores the
segments in leaf nodes and keeps the ordering of the parent
and child nodes. The best time complexity for constructing
alphabetic search trees is (log)O n n , achieved by
Hu-Tucker [13].

Assuming we have the segments of destination port field
with statistical probabilities as shown in Table 1, the normal
balanced binary search tree will be like Figure 4-(a), while
the alphabetic search tree can be illustrated as Figure 4-(b).
Considering the corresponding statistics of the segments,
the average depth of balanced binary tree is 3.88 while the
average depth of the alphabetic search tree is 3.2. The
average number of matching is reduced by 18% compared
with the balanced binary tree.
Hierarchical space mapping tables: In phase 2 and phase 3,
AHSM adopts the recursive mapping tables inherited from
HSM. The space mapping tables are generated with
assistance of bitmaps, which records the serial numbers of
the potential matching rules. Consequently, after locating
the header segments with the alphabetic trees in phase 1,
AHSM only needs 3 additional memory accesses to find out
the final match.

5. Performance Evaluation
To evaluate the performance of the alphabetic tree filtering
technique, we use four real-life rule-sets and one
synthesized rule-set. FW1 and FW2 are access control lists
(ACLs) obtained from edge firewalls in Tsinghua
University and they contain 69 and 341 rules respectively.
CR1 and CR2 are filtering sets provided by typical
enterprise networks and they contain 1001 and 2000 rules
respectively. SN1 is a synthesized rule-set according to the
characteristics of real-life policies, which has 2180 rules.
The testing trace is the Sunday trace mentioned in Section
3.
5.1 Performance of Statistical Trees
To evaluate the performance of the alphabetic trees, we
conduct experiments with the five filtering rule-sets on a
real-life trace. Figure 7-(a) shows the relative matching time
reduction of the four header fields compared with the
balanced binary search trees. The statistical search trees are
using update time interval of 10,000 packets and the results
are the average testing values of 10 times. From Figure
7-(a), it can be seen that the source address field obtains a
relative matching reduction of 25%~45%, and the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7
Segments

H
it

R
at

e

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 5 10 15 20 25

FW1 FW2 CR1 CR2 SN1

Number of Rules (Hundreds)

R
el

at
iv

e
M

at
ch

in
g

R
ed

uc
tio

n

SrcIP

DstIP

SrcPort

DstPort

130%

135%

140%

145%

150%

0 5 10 15 20 25
FW1 FW2 CR1 CR2 SN1

Number of Rules

O
ve

ra
ll F

ilte
rin

g
Sp

ee
du

p

Figure 6-(a). Source Port Field Hit Rates Figure 7-(a). Relative Reduction Rate (a) Figure 8-(a). Overall Filtering Speedup (a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 51 101 151 201 251 301
Segments

H
it

R
at

e

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 5 10 15 20 25

FW1 FW2 CR1 CR2 SN1

Number of Rules (Hundreds)

R
el

at
iv

e
M

at
ch

in
g

R
ed

uc
tio

n

SrcIP

DstIP

SrcPort

DstPort

130%

135%

140%

145%

150%

0 5 10 15 20 25
FW1 FW2 CR1 CR2 SN1

Number of Rules

O
ve

ra
ll F

ilte
rin

g
Sp

ee
du

p

Figure 6-(a). Destination Port Field Hit Rates Figure 7-(b). Relative Reduction Rate (b) Figure 8-(b). Overall Filtering Speedup (b)

262

destination address field obtains a relative reduction of
22%~32%. The source port gets a relative matching
reduction of 18%~40% and the destination port gets a
relative reduction of 25%~40%. Figure 7-(a) also shows
that the reduction varies a lot with different rule-sets and it
shows that the addresses get higher reduction rates with
CR1 and CR2 and the ports get higher reduction rates with
FW1 and FW2. This should be attributed to the
characteristics of the rule-sets, which determine the number
of segments in each field. Normally, for the same field,
larger number of segments is likely to obtain higher
reduction rate. For example, FW1 and FW2 have 65 and
275 segments in source address while CR2 and SN1 have
2661 and 840 segments. Meanwhile, FW1 and FW2 both
have 39 segments in source port while CR2 and SN1 have 7
and 10 segments.
Moreover, if we pay attention ot the field value skewness
factors along with the relative matching reductions with
large rule-sets, we will get the data in Table 2, which shows
certain degree of correlation between the skewness and
reduction rates. However, the small rule-sets such as FW1,
FW2, and CR1 do not exhibit this kind of correlation.
Figure 7-(b) shows the results with update time interval of
100,000 packets and the curves are just similar with Figure
7-(a).

5.2 Overall Filtering Speedup
We further evaluate the overall filtering speedup by
introducing statistical trees, compared with the HSM
algorithm. Since both HSM and AHSM algorithms only
take 3 times of hierarchical table indexing after the first
phase tree searches, the overall filtering performance is
ultimately determined by the single field searching times.
Through experiments on the rule-sets along with the
real-life trace, we get the performance speedup illustrated in
Figure 8-(a) and (b). Figure 8-(a) uses the statistical tree
update interval of 10,000 packets and Figure 8-(b) uses the
statistical tree update interval of 100,000 packets. It is
shown that the alphabetic trees achieved an overall
performance speedup of 35%~45% and the curves with
different update intervals are very close. It is believed that
this degree of filtering speedup is attractive in practical
network circumstances.

6. Conclusion and Future Work
In this paper, we focus on the statistical characteristics of
network traffic and their impact in performance
improvement of packet filtering. The skewness and time
correlation in network traffic is observed by analyzing two
real-life traces and it is shown that the four-tuple header
fields do have considerable skewness in their value
frequency distribution and the distribution will last for
consecutive time intervals with high correlation. Based on

the observations, we proposed the AHSM algorithm which
employs the alphabetic search trees in single field searches
and inherits hierarchical space mapping tables from the
HSM algorithm.
Experimental results show that the optimized statistical
trees reduce 20%~50% of the single filed matching time
when compared with the binary search trees, and the
AHSM algorithm achieves a filtering performance
improvement of up to 45% compared with the HSM
algorithm.
Future work includes the introduction of statistical search
trees into other prevailing packet filtering algorithms, and
comparison study of their effect on different schemes.
Although the network statistics cannot improve filtering
algorithms from time complexity, it is believed that it does
help a lot in promoting the average matching speed in
practical cases.

Acknowledgement
This work is supported by the National High-Tech R&D
(863) Plan of China (No. 2007AA01Z468)

References
[1] M. H. Overmars and A. F. van der Stappen, Range searching

and point location among fat objects, Journal of Algorithms,
21(3), 1996.

[2] B. Xu, D. Y. Jiang and J. Li, HSM: A fast packet
classification algorithm, Proc. 19th Advanced Information
Networking and Applications (AINA), 2005.

[3] Y. X. Qi and J. Li, Dynamic cuttings: packet classification
with network traffic statistics, Proc. 3rd Trusted Internet
Workshop (TIW), 2004.

[4] H. Hamed, A. Al-Atawy and E. Al-Shaer, Adaptive statistical
optimization techniques for firewall packet filtering, Proc.
IEEE INFOCOM, 2006.

[5] K. Zheng, C. C. Hu, H. B. Lu and B. Liu, An ultra high
throughput and power efficient TCAM-based IP lookup
engine, Proc. IEEE INFOCOM, 2004.

[6] F. Baboescu and G. Varghese, Packet classification using
multidimensional cutting, Proc. ACM SIGCOMM, 2003.

[7] P. Gupta and N. McKewon, Algorithms for packet
classification, IEEE Network, 15(2):24-32, 2001.

[8] F. Baboescu and G. Varghese, Scalable packet classification,
Proc. ACM SIGCOMM, 2001.

[9] T. Y. C. Woo, A modular approach to packet classification:
Algorithms and results, Proc. IEEE INFOCOM, 2000.

[10] P. Gupta and N. McKeown, Packet classification using
hierarchical intelligent cuttings, Proc. Hot Interconnects,
1999.

[11] P. Gupta and N. McKeown, Packet classification on multiple
fields, Proc. ACM SIGCOMM, 1999.

[12] A. L. Edwards, An introduction to linear regression and
correlation, W. H. Freeman and Co, San Francisco,
California, 1993.

[13] T. C. Hu and A. C. Tucker, Optimal computer search trees
and variable length alphabetic codes, SIAM Journal on
Applied Mathematics, 21:514–532, 1971.

Table 2. Field Skewness and Relative Reduction
Fields SrcIP DstIP SrcPort DstPort

Skewness 74.1% 39.7% 15.4% 41.6%

CR2 Reduction 45.8% 32.4% 18.9% 29.6%

SN1 Reduction 44.4% 30.9% 18.1% 29.7%

[14] D. Knuth, Sorting and Searching, The Art of Computer
Programming, Addison-Wesley, Reading, Massachusetts, 2nd
edition.

 263

