
ABSTRACT 
Packet filtering plays an important role in network devices 
such as firewalls, routers, security gateways and intrusion 
detection systems. Numerous schemes have been proposed 
to improve packet filtering techniques. Many previous 
works struggled to utilize the characteristics of filtering 
rule-sets as optimization heuristics. However, there are 
rarely efforts excavating network traffic characteristics. 
This paper focuses on analyzing the statistical 
characteristics of network traffic and imposing it to 
optimize packet filtering algorithms. Contribution of the 
paper includes two aspects: first, the skewness and time 
correlation in real-life traffic is presented to illustrate 
network traffic statistics; second, an adaptive packet 
filtering algorithm, AHSM, is proposed based on HSM 
algorithm for improving average packet filtering speed. 
AHSM takes traffic statistics as heuristics and constructs 
statistical search trees for single field searching. 
Experimental results show that the optimized algorithm 
reduces 20%~50% of the single field matching overhead 
compared with the HSM algorithm and improves the 
overall performance by 35%~45%, while retaining the same 
memory usage. 
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1.  Introduction 
Packet filtering plays a critical role in Internet services 
including access control, policy-based routing, service 
differentiation and load balancing. With the rapid 
increasing of network bandwidth, packet filtering is 
required to cope with the link speed upgrade of Internet 
backbone devices. However, the packet filtering problem is 
inherently difficult to solve from a theoretical point of view. 
It is proved that the computational complexity bounds for 
searching N rules with F fields is (log )O N  best in time 
but ( )FO N  in space, or ( )O N  best in space with 

1(log )FO N−  in time [1]. Thereby, it is easy to perform 
packet filtering at high speed with large memory occupation 
or at low speed with small memory occupation. It is rather 
difficult to achieve high filtering speed with small memory 
occupation. Researchers have been working hard to find out 

modest trade-off between time and space. Many previous 
works have been done to utilize the intrinsic rule-set 
characteristics as optimization heuristics.  
This paper proposes a novel algorithm that improves packet 
filtering speed with modest memory requirement. The new 
packet filtering scheme adopts the network traffic statistics 
as heuristics in building up statistical search trees to reduce 
rule fields searching time. Besides, the proposed AHSM 
algorithm intersects the field searching results with 
recursive space mapping tables based on the ideas of the 
Hierarchical Space Mapping (HSM) algorithm [2], which 
was proposed by Xu, Jiang and Li in 2005. Main 
contributions of this paper include: 

 Novel Ideas: This paper excavates the network traffic 
statistical heuristics to improve real time packet filtering 
speed. The authors acquire network traffic from real-life 
circumstances and carefully analyze the network statistical 
characteristics including field distribution skewness and 
time correlation. The statistical characteristics are then 
employed to construct statistical search trees to improve 
single filed searching speed.  

 New Algorithm: The proposed AHSM algorithm 
engages the alphabetic search trees in each packet header 
field to improve single field searching speed. It then 
combines the field matching results with recursive 
intersecting tables, which have better time performance 
than trees. As a result, AHSM improves filtering speed by 
optimized binary trees and recursive intersecting tables 
while preserves memory usage at a modest level.  
2.  Previous Work 
In recent years, the packet filtering problem has been 
studied intensively. The original approach for packet 
filtering is to search the sequential rules linearly until a 
match is found. Though this approach consumes very little 
memory, its performance is quite challenged and not 
scalable since the search time is proportional to the rule-set 
size. Many algorithms have been proposed recently and 
they can be classified into three categories: hardware-based 
solutions, geometric algorithms and heuristic-based 
algorithms.  
Hardware-based solutions mainly utilize the parallelism of 
Content Addressable Memory (CAM) to perform rule 
matching in parallel. Zheng et al. proposed a TCAM-based 
IP lookup algorithm using prefix match in 2004 and then 
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further extended the filtering engine to support range match 
using the TCAM wildcard. [5] It is claimed that both the 
solutions can reach the filtering requirement of OC-192 line 
speed. However, the solutions cannot afford middle to large 
rule-set because of the high cost, power consumption and 
size limitations of CAMs.  
A variety of geometric algorithms have been proposed for 
packet filtering. Trie based schemes, including Grid-of-tries 
[6], Hierarchical tries [7] and Set-pruning tries [6], all 
construct searching tries based on the geometric layout of 
the search space. Bit vector algorithms such as BV [8] and 
ABV [8] also use trie lookup on each header field, followed 
by a combining phase of bit vectors, which indicates the 
potential matching rules.  
Heuristic-based algorithms are introduced by Gupta and 
McKeown [7] and Woo [9]. Hierarchical Intelligent 
Cuttings (HiCuts) [10] builds a decision tree based on the 
structural characteristics of the rule-set and uses 
optimization decisions to decide the next dimension to cut 
at each node.  
Gupta and Mckeown proposed another heuristic scheme 
call Recursive Flow Classification (RFC) [11] in 1999. 
RFC simplifies packet filtering by reducing structural 
redundancy in the rule matching. RFC needs only 9 
memory accesses for one packet filtering and it can be 
pipelined due to its structure. However, RFC does not scale 
well with medium or large rule-sets because of exponential 
increase of memory demand.  
HSM improved RFC by using binary trees to replace the 
first phase indexing tables. As a result, the improved 
algorithm remarkably reduces the memory requirement 
with the expense of slightly increased searching time.  
Although the previous work contribute significantly to 
packet filtering research, they mainly design algorithms 
based on the geometric layout or structural characteristics 
of the rule-set. Therefore, they have not exploited the 
network statistical characteristics to improve the average 
packet filtering speed.  
The related work closest to our approach is Dynamic 
Cuttings (D-Cuts) [3] and the paper by Hamed et al [4]. 
D-Cuts adopts network statistics into decision trees and thus 
achieves higher average filtering speed than HiCuts. The 
work by Hamed builds alphabetic trees on each field and 
proposes two methods to form the final statistical matching 
tree. However, both the schemes suffer from the relative 
long term tree searching, compared with table-based space 
mapping algorithms such as RFC and HSM. Our work 
inherits the hierarchical space mapping tables from HSM 
and thus transfers the tree combinations into fast table 
indexing.  

3.  Network Traffic Statistics 
This section analyzes the statistical characteristics of the 
traffic passing through firewalls. The traffic analysis is 
performed on real-life traces captured at the edge firewall of 
a research institute in Tsinghua University. Furthermore, we 
tick out the beginning packets of the flows to generate the 

testing traces, as in today’s stateful firewalls, only the first 
packet of each flow is processed by the packet filtering 
module, while the subsequent packets are processed in the 
stateful inspection module, or session filtering module. The 
traces of Friday and Sunday are taken to represent the 
realistic network conditions of working day and weekend. 
Each trace contains the header information of 15M to 20M 
packets, and correspondingly 3M to 5M SYN packets.  
The observed statistical characteristics lie in two aspects: (1) 
the traffic skewness in each header field; (2) the time 
correlation of field value. The single field skewness 
motivates us to employ statistical search trees to accelerate 
single field searching. Besides, the time correlation gives us 
the idea that how long the skewness will last and thus 
choose a proper update frequency. The two statistics are 
illustrated in the following.  
3.1.  Traffic Skewness in Packet Filtering 
Previous studies [4] have shown that the majority of 
Internet flows have short flow sizes in terms of number of 
packets, while most of the traffic is contributed by the long 
flows. In packet filtering problem, we focus on the 
distribution of the beginning packets of flows, since today’s 
firewalls use sessions to handle the subsequent packets of 
flows. Based on our observation, we argue that the 
scattering of the beginning packets also show considerable 
degree of skewness, which motivates the engagement of 
statistical heuristics in packet filtering.  
The field value frequency distribution is said to be skewed 
if the distribution is non-uniform. It means part of the 
values have higher hit frequencies while others have lower. 
To evaluate the degree of skewness, we use the entropy 
formulation in information theory [12]. The entropy returns 
a value between 0 and 1, where 0 corresponds to uniform 
distribution and 1 corresponds to a completely skewed 
distribution. Higher entropy refers to higher skewness in the 
frequency distribution. The skewness factor of a header 
field f  is denoted as fS  defined by Formula 1, where 

ip  is the probability of field value iv  and n  is the 
number of possible values of field f .  
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The skewness of frequency distribution is calculated for all 
field values at different sampling time intervals. Since only 
the beginning packets of flows are concerned here, the time 
intervals are measured in number of packets instead of time 
in seconds.  
Figure 1-(a) and Figure 1-(b) show the skewness of field 
value frequency distribution of traffic passing through the 
real-life firewall. Figure 1-(a) gives the skewness of the 
four header fields on Friday and Figure 1-(b) gives that of 
Sunday. It is shown in the two figures that the skewness 
factor of the source address ranges from 0.55 to 0.85, while 
the skewness factor of the destination address ranges from 
0.15 to 0.7. It also shows that the source port has a 
skewness factor of 0.03-0.5, while the destination port has a 
skewness factor of 0.15-0.7.  
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It is observed from Figure 1 that the source address have the 
highest skewness, and the destination address along with 
the destination port have moderate skewness, while the 
source port has the lowest skewness. Figure 1 also shows 
that the skewness of all fields grows remarkably with the 
increasing of sampling period. Moreover, the skewness on 
Friday is similar to that of Sunday, which provides 
compelling evidence that the skewness in network traffic 
constantly exists, no matter it is working day or weekend.  
The four head fields have skewness larger than 0.40 when 
the sampling period is longer than 10,000 packets, except 
the source port field. Thus, it will be rather appealing if we 
can use the skewness to optimize the single field searching 
tree structures. 
3.2.  Time Correlation of Field Frequencies 
To measure how long the skewness will last, we investigate 
the correlation of the frequency distribution of packet 
header fields over two consecutive time intervals. If the 
field frequency distribution is similar between consecutive 
intervals, then is will be said to be time-correlated over the 
two intervals. The correlation factor of field f is calculated 
as Formula 2 [4], where ip  is the probability of iv  in a 
certain time interval, and iq  is the probability in the 
following interval. pμ  and qμ  represent the mean value 
of the two probability distributions while pσ  and qσ  
represent their standard deviation. The correlation factor 

fC returns a value between 0 and 1, where 0 indicates an 
uncorrelated distribution and 1 indicates a completely 
correlated distribution.  
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Figure 2-(a) and Figure 2-(b) show the time correlation of 
the header fields over consecutive time intervals. Figure 

2-(a) illustrates the time correlation of the four header fields 
on Friday and Figure 2-(b) gives that of Sunday. It is shown 
that the source address field has the highest time correlation 
factor ranging from 0.9 to 1. The destination address field 
has moderate time correlation factor ranging from 0.75 to 
0.95. The destination port field has a moderate time 
correlation factor from 0.7 to 0.95 when the sampling 
period is smaller than 20,000 packets. However, the 
correlation factor of destination port deceases rapidly if the 
sampling period exceeds 20,000 packets. Besides, the 
source port field has the lowest time correlation factor, 
which grows smoothly when the sampling period is smaller 
than 50,000 packets but decreases rapidly if the sampling 
period exceeds this value. This is because that the ports are 
likely to be reused if the sampling period is too long.  
It is also observed in Figure 2 that the correlation factors of 
the source and destination address fields tend to increase 
slowly with the increasing of sampling period. But it does 
not mean that the longer sampling period is always better, 
since the time correlation will decrease when the sampling 
period exceeds certain threshold. The correlation reduction 
with sampling periods larger than 50,000 in Figure 2-(b) 
demonstrates this affirmation, which is consistent with 
intuitive opinions. We argue that this kind of decease in 
correlation factor is due to the inherent rhythm of the 
network traffic. The characteristics of the traffic determine 
an intrinsic time correlation frequency, longer or shorter 
sampling periods will both cause the decline in time 
correlation. Moreover, Figure 2 shows that the time 
correlation of the four header fields on Friday is similar to 
that of Sunday, while it may have different inflexions of 
time correlation.  
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Figure 1-(a). Skewness of Distribution on Friday Figure 2-(a). Time Correlation on Friday 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000
Sampling Period(packets)

Sk
ew

ne
ss

 o
f D

is
tri

bu
tio

n

SrcIP

DstIP

SrcPort

DstPort

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000
Sampling Period(packets)

C
or

re
la

tio
n 

be
tw

ee
n 

pe
rio

ds

SrcIP

DstIP

SrcPort

DstPort

 
Figure 1-(b). Skewness of Distribution on Sunday Figure 2-(b). Time Correlation on Sunday 
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Based on these observations, we can see that the source 
address, destination address and destination port fields all 
have high and stable time correlation factors. Nevertheless, 
the source port field has a wide time correlation range that 
varies according to the sampling period. However, the time 
correlation factor of the source port could reach a high 
value if we can pick a suitable sampling period.  
As a result, according to the network traffic statistics 
observed from the real-life traces, it can be concluded that 
the four header fields, including the source address, the 
destination address, the source port, and the destination port, 
do have considerable skewness in their frequency 
distributions and the distributions last for consecutive time 
intervals with high correlation. These statistical 
characteristics significantly motivate our work described in 
the following section.  

4.  Adaptive Filtering Algorithm 
This section proposes an adaptive packet filtering algorithm 
called AHSM, which utilizes the network traffic statistical 
characteristics for improving the average filtering speed in 
real-life circumstances. The basic ideas are based on the 
algorithm HSM.  
4.1.  Basic Ideas  
HSM performs binary search at each header field using 
balanced binary trees, and then searches the hierarchical 
space mapping tables for possible combinations of results 
from single field binary searches. Figure 3 shows the data 
structure of HSM, where the four header fields (source 

address, destination address, source port and destination 
port) are searched via balanced binary trees and after that 
Address Mapping Table (AMT) and Port Mapping Table 
(PMT) are indexed respectively by the combining the 
searching results of the two address fields and the two port 
fields. At last, Policy Lookup Table (PLT) is indexed by 
combining AMT and PMT lookup results.  
Although HSM is superior to RFC in space complexity by 
using binary trees to replace the indexing tables of RFC in 
the first phase of searching, it slightly degrades filtering 
speed due to the time-consuming single field binary 
searches. If the number of rules is N , the time for f field 
binary searches will be 2log 2f N , while the search in the 
subsequent hierarchical space mapping tables only takes 3 
memory accesses [2]. Thus, aiming at improving packet 
filtering speed of HSM, we must reduce the single filed 
search time. Fortunately, based on the analysis in Section 3, 
we believe that the average searching speed can be 
accelerated by employing statistical heuristics.  
4.2.  AHSM Algorithm 
The proposed AHSM algorithm is an optimization of HSM 
algorithm. Its basic idea is to use the alphabetic search trees 
to replace the balanced binary trees in HSM to improve the 
single field search speed, while retaining the subsequent 
hierarchical space mapping tables. This section analyzes the 
skewness in header filed segments and constructs the 
alphabetic trees for single filed searching. At last, it 
discusses the reconstruction and update of the alphabetic 
trees.  

 
Figure 3. HSM Data Structure 

 
Table 1. Example Statistics of Destination Port Filed 

Segments Value Statistics 

S1 0-19 0.01 

S2 20-21 0.01 

S3 22-52 0.02 

S4 53 0.10 

S5 54-79 0.12 

S6 80-88 0.60 

S7 89-65535 0.14 

 
Figure 4-(a). Binary Search Tree for Table 1 

 

 
Figure 4-(b). Alphabetic Search Tree for Table 1 
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4.2.1. Skewness in Header Field Segments 
It has been observed in Section 3 that the network traffic 
has certain degree of skewness in the header field value 
frequencies and the skewness will last for certain period of 
time. Apparently, this kind of skewness will also cause the 
skewness in the header field segments generated by the 
rules. To demonstrate this deduction, we choose one 
real-life rule-set with 2,180 rules and take 10,000 packets 
from the firewall traffic to observe the data locality. The 
rule-set splits the source address sub-space into 840 
segments, the destination address sub-space 959 segments, 
the source port sub-space 7 segments and the destination 
port sub-space 339 segments. Figure 6-(a) to (b) shows the 
segment hit rates of the source port and destination port 
header fields in a decreasing order, where it can be seen that 
the majority of the hits belong to a small part of the 
segments. This kind of skewness makes it possible to 
construct statistical search trees for the header field 
searches.  
4.2.2. AHSM Matching Phases 
AHSM algorithm engages similar matching phases with 
HSM algorithm. As shown in Figure 3, HSM takes four 
balanced binary tree searches in Phase 1, and then perform 
table indexing in AMT, PMT and PLT. AHSM improves 
HSM by replacing the balanced binary trees with statistical 
search trees, while keeping the hierarchical space mapping 
tables.  
Alphabetic search trees: There are several types of 
statistical search trees that can be adopted to minimize the 
weighted tree depth. AHSM chooses the Alphabetic Search 
Trees [13] mainly because it has lower tree construction 
complexity when compared with the Optimal Binary Search 
Trees and has less searching overhead when compared with 
Huffman Trees [14]. The alphabetic search tree stores the 
segments in leaf nodes and keeps the ordering of the parent 
and child nodes. The best time complexity for constructing 
alphabetic search trees is ( log )O n n , achieved by 
Hu-Tucker [13].  

Assuming we have the segments of destination port field 
with statistical probabilities as shown in Table 1, the normal 
balanced binary search tree will be like Figure 4-(a), while 
the alphabetic search tree can be illustrated as Figure 4-(b). 
Considering the corresponding statistics of the segments, 
the average depth of balanced binary tree is 3.88 while the 
average depth of the alphabetic search tree is 3.2. The 
average number of matching is reduced by 18% compared 
with the balanced binary tree.  
Hierarchical space mapping tables: In phase 2 and phase 3, 
AHSM adopts the recursive mapping tables inherited from 
HSM. The space mapping tables are generated with 
assistance of bitmaps, which records the serial numbers of 
the potential matching rules. Consequently, after locating 
the header segments with the alphabetic trees in phase 1, 
AHSM only needs 3 additional memory accesses to find out 
the final match.  

5.  Performance Evaluation 
To evaluate the performance of the alphabetic tree filtering 
technique, we use four real-life rule-sets and one 
synthesized rule-set. FW1 and FW2 are access control lists 
(ACLs) obtained from edge firewalls in Tsinghua 
University and they contain 69 and 341 rules respectively. 
CR1 and CR2 are filtering sets provided by typical 
enterprise networks and they contain 1001 and 2000 rules 
respectively. SN1 is a synthesized rule-set according to the 
characteristics of real-life policies, which has 2180 rules. 
The testing trace is the Sunday trace mentioned in Section 
3.  
5.1 Performance of Statistical Trees 
To evaluate the performance of the alphabetic trees, we 
conduct experiments with the five filtering rule-sets on a 
real-life trace. Figure 7-(a) shows the relative matching time 
reduction of the four header fields compared with the 
balanced binary search trees. The statistical search trees are 
using update time interval of 10,000 packets and the results 
are the average testing values of 10 times. From Figure 
7-(a), it can be seen that the source address field obtains a 
relative matching reduction of 25%~45%, and the 
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destination address field obtains a relative reduction of 
22%~32%. The source port gets a relative matching 
reduction of 18%~40% and the destination port gets a 
relative reduction of 25%~40%. Figure 7-(a) also shows 
that the reduction varies a lot with different rule-sets and it 
shows that the addresses get higher reduction rates with 
CR1 and CR2 and the ports get higher reduction rates with 
FW1 and FW2. This should be attributed to the 
characteristics of the rule-sets, which determine the number 
of segments in each field. Normally, for the same field, 
larger number of segments is likely to obtain higher 
reduction rate. For example, FW1 and FW2 have 65 and 
275 segments in source address while CR2 and SN1 have 
2661 and 840 segments. Meanwhile, FW1 and FW2 both 
have 39 segments in source port while CR2 and SN1 have 7 
and 10 segments.  
Moreover, if we pay attention ot the field value skewness 
factors along with the relative matching reductions with 
large rule-sets, we will get the data in Table 2, which shows 
certain degree of correlation between the skewness and 
reduction rates. However, the small rule-sets such as FW1, 
FW2, and CR1 do not exhibit this kind of correlation.  
Figure 7-(b) shows the results with update time interval of 
100,000 packets and the curves are just similar with Figure 
7-(a).  

5.2 Overall Filtering Speedup 
We further evaluate the overall filtering speedup by 
introducing statistical trees, compared with the HSM 
algorithm. Since both HSM and AHSM algorithms only 
take 3 times of hierarchical table indexing after the first 
phase tree searches, the overall filtering performance is 
ultimately determined by the single field searching times. 
Through experiments on the rule-sets along with the 
real-life trace, we get the performance speedup illustrated in 
Figure 8-(a) and (b). Figure 8-(a) uses the statistical tree 
update interval of 10,000 packets and Figure 8-(b) uses the 
statistical tree update interval of 100,000 packets. It is 
shown that the alphabetic trees achieved an overall 
performance speedup of 35%~45% and the curves with 
different update intervals are very close. It is believed that 
this degree of filtering speedup is attractive in practical 
network circumstances.  

6.  Conclusion and Future Work 
In this paper, we focus on the statistical characteristics of 
network traffic and their impact in performance 
improvement of packet filtering. The skewness and time 
correlation in network traffic is observed by analyzing two 
real-life traces and it is shown that the four-tuple header 
fields do have considerable skewness in their value 
frequency distribution and the distribution will last for 
consecutive time intervals with high correlation. Based on 

the observations, we proposed the AHSM algorithm which 
employs the alphabetic search trees in single field searches 
and inherits hierarchical space mapping tables from the 
HSM algorithm.  
Experimental results show that the optimized statistical 
trees reduce 20%~50% of the single filed matching time 
when compared with the binary search trees, and the 
AHSM algorithm achieves a filtering performance 
improvement of up to 45% compared with the HSM 
algorithm.  
Future work includes the introduction of statistical search 
trees into other prevailing packet filtering algorithms, and 
comparison study of their effect on different schemes. 
Although the network statistics cannot improve filtering 
algorithms from time complexity, it is believed that it does 
help a lot in promoting the average matching speed in 
practical cases.  
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