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ABSTRACT 
There is a growing interest in designing high-performance 
network devices to perform packet processing at flow level. 
Applications such as stateful access control, deep 
inspection and flow-based load balancing all require 
efficient flow-level packet processing. In this paper, we 
present a design of high-performance flow-level packet 
processing system based on multi-core network processors. 
Main contribution of this paper includes: a) A high 
performance flow classification algorithm optimized for 
network processors; b) An efficient flow state management 
scheme leveraging memory hierarchy to support large 
number of concurrent flows; c) Two hardware-optimized 
packet ordering strategies that preserve internal and 
external per-flow packet orders. Experimental results show 
that: a) The proposed flow classification algorithm, 
AggreCuts, outperforms the well-known HiCuts algorithm 
in terms of classification rate and memory storage; b) The 
presented SigHash scheme can manages over 10M 
concurrent flow states on IXP2850 NP with extremely low 
exception rate; c) The performance of internal packet 
ordering scheme using SRAM queue-array is about 70% of 
that of external packet ordering scheme realized by 
ordered-thread execution. 
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1. INTRODUCTION 
The continual growth of network communication 
bandwidth and the increasing sophistication of types of 
network traffic processing have driven the need for 
designing high-performance network devices to perform 
packet processing at flow level. Applications such as 
stateful access control in firewalls, deep inspection in 
IDS/IPS, and flow-based scheduling in load balancers all 
require flow-level packet processing. Basic operations 
inherent to such applications include: 

♦ Flow classification: Flow-level packet processing 
devices are required first to classify packets into flows 
according to a classifier and then to process them 
differently. As the new demand for supporting triple play 
(voice, video, and data) services arises, the workload for 
such devices to perform fast flow classification becomes 
much heavier. Therefore, it is challenging to perform flow 
classification at line speed on these network devices. 
♦ Flow state management: Per-flow states are 
maintained in order to correctly perform packet processing 
at a semantic level higher than the network layer. Such 
stateful analysis brings with it the core problem of state 
management: what hardware resources to allocate for 
holding state and how to efficiently access it. This is 
particularly the case for in-line devices, where flow state 
management can significantly affect the overall 
performance. 
♦ Per-flow packet ordering: Another important 
requirement for networking devices is to preserve packet 
order. Typically, ordering is only required between packets 
on the same flow that are processed by parallel processing 
engines. Although there have been some order-preserving 
techniques for traditional switch architecture, flow-level 
packet ordering for parallel switches still remains as an 
open issue and motivates the research today. 
Traditionally flow-level packet processing devices rely on 
ASIC/FPGA to perform IP forwarding at line-rate speed 
(10Gbps) [12][23][24]. As the network processor (NP) 
emerges as a promising candidate for a networking 
building block, NP is expected to retain the same high 
performance as that of ASIC and to gain the time-to-market 
advantage from the programmable architecture [16]. In this 
paper, we present a design of high-performance flow-level 
packet processing system based on a typical multi-core 
network processor. Main contributions of this paper are: 
♦ A high-performance flow classification algorithm 
optimized for network processors: The algorithm we 
proposed in this paper, Aggregated Cuttings (AggreCuts), 
is based on the well-known HiCuts algorithm, while 
optimized for multi-core network processors. Different 
from HiCuts, AggreCuts has explicit worst-case search 
time. To avoid burst of the memory usage, AggreCuts 
adopts a hierarchical space aggregation technique that 
significantly compresses the decision-tree data-structure. 
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♦ An efficient flow state management scheme: The 
proposed scheme, Signature-based Hashing (SigHash), is 
expected to support more than 10M concurrent flow states 
with low exception rate. Different from existed hashing 
table design, signatures for collision-resolving are stored in 
word-oriented SRAM chips in SigHash, while their 
corresponding flow states are stored in burst-oriented 
DRAM chips. Consequently, the flow state update speed at 
near line rate is guaranteed, and the large-storage 
requirement for millions of flows is met as well. 
♦ Two hardware-supported packet ordering schemes: 
The first scheme is external packet ordering (EPO), which 
guarantees that packets leave the device in the same order 
in which they arrived. The second scheme is internal packet 
ordering (IPO), which not only enforces packet order in 
each flow, but also guarantees that packets belong to the 
same flow are processed by the same thread. Implemented 
on NP, EPO uses ordered-thread execution technique to 
maintain external packet order, while IPO employs the 
SRAM queue array to implement internal packet ordering. 
Experimental results on Intel IXP2850 NP show that:  
♦ AggreCuts outperforms the existing best-known 
algorithm HiCuts in terms of classification rate and 
memory storage. AggreCuts uses an order of magnitude 
less memory than HiCuts, while guarantees explicit worst-
case search time. When tested with minimum Ethernet 
packets flows against real-life rule sets, AggreCuts reaches 
a set-independent 9Gbps throughput on IXP2850 NP. 
♦ The presented SigHash scheme can support more 
than 10M concurrent flow states on IXP2850 NP, which 
is over 20 times more than traditional hash 
implementation. When tested with minimum Ethernet 
packets flows, AggreCuts reaches 10Gbps flow state 
update rate.  
♦ The performance of IPO ordering scheme using 
SRAM queue-array is close to that of EPO ordering 
realized by ordered-thread execution. Experimental 
results with real-life traffic also show that even the simple 

direct hashing scheme used by thread allocation is well-
suited for our IPO implementation. 
This paper is organized as follows. In Sections 2, 
backgrounds of network processor and related work are 
described. AggreCuts for flow classification and SigHash 
for flow state management are presented in Section 3 and 
Section 4. In Section 5, two packet ordering scheme, EPO 
and IPO are described. Experimental results are discussed 
in Section 6. As a summary, in Section 7, we state our 
conclusion. 

2. BACKGROUND AND RELATED WORK 
In this section, we first introduce the Intel IXP2850 
network processor, and then discuss related work. 

2.1 The Intel IXP2850 Network Processor 
2.1.1 Architecture of IXP2850 
Network processors are typically characterized as 
distributed, multi-processor, multi-threaded architectures 
designed for hiding memory latencies in order to scale up 
to very high data rates. The architecture of Intel IXP2850 is 
motivated by the need to provide a building block for 
10Gbps packet processing applications. A simplified block 
diagram and its description of the Intel IXP2850 are shown 
in Figure 1 and Table 1 respectively. Details of IXP2850 
can be found in [17-20]. 

2.1.2 Programming Challenges 
Network processing applications are targeted at specific 
data rates. In order to meet these throughput requirements, 
NPs must complete the packet processing tasks on a given 
packet before another packet arrives. To keep up with the 
back-to-back arrival of minimum size packets at line rate, 
the NP faces the following programming challenges [21]: 
♦ Achieving a deterministic bound on packet 
processing operation:  Due to the line rate constraint, we 
need to design the network algorithms in such a way that 
the number of clock cycles to process the packet on each 
microengine (ME) does not exceed an upper bound.  
♦ Masking memory latency through multi-threading: 
Even if the packet can be processed within a definite time 

Table 1: Hardware overview of IXP2850  

Intel XScale 
core: 

Each IXP2850 includes an XScale core. The 
Intel XScale core is a general purpose 32-bit 
RISC processor. 

Multithreaded 
microengines 

The IXP2850 network processor has 16 MEs 
working in parallel on the fast packet-
processing path, running at 1.4 GHz clock 
frequency. 

Memory 
hierarchy 

IXP2850 has 4 channels of 64MB QDR SRAM 
running at 233 MHz and 3 channels of 2GB 
RDRAM running at 127.3 MHz. 

Build-in 
media 
interfaces 

IXP2850 has flexible 32-bit media switch 
interfaces. Each interface is configurable as 
media standard SPI-4 or CSIX-L1 interfaces. Figure 1 Architecture of IXP2850 
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interval, it is not sufficient to meet the line rate processing 
requirements because memory latencies are typically much 
higher than the amount of processing budget. 
♦ Maintaining packet ordering in spite of parallel 
processing: Another significant challenge in programming 
the NPs is to maintain packet ordering. This is extremely 
critical for applications like media gateways and traffic 
management.  
In the following sections, we will address these issues by 
employing hierarchical memory, parallel processing and 
efficient data-structure to achieve optimized packet 
processing performance on the Intel IXP2850 NP. 

2.2 Related Work on NP 
D. Srinivasan and W. Feng in [23] implemented the basic 
bit-vector flow classification algorithm on Intel IXP1200 
network processor. They compared parallel mapping and 
pipelined mapping of the algorithm and showed that 
parallel mapping has better processing rate. The limitation 
of their work is that the bit-vector algorithm can only 
support 512 rules, which is too small compared to current 
real-life rule sets [10]. Recent work presented by D. Liu et 
al. in [13] proposed a modified recursive flow classification 
(RFC) algorithm, named Bitmap-RFC, which reduces the 
memory requirements of RFC by applying a bitmap 
compression technique. Experimental results show that the 
Bitmap-RFC algorithm achieves 10Gbps speed on Intel 
IXP2800 NP. Although Bitmap-RFC obtained high 
throughput on NP, it still requires large memory storage 
compared to other algorithms such as HiCuts and 
HyperCuts. Moreover, the total amount of memory words 
loaded from SRAM is 5 times larger than that of the 
original RFC algorithm. This affects the SRAM bandwidth 
utilization, and hence might reduce the overall performance 
of the whole application. 
Flow state management is becoming more critical for 
network devices to guarantee semantic-level security. 
Leading security enterprises like CheckPoint have been 
developing there own stateful firewalls, which provide 
deep inspection into the network traffic flows rather than 
scanning the packets individually. Besides, flow state 
management is also a compulsory segment for TCP 
reassembly [26] [27]. Although the basic techniques used 
for flow state management, such as exact match by hashing, 
have been well-studied [28], how to efficiently implement 
flow state management on multi-core network processor 
still remains as an open issue. To address this issue, two 
questions must be well answered: what hardware resources 
to allocate for holding state and how to efficiently access it. 
This is particularly the case for in-line devices, where flow 
state management can significantly affect the overall 
performance.  
Another important requirement for networking devices is to 
maintain packet order. Typically, packet ordering is only 

required between packets on the same flow that are 
processed by parallel processing engines. In network 
devices processing at network layer, the external packet 
ordering (EPO) scheme is sufficient, but applications that 
process packets at semantic levels require internal packet 
ordering (IPO), in which packets belong to the same flow 
are handled by the same thread [26]. Generally, the EPO 
scheme can exploit greater-degree of concurrency and is 
expected to achieve finer-grain distribution of workload 
across microengines than the IPO scheme [33]. However, 
the EPO scheme also might incur higher overhead for 
accessing per-flow state, since with this scheme the 
concurrent access to the shared flow-state by multiple 
threads must be synchronized using inter-thread signals and 
memory-locks. 

3. FLOW CLASSIFICATION  
There are a number of network services that require flow 
classification, such as policy based routing, stateful access-
control, differentiated qualities of service, and traffic 
billing. In each case, it is necessary to determine which 
flow an arriving packet belongs to in order to determine 
whether to forward it, what class of service it should 
receive, or how much should be charged for transporting it. 
In this section, we present a high-performance flow 
classification algorithm optimized for the multi-core 
network processor. 

3.1 Algorithm Selection 
Flow classification has been proved to be theoretically hard, 
and hence it is impossible to design a single algorithm that 
performs well for all cases [5]. Fortunately, real-life flow 
classification rule sets have inherent characteristics that can 
be exploited to reduce the temporal and spatial complexity. 
In literatures [3] [7] [8] [9] [10], a variety of characteristics 
of real-life rule sets were presented and exploited in 
designing efficient flow classification algorithms. All these 
algorithms can be categorized as field-independent search 
and field-dependent search [11]: 
♦ Field-independent search: Algorithms such as RFC [7] 
and HSM [8] perform independent parallel searches on 
indexed tables; the results of the table searches are 
combined in multiple phases to yield the final classification 
result. All the entries of a lookup table are stored 
consecutively in memory. The indices of a table are 
obtained by space mapping and each entry corresponds to a 
particular sub-space and stores the search result at current 
stage. Algorithms using parallel search are very fast in term 
of classification speed while they require comparatively 
large memories to store the big cross-producting tables.  
♦ Field-dependent search: HiCuts [3] and HyperCuts [9] 
are examples of algorithms employing field-dependent 
searches, i.e., the results of fields that have already been 
searched determine the way in which subsequent fields will 
be searched. The main advantage of this approach is that 
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the intelligent and relatively simple decision-tree classifier 
can be used. Although in most cases, decision-tree 
algorithms require less memory than field-independent 
search algorithms [12], they tend to result in implicit worst-
case search time and thus cannot ensure a stable worst-case 
classification speed. 
Because the large memory requirement of field-
independent search algorithms can hardly be satisfied by 
current SRAM chips on network processors [13], in this 
paper, the proposed algorithm is based on HiCuts, one of 
the best-known field-dependent search algorithms.  

3.2 Reduce Memory Accesses 
Although HiCuts has good time/space tradeoffs and works 
well for real-life rule sets, the straightforward 
implementation of HiCuts without any NP-aware 
optimization on multi-core network processors suffers from: 
♦ Non-deterministic worst-case search time: Because 
the number of cuttings varies at different tree nodes, the 
decision-tree may have non-deterministic worst-case depth. 
Thus, although worst-case search time is the most 
important performance metric in packet classification 
applications, HiCuts does not have an explicit bound for 
search. 
♦ Excessive memory access by linear search: Although 
the number of rules for linear search is limited to 4~16 in 
HiCuts, it still requires tens of memory accesses to off-chip 
SRAM chips. Experimental results show that linear search 
is very time-consuming on network processors. 
Thus an ideal decision-tree based flow classification 
algorithm optimized for network processors must have 
explicit worst-case bounds for search and avoid the linear 
search at leaf-nodes. Our motivations to design such an 
algorithm are: 
♦ Fix the number of cuttings at internal-nodes: If the 
number of cuttings is fixed to 2w (w is a constant referred as 
stride), the current search space is then always segmented 
into 2w sub-spaces at each internal-node. This guarantees a 
worst-case bound of O(W/w), where W is the bit-width of 
the packet header. 
♦ Eliminate linear search at leaf-nodes: Linear search 
can be eliminated if we “keep cutting” until every sub-
space is full-covered by a certain set of rules. The rule with 
the highest priority in the set is then the final match. 
Consider the common 5-tuple flow classification problem, 
where W=104. If w is fixed to 8, then the worst-case search 
time (memory access) is limited to 104/8=13, and in this 
case, no linear search is required because in the longest 
tree-paths, every bit has been “cut” by the decision tree. 

3.3 Compress the Data Structure 
Admittedly, both motivations tend to result in memory 
burst due to the fixed stride and the elimination of linear 

search. Therefore, the main optimization task now becomes 
how to effectively reduce the memory storages required by 
the decision tree data structure. Note that in HiCuts, in 
order to maximize the reuse of child nodes, the sub-spaces 
with identical rules are aggregated by employing pointer 
arrays to lead the way for search. However, the use of 
pointer arrays will dramatically increase the memory 
storage because the size of each array is considerably large 
when the number of cuttings is fixed. For example, if w is 
fixed to 8, each internal-node will store 256 pointers to link 
its child-nodes. In typical cases, a decision-tree contains 
tens of thousands internal-nodes, the total memory required 
to store the pointer arrays will exceed tens of mega-bytes, 
which is too large for current SRAM chips [18]. 
To effectively reduce the memory usage of these pointer 
arrays, [11, 13, 22] and [29] employ the bit-compression 
technique to aggregate consecutive pointers: First, use an 
Aggregation Bit String (ABS) to track the appearance of 
unique elements in the pointer array, and then compress a 
sequence of consecutively identical pointers as one element 
in a Compressed Pointer Array (CPA). More specifically, 
each bit of an ABS corresponds to an entry in the original 
pointer array, with the least significant bit corresponding to 
the first entry. A bit in an ABS is set to ‘1’ if its 
corresponding entry in the original pointer array is different 
from its previous one, i.e. bit set in an ABS indicates that a 
different sequence of consecutively identical pointer starts 
at the corresponding position. Whenever a bit is set, its 
corresponding unique pointer is appended in the CPA. 
Accordingly, the n-th pointer in the original point array can 
be found by: first adding the first n bits in the ABS to get 
an index, and then use the index to load the pointer from 
CPA.  
Ideally, all the pointer arrays should be compressed using 
ABS and CPA. However, loading such a bit-string also 
may cause excessive memory accesses. Assume w=8, the 
size of the ABS is thus (256 bits)/32=8 32-bit long-words. 
Therefore at each internal-node, we have to load 8 long-
words from the off-chip SRAM. Since the tree-depth is 13, 
the overall memory accesses to classify a single packet is 
then 13*8=104 long-words, which is too much for a 
practical memory bandwidth budget to reach multi-Gbps 
packet classification rate [1] [20].  
Fortunately, in our experiments on a variety of real-life rule 
sets, we found that the number of child nodes of a certain 
internal tree node is commonly very small: with 256 
cuttings at each internal-node, the average number of child 
nodes is less than 10. This observation is very consistent to 
the results reported in [3] [9] [10]. Such small number of 
child nodes indicates that the pointer array is very sparse, 
i.e. the number of bits set in ABS is also sparse. Thus, this 
observation motivates us to further compress the ABS to 
effectively reduce the number of memory accesses.  
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Figure 2 illustrates how to use the Hierarchical 
Aggregation Bit-String (HABS) proposed in [29] to further 
compress the data structure. Define the size of HABS as 2v, 
the number of pointers as 2w, and u=w-v. To compress the 
2w pointers: First, divide the 2w pointers into 2v sub-arrays. 
Then set the bits in HABS to ‘1’ if the 2u consecutive 
pointers in its corresponding sub-array are different from 
the pointers in previous sub-array, i.e. a bit set in an HABS 
indicates that a different sequence of consecutively 
identical sub-array of pointers starts at the corresponding 
position. On the same time, whenever a bit is set, its 
corresponding sub-array of pointers is appended in the 
CPA. According to this scheme, the n-th pointer in the 
original point array can be located by: 1) extract the higher 
v bits of n to get a v-bit value m; 2) extract the lower u bits 
of n to form a u-bit value j; 3) add 0~m bits of the HABS to 
get a sub-array index i; 4) use ((i<<u)+j) as the index to 
load the corresponding pointer from CPA. 
Different from [29], in the implementation of AggreCuts, 
the size of HABS is set to 8 and HABS is stored together 
with the cutting information and the next-node address base 
within a single 32-bit long-word (see Table 2). Such a data-
structure can be effectively accessed by the word-oriented 
SRAM controller on IXP2850 and the computation of 
HABS can be done within 3 cycles using POP_COUNT 
instruction [24]. The overall data-structure of a sample 
decision-tree built by AggreCuts is depicted by Figure 3. 

4. FLOW STATE MANAGEMENT  
Flow state management experiences a large number of 
updates over a short period of time as new sessions are 
initiated, and old sessions are closed down. Current session 
tables to store flow states can also be exceptionally large, 
on the order of 1 million entries. Hashing algorithms are 
well-suited for exact match problems and thus widely used 
for flow state management. A hash table is made up of two 
parts: an array and a mapping function. The array is used as 
a table to store the data and the mapping function, also 
known as the hashing function, is used to convert the input 
space into array indices. In this section, we propose an 
efficient hashing scheme to implement flow state 
management on multi-core network processors. 

4.1 Hash Function Selection 
Hash functions are used to convert the input of width W 
bits into a hash key of width N bits. To reduce the 
probability of collisions, it is important to select an 
appropriate hash function. In order to choose such a hash 
function to achieving high performance of flow state 
management, we compare three typical hash functions: 
FNV Hash [15], Jenkins Hash [16] and CRC Hash [31]. 
The evaluation packet set is the real flow packets collected 
at the edge firewall of large enterprises. The five-tuple 
fields i.e. source IP, destination IP, source port, destination 
port and transport layer protocol, are concatenated to form 
the 104-bit hash input. The load factor l is defined by n/m, 
where m is the total number of buckets in the hash table 
and n is the maximum number of buckets that are occupied 
at the same time.  
Table 3 shows the collision rate of the three typical hash 
functions. The test is done with different load factor l, 
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Figure 2. Hierarchical Aggregation Bit-String 

Table 2. Compact Tree Node Structure 

Bits Description Value 

31:30 dimension to 
Cut (d2c) 

d2c=00: src IP; d2c=01: dst IP; 
d2c=10: src port; d2c=11: dst port. 

29:28 bit position to 
Cut (b2c) 

b2c=00: 31~24; b2c=01: 23~16 
b2c=10: 15~8; b2c=11: 7~0 

27:20 8-bit  HABS if w=8, each bit represent 32 cuttings; 
if w=4, each bit represent 2 cuttings. 

19:0 
20-bit Next-
Node CPA 
Base address  

The minimum memory block is 2w/8*4 
Byte. So if w=8, 20-bit base address 
support 128MB memory address space; 
if w=4, it supports 8MB memory 
address space. 

Note: We use d2c=11, b2c=00 to indicate the cutting of the 5th 
dimension, the 8-bit transport layer protocol. 

 

00 00 10001000 0x40000

11 00 10100000 0x60100

01 01 10110100 0x62000

10 00 10001000 0x62500

01 00 10001001 0x63000

00 02 10000100 0x63700

11 01 HABS 0x65000

01 00 HABS 0x65200

01 00 HABS 0x67000

01 00 HABS 0x67800

10 01 10101010 0x68200

10 01 10101010 0x68500

00 01 11100000 0x70000

01 00 10000101 0x71000

01 00 11000000 0x50000

00 01 10000000 0x52000

11 00 10100000 0x55000

10 00 10100001 0x58000

11 00 10100000 0x60000

11 00 11000010 0x71500

00 01 10000010 0x73000

2-bit
d2c

2-bit
b2c

8-bit
HABS

20-bit
Next Node Address Base

 
Figure 3. Data-structure of a Sample AggreCuts Tree. 

Table 3. Evaluation of Typical Hash Functions 
Collision Rate Hash 

Function l=1:1 l=1:2 l=1:4 l=1:8 
CRC 0.368670 0.107371 0.028602 0.007501
FNV 0.367435 0.106284 0.028365 0.007384
Jenkins 0.368289 0.106969 0.028541 0.007563
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ranging from 1:8 to 1:1. The collision rate is defined as the 
number of collisions divided by the total number of input 
packets. From Table 3, it is clear that the performance of 
the three different hashing algorithms is very close to each 
other. Because each microengine on IXP2850 has an on-
chip CRC unit, which provides very fast CRC computation 
[24], we choose to use the CRC as the hashing function.  

4.2 Hash Table Design 
The data-structure of hash table is of great importance to 
the design of efficient flow state management, which takes 
the advantage of the parallelism of multi-core and multi-
threaded network processor. The hash table data structure 
explains how we organize the flow state entries.  
The traditional hash scheme, which is named DirectHash in 
this paper, stores flow states in a single hash table indexed 
by the hashing value and normally uses link lists to handle 
hash collisions. Each entry in the link list stores a full flow 
state consisting of the 5-tuple header, sequence and ACK 
sequence number, and other flow information according to 
different applications. When collision occurs, the link list 
entries will be checked one by one to find out the exact 
match. Although DirectHash is simple to implement on NP, 
this scheme suffers from:  
♦ SRAM Size Limit: Assuming that 10M concurrent 
flow states were to support with a load factor of 1:1, and 
each flow state entry is 32 bytes in size, the total size of the 
hash table by DirectHash will be 320MB, which is too 
large compared to the 64MB SRAM chips on IXP2850.  
♦ Excessive Memory Accesses: According to our 
experiments (see Table 3), with load factor of 1:1, the hash 
collision rate will be greater than 30%, which means more 
than 30% of packets will be stored in the link list, and thus 
results in excessive memory accesses.  
To address these problems, we employ the idea of 
hierarchical hashing introduced in [1] and propose a 
signature-based hashing scheme named SigHash. As shown 
in Figure 4, the SigHash uses two hash tables: the signature 
table in SRAM and the flow state entry table in DRAM. 
Both the tables are indexed using 20 lower order bits of the 
hash value returned by the hash function. Therefore, both 
the primary and secondary tables contain 220 buckets. Each 
bucket is further organized as 4 bins. Each bin corresponds 
to a rule that has been inserted into the hash table. The 
primary table is a compact table that stores hash signatures 
in each bin. A signature is a contiguous set of 8 bits taken 
from the hash index returned by the hash function. These 8 
bits are distinct from the set of 20 bits used as an index into 
the two tables. In comparison to DirectHash, SigHash is 
more efficient because: 
♦ The relatively high speed memory usage of SRAM is 
significantly reduced by the hierarchical memory 
management. n concurrent flows with load factor l only 

need n/l*4 Bytes SRAM memory storage, together with 
n/l*sizeof(flow state) Bytes DRAM.  
♦ Assisted by the signature checking in SRAM, only one 
SRAM access is required if the number of collisions are 
less than 5. To check out whether the incoming flow 
matches the corresponding flow state in DRAM, additional 
one DRAM access is required. Thus, SigHash always 
provides deterministic performance when there are four or 
less collisions  
♦ If the collision entries exceed 5, the packet will be sent 
to the slow path and be treated as an exception in XScale 
core. However, experimental results with real-life traffics 
[5] indicate that, with an appropriate choice of load factor, 
the number of exceptional packets can be very small. From 
Figure 5 we can see that, when the load factor is smaller 
than 1, the exception rate is less than 2%.  

5. PER-FLOW PACKET ORDERING  
Another important requirement for networking devices is to 
maintain packet order. Typically, ordering-preserving is 
only required between packets on the same flow that are 
processed by different processing engines. In network 
devices processing at network layer, the external packet 

 
Figure 4. Data-structure of SigHash 
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ordering (EPO) scheme is sufficient, but applications that 
process packets at semantic levels require internal packet 
ordering (IPO), in which packets belong to the same flow 
are handled by the same thread. In this section, we discuss 
how to efficiently implement EPO and IPO in Intel IXP 
2850 network processor. 

5.1 External Packet Ordering 
5.1.1 Ordered-thread Execution 
EPO can be realized by ordered-thread execution strategy 
suggested by [1]. In this design, every dispatch loop 
assumes that the packets are in order when it receives them 
from the previous processing state. It uses an ordered 
critical section to read the packet handles off the scratch 
ring from the previous state. The threads then process the 
packets, which may get out of order during packet 
processing. At the end of the dispatch loop, another ordered 
critical section ensures that the threads write the packet 
handles to the scratch ring in the correct order. The 
implementation of ordered critical sections typically uses 
strict thread ordering enforced via inter-thread signaling. 
Details of ordered-thread execution can be found in [1]. 

5.1.2 Mutual Exclusion by Atomic Operation 
In the EPO scheme, packets belong to the same flow may 
be allocated to different threads to process, thus mutual 
exclusion is needed because multiple threads may access 
the same flow state entry in the hash table. Mutual 
exclusion can be implemented by locking. IXP2850 NP 
provides an efficient way to implement a lock using SRAM 
atomic instructions such as sram_test_and_set(). In our 
design, once a thread is accessing the session entry data 
structure, the MUTEX lock bit is set by an atomic 
operation so that any other thread cannot access the same 
session entry. Here the access mainly includes write 
operations. At the end of the packet processing, the thread 
clear the MUTEX lock bit so that other threads can access 
the shared memory. 

5.2 Internal Packet Ordering  
5.2.1 Internal Packet Ordering via SRAM Q-Array 
Internal packet ordering requires that packets belong to a 
certain flow should be processed by the same thread. This 
requirement can be meet using multiple memory queues, 
each of which corresponds to a certain thread. The 
IXP2850 hardware supports a 64-element SRAM Queue 
Array per SRAM channel, providing fast access to these 
queues through a 64-element hardware cache in the SRAM 
controller. Figure 6 shows how to implement IPO using 
SRAM Queue Array: Packets belong to the same flow 
(with the same CRC hash value) will first be put into the 
same SRAM Queue, and then be processed by the 
corresponding thread.  

5.2.2 Workload Allocation by CRC Hashing 
In this paper, a pure hash-based workload allocation 
module is implemented to achieve internal packet ordering. 
With direct hashing, the load balancing module applies a 
hash function to a set of fields of the five-tuple, and uses 
the hash value to select the outgoing queue in the SRAM 
Queue Array. In our study, two hashing schemes are 
evaluated: hashing of the destination address (H = DestIP 
mod N) and hashing of the five-tuple packet header using 
CRC (H = CRC32 (five-tuple) mod N). We found that CRC 
hashing scheme performs much better than the destination 
address hashing over different real-life traffic traces. Such 
results are consistent to the evaluations in [31].  Therefore, 
we choose the CRC hashing as our workload allocation 
scheme. 
Note that in [32], W. Shi, M. H. MacGregor and P. 
Gburzynski have proved that pure hashing is not able to 
well balance the workload due to the Zipf-like distributions 
of flow-size in real-life traffic. However, in practice, the 
performance of hash-based load balancing module is good 
enough in our system (see the experiments in Section 6.4.1) 

6. PERFORMANCE EVALUATION 
6.1 Development Kits and Test Environments 
There are two basic programming choices in the Intel 
Software Developer Kit (Intel SDK): programming in 
assembly language (Microcode) or programming in C 
language (MicroC). To make better compatibility with Intel 
SDK, and to avoid dependency on compiler optimizations, 
all the application and algorithms are developed using 
Microcode assembly with the software framework provided 
by Intel SDK4.0 [25].  
To evaluate the performance, the application was tested and 
run in the IXP2850 Developer Workbench, which offers a 
cycle-accurate simulator of the IXP2850 NPs. This 
environment provides access to several performance 
metrics that reflect the actual IXP2850 hardware. The 
application was also tested on a dual-IXP2850 platform to 
ensure the code accuracy and compatibility on hardware 
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6.2 Performance of AggreCuts 
We compare three main performance metrics of the 
AggreCuts to the HiCuts algorithm: the worst-case memory 
access, total memory usage and throughput on IXP2850. 
The testing rule sets, denoted as SET01~SET07, are all 
real-life 5-tuple ACLs obtained from large enterprises and 
from [30]. The size of these rule sets ranges from 68 
(SET01) to 1530 (SET07). AggreCuts-4 refers to w=4, i.e. 
at each internal node, the current search space is cut into 24 
sub-spaces. Similarly, AggreCuts-8 refers to w=8. 

6.2.1 Worst-case Memory Access 
Worst-case memory access, indicating the worst-case 
classification speed, is the most important performance 
metric in evaluation of a flow classification algorithm. 
From Figure 7 we can see that the worst-case memory 
accesses of AggreCuts-8 and AggreCuts 4 are less than 1/6 
and 1/3 of that of HiCuts respectively. This is because the 
worst-case tree depth of HiCuts depends on the data-
structure of the rule set, while that of AggreCuts is set-
independent due to the explicit cutting scheme. Such a 
definite worst-case memory access is expected to guarantee 
stable performance of high-speed flow classification on the 
network processor. 

6.2.2 Memory Usage 
The memory usages of AggreCuts-4, AggreCuts-8 and 
HiCuts against the 7 real-life rule sets are shown in Figure 
8. It can be seen from the figure that: AggreCuts-4 uses 
nearly an order of magnitude less memory than HiCuts. 
AggreCuts-8 also has much better spatial performance than 
HiCuts. More specifically, AggreCuts-4 uses less than 
1.4MB memory against all the 7 rule sets, and AggreCuts-8 

uses less than 5.3MB memory, both of which are less than 
the size of a single chip of SRAM on the IXP2850 network 
processor (there are four 8MB SRAM chips on IXP2850). 
In comparison, the memory usage of HiCuts is larger than 
28MB, which is nearly the total amount of all the four 
chips of SRAM. 

6.2.3 Throughput on NP 
To evaluate the throughput of the worst-case performance 
on IXP2850, we use minimum 64Byte Ethernet packets as 
the input traffic and set each packet to match the longest 
tree depth (i.e. each packet will incur the worst-case 
memory access). Figure 9 shows the throughput achieved 
by AggreCuts-4, AggreCuts-8 and HiCuts. From this figure, 
we see that AggreCuts-8 reaches nearly 9Gbps throughput 
and AggreCuts-4 also has a stable 6Gbps performance. In 
comparison, the throughput of HiCuts is less than 2Gbps, 
and as the number of rules increases, its performance 
slowly decreases.  

6.3 Performance of SigHash 
Two hash schemes are implemented on the platform of 
Intel IXP2850 Network processor: the DirectHash scheme 
based on SRAM and the SigHash scheme based on SRAM 
as well as DRAM. From Figure 10, we can see that the 
DirectHash scheme reaches 8.3Gbps throughput with 64 
threads, while the SigHash scheme reaches 10Gbps line 
speed. The figure also shows that when the number of 
threads exceeds 40, the performance of DirectHash does 
not increase linearly. This is because the SRAM read CMD 
FIFO becomes a bottleneck as more and more threads 
issues memory access commands concurrently. In contrast, 
the SigHash scheme takes the advantage of the DRAM 
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interleaving storage mechanism which evenly distributes 
consecutive memory access into three channels. Moreover, 
with 64MB SRAM and 2GB DRAM on the IXP2850 NP, 
the SigHash scheme can support over 10M concurrent 
sessions while the DirectHash scheme can only maintain 
less than 500K concurrent flow states. 

6.4 Performance of Packet Ordering 
6.4.1 Workload Allocation by CRC Hashing 
Using packet traces (CESCA-I) from NLANR PMA [34], 
simulation is performed on the CRC hashing load 
balancing module to evaluate the impact of IPO on the 
utilization of microengines caused by the load distribution 
fluctuation.  
In simulation, packets are distributed into 64 queues, the 
length of the queue can be 512, 1024 or 2048 packets. The 
total processing capacity of the 64 threads is assumed to 
match the input packet rate. As shown in Figure 11, tested 
with three different queue lengths, the average packet drop 
rates caused by the queue overflow are below 6%, i.e. the 
utilization of microengines is higher than 94%. This also 
indicates that, on average, there are 64*6%=4 threads 
working in idle time. 

6.4.2 EPO vs. IPO 
The EPO scheme is implemented by ordered-thread 
execution and the IPO scheme is realized through SRAM 
queue array. Figure 12 shows that, the EPO scheme reaches 
the line speed of 10Gbps with 64 threads, while the IPO 
scheme achieves its maximum throughput of 7.4Gbps. The 
reason why IPO scheme runs at a lower rate mainly 
contains two aspects: First, the IPO scheme forces each 
flow to be processed in a specified thread. This flow-level 
workload distribution brings in the non-uniformity in load 
balancing. Secondly, the flow-level workload allocation 
incurs additional processing overhead, especially the 
memory access to load packet headers for CRC 
computation. Nevertheless, the IPO scheme is expected to 
achieve higher performance if more threads could be 
allocated, since it can be seen from Figure 12 that the 
throughput of the IPO scheme still grows linearly when 
running on 64 threads. 

7. CONCLUSION 
In this paper, we present a high-performance flow-level 
packet processing system based on multi-core network 
processors. At first, a high performance flow classification 
algorithm optimized for network processors is proposed 
that outperforms the existing best-known HiCuts algorithm. 
Secondly, an efficient flow state management scheme using 
signature-based hashing is presented, which can support 
10M concurrent flows on the IXP2850 network processor 
and reach 10Gbps line speed. In addition, two hardware-
supported packet ordering strategies that preserve internal 
and external packet orders respectively are implemented 

and evaluated on the IXP2850 NP. Experimental results 
show that the performance of internal packet ordering 
scheme using SRAM queue-array is close to that of 
external packet ordering scheme realized by ordered-thread 
execution. 
In future work, we plan to implement TCP stream 
reassembly and pattern matching building blocks on the 
IXP2850 NP. Although both tasks are hard due to deeper 
content to inspect and more complicated states to maintain, 
they can be implemented as degenerated or simplified 
versions [26] [27]. Our future work also includes the 
implementation of flow-level load balancing [31-33] and 
application-level flow detection [35-37] on the IXP2850 
NP. Note that all these work in our future work are based 
on the proposed flow-level packet processing systems. We 
believe that, as the continual growth of network traffic rates 
and the increasing sophistication of types of network traffic 
processing, more and more complicated network 
applications will emerge using parallel processing network 
devices to perform high-speed packet processing at flow 
level. 
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