
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232619336

A Scalable Per-flow Priority Scheduling Scheme for High-Speed Network

Conference Paper · April 2010

DOI: 10.1109/ICCSN.2010.17

CITATIONS

3
READS

44

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Network Security View project

Bitmap indexing technology View project

li Guodong

2 PUBLICATIONS 3 CITATIONS

SEE PROFILE

Zhen Chen

Tsinghua University

138 PUBLICATIONS 727 CITATIONS

SEE PROFILE

Yibo Xue

Tsinghua University

104 PUBLICATIONS 695 CITATIONS

SEE PROFILE

Jun Li

Tsinghua University

172 PUBLICATIONS 736 CITATIONS

SEE PROFILE

All content following this page was uploaded by Zhen Chen on 05 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/232619336_A_Scalable_Per-flow_Priority_Scheduling_Scheme_for_High-Speed_Network?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/232619336_A_Scalable_Per-flow_Priority_Scheduling_Scheme_for_High-Speed_Network?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Network-Security-21?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bitmap-indexing-technology?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li_Guodong4?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li_Guodong4?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li_Guodong4?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Chen16?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Chen16?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua_University?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Chen16?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yibo_Xue2?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yibo_Xue2?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua_University?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yibo_Xue2?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jun_Li24?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jun_Li24?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua_University?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jun_Li24?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Chen16?enrichId=rgreq-ad0c016f68ff3832809f8be7163b58c7-XXX&enrichSource=Y292ZXJQYWdlOzIzMjYxOTMzNjtBUzoxMDQ4NjA4MDAyNTgwNTNAMTQwMjAxMjE3MTQwNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Scalable Per-flow Priority Scheduling Scheme for High-Speed Network
Guodong Li1, 2, Zhen chen1, 2, Anan Luo1, Yibo Xue2, 3, Jun Li2,3 and Chuang Lin1

1Dept. Computer Science and Technology, Tsinghua University, Beijing, China
2Research Institute of Information Technology, Tsinghua University, Beijing, China

3Tsinghua National Lab for Information Science and Technology, Beijing, China
guodongli07@gmail.com, laa@mails.tsinghua.edu.cn

{zhenchen, yiboxue, junl,chlin}@tsinghua.edu.cn

Abstract—In order to provide the service differentiation for
various network applications, and guarantee delay and
bandwidth requirement, packet scheduling is considered as a
hot research topic and a crucial module in network device. In
high speed network, it is hard to maintain and schedule a great
number of queues for millions of in-progress flows in memory
in line speed. In this paper, we propose a scalable per-flow
scheduling scheme using a small fast memory to achieve fine-
grained service guarantee. A limited number of queues are
dynamically shared among concurrent flows based on the
interesting fact that the number of simultaneous active flows is
only in hundreds whatever the link speed is. The scheduling
scheme is in a scalable hierarchical manner, in which the first
layer supplies service differentiation and the second guarantees
bandwidth and delay. We also implement an instance based on
this scheme called DQS-SPQ-DRR (Dynamic Queue Sharing-
Strict Priority Queue-Deficit Round Robin). Experiments
based on real and synthetic traces are conducted to evaluate
the DQS-SPQ-DRR. The results demonstrate that DQS-SPQ-
DRR is well held in small memory and supplies per-flow
service guarantee.

Keywords: scheduling,scalable,per-flow

I. INTRODUCTION
Packet scheduling is the key technique to guarantee the

service for critical applications. To design a good scheduling
scheme, several issues should be addressed: 1) how to
distribute bandwidth to each flow on demand; 2) how to
guarantee the quality of service for critical applications; 3)
how to deploy the scheduling schemes easily.

Using a dedicated queue for each flow and a constant-
time scheduler (such as DRR) [1] can provide bandwidth and
delay guarantees for service. Unfortunately the number of in-
progress flows can be extremely large. With traffic evolution,
the number of flows is also growing (in millions scale) and
possibly exceeds router’s capacity. Caching states for
millions of flows is a big challenge in high speed network. If
the states are stored in SRAM, the memory cost is too
expensive; if they are kept in DRAM, the state lookup and
update are too slow. Therefore, how to organize the queues
in SRAM and schedule them in different priorities is a
significant but unsettled issue.

A flow is a stream of packets that are identifiable using
fields in a packet header (such as TCP/IP’s five-tuple).
Packets of each flow have the same route from the source to
the destination and require the same grade of service.

Many researchers [2-4] focus on dealing flows at a time
scale of seconds or minutes. However, a packet is buffered in

high speed device only for several microseconds mostly, so
active flows (flows are not empty currently) should be
handled at a microsecond time scale. The new discovery is
that the number of concurrent flows is only in hundreds in 10
microsecond scale [5]. Based on this observation, it is
possible to use hundreds of queues and share them among
active flows [6]. It is very easy to store such a number of
queues in SRAM. Therefore a data structure called active
flow list (AFL) is designed to store active flows. When the
first packet of a flow arrives, an empty queue is allocated and
a new entry is inserted to AFL; when the queue becomes
empty, the relative entry in AFL is deleted and the queue is
freed and can be reassigned to another newly incoming flow.

In this paper, a novel scalable per-flow scheduling
scheme is proposed. AFL is used to store active flows in a
small memory. The scheduler is hierarchically organized for
enqueue and dequeue operation. The first layer provides
service differentiation by distributing flows into different
priority groups. The second provides delay and bandwidths
guarantee for each flow which can prevent one flow from
occupying too much resource. It is a scalable scheme and
each layer can use existing scheduling algorithms to achieve
service differentiation and guarantee. Our results show that
all memory required by this scheme is small and well held in
fast memory; service of critical flows is better guaranteed
than original solution.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III presents the scalable
hierarchical scheduling scheme. Section IV gives a named
DQS-SPQ-DRR implementation. Section V discusses the
experimental results. Section VI concludes the paper and
future works.

II. RELATED WORK
Packet scheduling has been studied extensively and many

scheduling algorithms and architectures are given.
IntServ[7] is the pioneer of scheduling architecture. It

reserves resource for all flows in-progress flows. It can
achieve well per-flow service guarantees. However, it has to
maintain all state information for all flows in its route. Its
sophisticated implementation is not feasible to the huge
number of flows. So it is not widely used in Internet.

A.Nikologiannis et al. [8] and Aggelos Ioannou et al.[9]
introduce special hardware to implement thousands of
queues for per-flow queuing for providing advanced service
guarantee respectively. It always adopts ASIC for queues
organization and scheduling. However, in these methods, it
not only takes high cost and long-term developing cycle, but
also does not scale up with the increasing of the network.

2010 Second International Conference on Communication Software and Networks

978-0-7695-3961-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCSN.2010.17

536

S.Floyd et al. [10] presents CBQ (Class-Based Queueing),
which has been implemented in many Linux distributions
[11]. Hierarchical link-sharing is introduced to allow
multiple agencies, protocol families, or traffic types to share
the bandwidth on a link in a controlled fashion. Link sharing
is organized in tree and each node represents one share such
as agencies or policy. On the basis of CBQ, H-PFQ
(Hierarchical Packet Fair Queueing) [12] and HFSC
(Hierarchical Fair Service Curve) [13] are introduced to
achieve fair queueing. However, the architectures above only
deal with the flow aggregation. To get fine-grained service
guarantee, they have to deepen the hierarchical tree, which
will increase the scheduling cost a lot.

A.Kortebi et al. [5] firstly discovers the interesting fact
that the number of flows in progress is in millions and
increases with the link speed, but the number of active flows
is only in hundreds even though there may be tens of
thousands of flows in progress currently. Based on this
discovery, it is a good opportunity to design a new
scheduling scheme. However this paper only presents a
simple fair queue schedule scheme which can’t provide
sufficient service guarantee.

III. THE DESIGN OF PACKET SCHEDULING SCHEME

A. Design principles
The objective of our scheme is as follows: 1) to provide

per-flow queueing in SRAM; 2) to provide delay and
bandwidth guarantee for critical flows; 3) to be scalable to
existing scheduling algorithms. To achieve these, we
combine AFL, priority group and bandwidth guarantee
algorithm together.

In order to providing per-flow queueing, queue is
organized in AFL. With AFL storing the active flows in a
linked-list or hash table, only active flows are dynamically
allocated queues. When a packet with priority from
configured policy arrives, a look-up action in AFL is
triggered. If the look-up returns unsuccessful result, the
queue manager applies a new empty queue from the free
queue stack. Then the flow and scheduling information of
this packet is composed and a new entry is inserted to AFL;
if successful, queue manager updates the scheduling
information and inserts the packet to the corresponding
queue. With this method, active flows are dynamically
mapped to finite physical queues, so only a small number of
physical queues are needed.

Another novelty of our scheduling scheme is that it is
organized in hierarchical manner. In order to provide service
differentiation, priority group is the first layer. The priority
of flows is configured by policy. Users assign different
priority to flows with different characteristic. When a packet
arrives, it will look up the policy and get its priority. How to
achieve this is beyond the scope of this paper. Usually,
higher priority group would get more chance to send packets.
Various current scheduling algorithms that provide service
differentiation can be employed here. For example, with
strict priority queue scheduling algorithm, only when the

higher priority group becomes empty, the lower one gets an
opportunity to dequeue packets. To prevent low priority
groups from starving, it can also implement weighted DRR
(WDRR) scheduling among different groups. With WDRR,
each group is offered services proportional to its assigned
weight. It also maintains current credits for scheduling. Each
scheduling round, the current credits is incremented by its
quantum. Then this group is served as long as current credits
are greater than zero. In this way, each group can send
packets no more than its current credits, so lower priority
group can get a fraction of services.

The candidate scheduling algorithms should treat flows
fairly and prevent a small number flows from occupying too
many resources in each priority group. DRR is a suitable for
this use, because it is easy to implement by hardware or
software and widely deployed in commercial devices. It is an
O (1) fair scheduling scheme for delay and bandwidths
guarantee. Its dequeue processing is in a round robin manner.
During each round, packets no more than its current credits
are sent to prevent one flow from occupying too many
resource.

All in all, AFL maintains a small number of mappings
between active flows and physical queues, while priority
group differentiates services and DRR provides delay and
bandwidth guarantee. Existing popular scheduling
algorithms can also substitute the methods mentioned here
flexibly.

B. Scheduling algorithms
To simplify the description, we adopt the strict priority

group, i.e., the low priority group is not scheduled until all
the packets in high priority ones have been sent out. In each
group, we employ DRR algorithms. The scheduling
information in AFL includes the flows’ packet number
PktsNumi, current credit DCi, quantum Qi. Priority group
should maintain the AFL entry pointer fi to get DRR
scheduling info, current packet number PktsNum, and
lastDequeueRound. Fig.1 and Fig. 2 present the pseudo-
codes of enqueue and dequeue algorithms.

 Enqueue ALG
1
2
3
4
5
6
7
8
9
10
11

On arrival of packet p;
i = ExtractFlow(p);
pri = GetPriorityFlow(p);
Search fi->qk in AFL;
If null

Assign a new queue qk;
i->PktsNum=1;
i->Quantum = Qi

i->DC = 0;
InsertAFL(fi,qk);

Else
12
13
14
15
16

i->PktsNum++;
End If
Insert(p,qk);
pri->PktsNum++;
If(pri->packet==1)

17 Priority[pri]=1;
18 End If

Figure 1. Enqueue Module.

537

Enqueue Operation: On the arrival of a packet p with
its priority, it firstly gets the priority in order to find priority
group (line 3). If packet p does not belong to any active flow,
it apply qk from the free management stack and set PksNum
to 1 and initial the DRR quantum and DC, then the new entry
inserts to the tail of AFL(lines 5-10). Otherwise it simply
adds the PktsNum (lines 12). After searching AFL, insert
packet p to relative queue qk in priority group pri(lines 14-
15). If it is the first packet in this group, to set the bit in
bitmap Priority to 1(lines 16-17).

Dequeue Operation: The dequeue operation firstly gets
the highest priority group K that is not empty (line2), and
then extracts the packet p at the head of lastDeqRound queue
(line 3). Adding a Quantum to the DC of the flow, if DC is
larger than the p’s length, to send p out and decrease DC by
the packet size (line 6-7). The loop allows the flow to emit
up to DC byte. If the packet in this flow becomes empty,
AFL deletes the entry and breaks the loop (lines 5-15). After
the loop, lastDequeRound in group K updates (line 16). At
last if the packet in group K becomes zero, the K-th bit in
bitmap Priority is set to 0.

Dequeue ALG
1
2
3
4
5
6
7
8
9
10
11
12
13
15
16
17
18
19

20

While(1)
Find the first not empty priority group K,;
p=Headof(K->lastDeqRound,&fi);
fi->DC += fi->Quantum;
While(fi->DC > p->length)
 Dequeue(K->lastDequeueRound);
 fi->DC -= pac->length;
 K->PksNum--;

fi->pkts--;
 If(fi->pkts ==0)
 Delete the fi entry in AFL;
 break;
 End If
 End While

K->lastDequeuRound++;
if(K->PksNum ==0)
 Priority[K]=0;
End if

End While

Figure 2. Dequeue Module.

IV. SCHEME IMPLEMENTATION
We have implemented the above scheduling scheme by

integrating Dynamic Queue Sharing (DQS) [6], strict
Priority Queue and enqueue-time DRR [16], which is called
DQS-SPQ-DRR. Please note that, the implemented
scheduler works in a per-flow manner, and all the control
information can be fit in SRAM.

A. DQS
To speed up the searching and updating on the active

flow list, hash is utilized to divide the whole AFL into multi
sub-list. In this case, the AFL operation is executed in small
sub-list. Flows with the same hash value are directed to the
same sub-list. The detail of DQS is in [6].

B. Strict priority queue
Strict priority queue is the easiest scheme to achieve

service differentiation. Each flow gets its priority from
configured policy, so when it arrives in AFL, the assigned
queue for the flow inserts to relative priority group to which
it belongs. Since SPQ is from high to low priority, dequeuue
scheduling may check for packets for several DRR rounds in
each empty group. Avoid polling empty group is a good idea
to enhance performance. To solve the problem, one bitmap
indicating which group currently has packets is maintained.
Instead of polling all groups, it simply read the bitmap and
search for bits that are set in this bitmap. Especially many
modern processors families (such as IXP, CAVIUM) support
the instruction FFS (Find First Set) [14] [15]. The instruction
searches one bitmap for the location of the first bit that is set.
The result is the location (bit position) of that first set bit.
With the solution, the group selection processing only
searches a bit vector to determine the current state efficiently.

C. Enqueue-time DRR
In current design, network processor is usually multi-core

architecture, so it is good at processing packets in parallel.
For example, there can be several processes to send packets
to different queues. DRR dequeue processing, however, does
not have the same characteristics. Each round of DRR needs
to run sequentially. It does not allow for one queue to start
the second round until all other queues have finished the first
round. So dequeue processing has to be always in a single
thread or process.

In this condition, with more than one core performing
enqueue and only one core doing dequeue, the unbalance
results in the need to simplify dequeue process. We introduce
the enqueue-time DRR which sorts the packets into DRR
rounds at enqueue-time. So it moves the calculating
scheduling info expense from deque-time to enqueue-time.
The detail of enqueue-time DRR is in [16].

D. Complexity analysis
The memory required for DQS-SPQ-DRR is quite small.

Let’s denote each entry as flowing:
DQS: it only stores the mapping of queue and active flows.
Here, the number of hash slots is W; the number of physical
of queue is N; the number of active flows is L; the number of
bits to identify a flow is B; the number of bits for DC and
Quantum is Q, for PktsNum and BytesNum are both C. Then
the memory requirement for the mapping scheme when sub-
tables are organized in double linked-list.

MDQS = W + L (2logL+logN +B +2Q+2C) (1)
SPQ: It only needs maintain the priority bitmap and some
scheduling information. The layer of priority group is P; the
number of bits for PktsNum is C too; the max DequeRound
is D; the number of bits for CurEntry is I.

MPQ = P + P(C+logD+I) (2)
Enqueue-time DRR: For each round, it should maintain the
head and tail of pointer for each dequeue round. As denoted
above, the memory required is:

 MDRR = 2PDI (3)
So the total memory need is

538

M= MDQS + MPQ+ MDRR (4)
For example given M=512 slots, N=512 queues, active flow
L= 512, B=32, Q =32, C=32.P=64, D = 64, I=32. The
memory required only about 363Kbit and can be
implemented in SRAM easily.

The time cost of this scheme includes enqueue time and
dequeue time. Search, insert and delete AFL accounts a big
portion of enqueue time. However, it is also a piece of cake.
From thesis [6], we can get:

Tsearch = 1 + (L-1)/2M (5)
Tinsert = L/M (6)
Tdelete = 1 (7)

The enqueue time cost of priority queue and enqueue-time
DRR are both O (1).The total enqueue time cost is this, i.e.

Tenqueue = MAX (Tsearch, Tinsert) + TPQ+TDRR (8)
Dequeue procedure is easy. The scheduler goes through per-
round linked-list sequentially and sends out packets from
each round linked-list. If the queue becomes empty, the
relative entry in AFL is deleted. The time cost is O (1), i.e.

Tdequeue = Tdelete + TPQ+TDRR (9)
Here we also set M=512 slots and active flow L= 512 as
memory calculation above. The enqueue time is 2.5 and
dequeue time is 1.

V. PERFORMANCE EVALUATION
We evaluate the performance of DQS-SPQ-DRR by

means of synthetic traffic and Internet trace data.

A. Original trace statistics
We use three real traces from [17]:
a) NLANR1: It was collected on November 24st, 2002

at the University of Leipzig Internet OC3 access link.
b) NLANR2: It was collected on August 14st, 2002 at

the OC48 link from IPLS Abilene router towards CLEV.
c) NLANR3: It was collected on June 1st, 2004 at the

OC192 link from IPLS Abilene router node towards KSCY.
Here we set the statistic time scale to be 10 milliseconds.

Output bandwidth is shared among all the active flow and
the output capacities are set to make the traffic load of each
trace to be 0.95, as shown in Table 1. The load is defined as
the ratio of the average rate and the output bandwidth. From
the table, we get that average rate of each trace is far less
than its original output capacity.

TABLE I. PACKET TRACE STATISTICS SUMMARY.

Trace NLANR1 NLANR2 NLANR3
average trace rate 14.4Mbps 372Mbps 557Mbps
original output capacity 155Mbps 2.5Gbps 10Gbps
regulate output capacity 15.2Mbps 392Mbps 586Mbps
packets number 10M 20M 100M
flows in progress 53K 75K 100K
MTU 1500byte 1537bytes 9000bytes

The complementary distribution of AFL size is shown in

Fig. 3, which indicates the number of active flows. We
observe that it is only in the number of hundred (256 in the
worst case), much less than the number of flows in progress.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

length n

P
(A

FL
 le

ng
th

>n
)

NLANR1
NLANR2
NLANR3

Figure 3. Complementary distribution of AFL size.

-0.1 -0.05 0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

P
[re

la
tiv

e
de

vi
at

io
n<

e]
(C

D
F)

DQS-FIFO
DQS-DRR
DQS-SFQ-DRR

(a)relative deviation of 1Mbps Flow

-1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

P
[re

la
tiv

e
de

vi
at

io
n<

e]
(C

D
F)

DQS-FIFO
DQS-DRR
DQS-SFQ-DRR

(b)relative deviation of 32Mbps Flow

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

P
[re

la
tiv

e
de

vi
at

io
n<

e]
(C

D
F)

DQS-FIFO
DQS-DRR
DQS-SFQ-DRR

(c)relative deviation of 128Mbps Flow

Figure 4. CDF of relative deviation for flows of various rate

539

B. Performance results
The following experiment results about the three trace

data are similar. In order to simplify the description,
NLANR3 with the highest speed is selected to show the
performance. We add six constant rate flows to the
NLANR3. The rates of the flows are 1Mbps, 8, 16, 32, 64
and 128 Mbps and the packet is 1024 bytes. As a result, to
get traffic load as 0.95, the link capacity is regulated to
848Mbps. To guarantee delay and bandwidth of these 6
flows, trace flows are set lower priority than them.

To verify the performance of DQS-SPQ-DRR, we
compare it with DQS-FIFO that each packet is scheduled as
its enqueue sequence and DQS-DRR that packets are
scheduled in round robin manner without service
differentiation.

In the following, we focus on bandwidth and delay of
these six flows. The expected delay of a flow is defined as
the average incoming interval among packets, i.e.

Expected = packet length/flow rate (10)
To compare the result of these three algorithms, we

define “relative deviation” to show the deviation between
experiment and expected result.
Relative deviation= (experiment – expected)/expected (11)

Here we only present the comparisons of 1Mbps,
32Mbps and 128Mbps flows. The same thing happens for
the other three flows.

 Fig. 4 shows the cumulative distribution of relative
deviation. We can get that DQS-SPQ-DRR performs the
best among the three schemes no mater of the protected
flow rate. DQS-FIFO and DQS-DRR perform almost the
same, because both of them don’t treat flows different and
flows are not protected finely. Another fact is that smaller
rate flows can get better service guarantee for all the
algorithms. For example, about 90% of the interval is exact
to expected interval with 1Mbps flow in DQS-SFQ-DRR. If
the flow rate goes to 128Mbps, the relative deviation is
more dramatic. However, more than 95% of the interval
falls in the rage [-0.5, 0.5] for DQS-SFQ-DRR.

VI. CONCLUSION
We propose a novel scalable per-flow scheduling scheme

which use a small fast memory to achieve fine-grained
service guarantee. The queue and scheduler’s data structure
can be all stored in SRAM. It is a per-flow queuing scheme
by only maintaining dynamic queue for active flows in active
flow list (AFL). The scheduler is organized as a hierarchical
manner, in which the first layer providing service
differentiations and the second does the service guarantee.

The advantages of this architecture lies in 1) it only
maintains a small number queues to achieve per-flow
queuing; 2) it is a scalable hierarchical architecture and
compatible to existing scheduler algorithms; 3) it can use
SRAM to achieve the best performance for high speed
network.

An instance implementation called DQS-SPQ-DRR is
presented to evaluate the performance. Trace-driven

experiment shows that under DQS-SPQ-DRR, the AFL
length is still in the number of hundreds. The guaranteed
flow acquires its service quarto no matter of the variation of
the other background traffic.

ACKNOWLEDGMENT
This work has been supported by the National High-Tech

R&D Program (863 Program) of China under grant
No.2007AA01Z468. The authors would like to thanks
Yaxuan Qi, Baohua Yang and other colleagues in the
Network Security Lab of Tsinghua University(NSLAB) [18]
for their help. We also thank Doctor Chengchen Hu for his
valuable suggestion

REFERENCES
[1] M.Shreedhar, G.Varghese. Efficient Fair Queuing using Deficit

Round-Robin. IEEE/ACM Trans. Networking, pp. 375-385, 1996.
[2] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R.

Rockell,T. Seely, and S. C. Diot. Packet-level traffic measurements
from the sprint IP backbone. IEEE Network, vol. 17, no. 6, pp. 6–16,
2003.

[3] Nan Hua, Bill Lin, Jun Xu, Haiquan Zhao. BRICK: A Novel Exact
Active Statistics Counter Architecture. ACM ANCS 2008.

[4] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, A. Kabbani.
Counter Braids: A Novel Counter Architecture for Per-Flow
Measurement. In Proceeding of SIGMETRICS, 2008.

[5] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts, Evaluating the
number of active flows in a scheduler realizing fair statistical
bandwidth sharing. ACM SIGMETRICS 2005, pp. 217–228, 2005.

[6] Chengchen Hu, Yi Tang, Xuefei Chen, Bin Liu. Per-flow Queuing
by Dynamic Queue Sharing. IEEE INFOCOM 2007, May 2007,
pp.1613-1621.

[7] R. Braden, D. Clark, S. Shenker. Integrated services in the internet
architecture: an overview. RFC1633, 1994.

[8] A. Nikologiannis and M. Katevenis. Efficient per-flow queueing in
DRAM at OC-192 line rate using out-of-order execution
techniques. IEEE International Conference of Communications (ICC
2001), Helsinki, Finland. pp. 2048-2052, Jun. 2001,

[9] Aggelos Ioannou, Manolis G. H. Katevenis. Pipelined heap (priority
queue) management for advanced schedule-ing in high-speed
networks. IEEE/ACM Transactions on Networking (TON) Volume
15, Issue 2, pp 450-461, April 2007.

[10] S.Floyd, V. Jacobson. Link-sharing and resource management models
for packet networks. ACM/IEEE Transaction Networking, 1995.

[11] Main page of CBQ. www.icir.org/floyd/cbq.html
[12] Jon C R Bennett, Hui Zhang. Hierarchical packet fair queueing

algorithms. IEEE/ACM Transactions on Networking (TON) Volume
5, Issue 5, pp: 675 - 689 , October 1997.

[13] Ion Stoica, Hui Zhang, T.S.Eugene Ng, A Hierarchical Fair Service
Curve Algorithm for Link-Sharing, Real-Time and Priority Service.
IEEE/ACM Trans on Networking (TON), 2000,8(2),pp 185-199.

[14] Official website of Cavium about OCTEON product family.
www.cavium.com/OCTEON_MIPS64.html

[15] Erik J.JJohnson, Aaron R.Kunze. IXP2400/2800 Programming.
INTEL PRESS, 2004.

[16] Uday R.Naik, Prashant R.chandra. Designing High-Performance
Networking Applications. INTEL PRESS, 2004.

[17] NLANR. Passive measurement and analysis (pma). [Online].
Available: http://pma.nlanr.net

[18] NSLAB. Main page of Network Security Lab.

540

View publication statsView publication stats

https://www.researchgate.net/publication/232619336

