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Abstract 
    At the heart of almost every modern Network 
Intrusion Detection System (NIDS), there is a pattern 
matching engine (PME). As pattern matching is the 
most time consuming operation in NIDS, it is highly 
desired to reduce the pattern matching time of each 
packet or flow. This paper proposed a parallel pattern 
matching algorithm based on Aho-Corasick (AC) 
algorithm and an efficient load balance policy for it. 
The method is implemented on Intel’s IXP2850 
Network Processor (NP). Experimental results show 
that when using eight processors, the pattern 
matching time of each packet or flow can decrease to 
60.44%~14.42% of using only one processor. Based 
on the parallel algorithm, a PME utilizing parallel 
processing on three levels is proposed. Experimental 
results on IXP2850 show that the throughput speedup 
of pattern matching is 13.34~55.48 times. 
 
Keywords: NIDS, pattern matching, parallel 
processing, network processor 
 

1.0 Introduction 
    Network Intrusion Detection System 
(NIDS) are designed to identify attacks or 
intrusions against networks. As these threats can 

be invisible to firewalls, NIDS provides an 
additional layer of security and is being widely 
deployed in various network environments.  

At the heart of almost every modern NIDS, 
there is a PME (pattern matching engine). 
Essentially, the pattern matching algorithm 
compares the set of patterns in the rule set (also 
called signature database) to the payloads of the 
packets. Pattern matching is computationally 
intensive. The pattern matching routines in Snort, 
a famous open source lightweight NIDS [5], 
account for up to 70% of total execution time and 
80% of instructions executed on real traces [1].  

An efficient PME is crucial to NIDS. If the 
capacity of NIDS cannot matching the speed of 
network, a passive NIDS will drop packets and 
thus miss attacks, while an inline NIDS will 
create a bottleneck for network performance. On 
the other hand, as the number of potential threats 
and their associated signatures is expected to 
grow, the cost of pattern matching is likely to 
increase further. Therefore, the pattern matching 
algorithm needs to be highly efficient to keep up 
with the increasing volume of network traffic, as 
well as the increasing number of patterns. 

The Aho-Corasick (AC) algorithm proposed 
by A. Aho and M. Corasick [6] is the classic 
algorithm for searching multiple patterns 
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simultaneously. Its time complexity is O(n), 
where n is the length of the text which is 
compared with the patterns. This means that its 
time complexity is independent with the number 
of patterns in the rule set. This property makes it 
suitable for searching against a large set of rules.  

Network processor (NP) is a special-purpose, 
programmable hardware chip tailored to 
construct networking devices. It combines the 
low cost and flexibility of a general purpose 
processor with the speed and scalability of 
custom silicon (i.e. ASIC chips).  

This paper presents a parallel AC algorithm 
which can greatly decrease the pattern matching 
time of each packet or flow. It is implemented on 
Intel’s NP (IXP2850) and the experimental 
results show the benefit of utilizing parallel 
processing and the hardware characteristics of NP. 
The paper also presented the design of a load 
balance policy for the parallel AC algorithm and 
a strategy to increase the throughput of pattern 
matching engine. The effects on pattern matching 
algorithm of using multi-processors as well as 
multi-threads technology are also analyzed.  
    The remainder of this paper is organized as 
follows. First section 2 reviews pervious works, 
after which section 3 describes the new parallel 
PME and its implementation on IXP2850. 
Section 4 then presents experiments and 
performance analysis of the algorithm and PME. 
Finally, section 5 summarizes the contribution of 
this research and presents conclusion and future 
work.  

2. 0 Previous Works 
 The pattern matching problem (in NIDS it 
refers to string matching only) can be divided 
into two categories: single pattern matching 
algorithm and multiple pattern matching 
algorithm. The pattern matching algorithm can be 

described as: assume a string , 

and a finite set of pattern 

strings
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ordered set of characters from an alphabet A. The 
pattern matching problem involves locating and 
identifying the substring of D which is identical 

to ,  where 

, or to determine that D 

does not contain R. Here, a is the number of rules, 

m is the length of pattern string , s is the 

starting point of the matching substring, and 
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 BM algorithm (proposed by R. Boyer and J. 
Moore) [3] is the most well-known single pattern 
matching algorithm. The initial starting point is: 

0=s . Rj is compared with  from the 

rightmost of R

1... −+mss dd

j. BM algorithm utilizes two 
heuristics, bad character and good suffix, to 
reduce the number of comparisons (relative to 
brutal force pattern matching). The bad character 
heuristic works this way: when a mismatching 
character appears in Rj, Rj is shifted to right so 
that the mismatching character is aligned with the 
rightmost position at which the mismatching 
character appears in Rj. If the mismatching 
character dose not appears in Rj, Rj is shifted to 
the position that its leftmost character is one 
position past the mismatching character in D. The 
good suffixed heuristic is: when a mismatching 
occurs, there is a non-empty suffix that matches. 
Then Rj  is shifted to the next occurrence of the 
suffix in Rj. BM takes the far most shift caused 
by the two heuristics. R. Horspool [4] improved 
the BM algorithm with a simpler and more 

 



efficient implementation (called BMH algorithm) 
that uses only the bad-character heuristic. 

The AC algorithm is popular multiple pattern 
matching algorithm. It accepts all patterns in R to 
make up of a FSA (finite state automation) so 
that every prefix is represented by only one state, 
even if the prefix belongs to multiple patterns. 
The AC algorithm deals with the characters of D 
one by one and has proven linear performance to 
the length of D, regardless of the size of R.. 

Another widely used multiple pattern 
matching algorithm is the MWM algorithm 
designed by Wu and Manber[7]. The MWM 
algorithm uses bad character heuristic like the 
BM algorithm. But it utilizes two byte shift table. 
It also performs a hash on the two-byte prefix 
into a group of patterns. The MWM algorithm 
has shown its advantages to deal with large 
amounts of patterns efficiently. However, the 
performance of the MWM algorithm depends 
considerably on the length of the shortest pattern, 
because the maximum number of shifts equals to 
this value minus one.  
    G. Anagnostakis, E. P. Markatos, S. 
Antonatos, and M. Polychronakis proposed an 
exclusion-based pattern matching 

algorithm [8] based on the following 

observation: Suppose that one wants to check 
whether D contains R

xBE 2

j. If there is at least one 
character of Rj that is not contained in D, then Rj 

is not a substring of D. The algorithm 

first checks D for missing fixed size sub-strings 
of R

xBE 2

j. If all the sub-strings of Rj can be found in D, 
standard string matching algorithms, such as the 
BM algorithm, is used to determine whether 
actual matching are occur. When mismatches are 

by far more common than matches,  

could achieve a high performance.  

xBE 2

All the above described algorithms are 
implemented and ever used in Snort. 

3.0 Design and Implementation 
3.1 Terms used in this paper 

Input text T: the payload of one packet or 
the reassembled data of the flow of a packet 
stream. 

Fragment F: one snippet of T. 
Pattern P: one option field of NIDS rule, 

pattern is used to do string matching with T. 
Pattern matching engine PME: part of NIDS 

which performs pattern matching on T. 
3.2 Description of algorithm 
3.2.1 The parallel AC algorithm 

In order to decrease the pattern matching 
time of each T, multiple processor technology is 
utilized. processors are used to construct a 
PMC (pattern matching cluster). As shown by the 
flow chart in Figure 1, the procedure is: when 
one T is received, the load balance unit divides it 
evenly into h Fs, and signals the h PMUs (pattern 
matching unit) to process the h Fs in parallel. All 
PMUs run AC algorithm with the same pattern 
set. When pattern matching is over, the h PMUs 
will signal the load balance unit and transmit 
their results.  

h

It is obvious that the fragmentation of T 
could introduce false negative if we are not 
careful. For example, T is: “abcdefghij”, P is: 
“def”. 2=h , so T is divided into two Fs as 
follows: “abcde”, “fghij”. Both of the two 
substrings miss P and this causes a false negative. 
To avoid this problem, the algorithm carries out 

fragmentation as follows: Suppose ntttT ...21= , 

the length of the longest pattern is w. If one F 

ends with , the next F starts with . Thus 

no possible occurrence of a pattern will be 
missed by all Fs. 

kt 2+−wkt

 



3.2.2 Load balance policy 
    The aim of the load balance policy is to let 
the processing time of each PMU to be equal. 

The time complexity of AC algorithm is , n 

is the length of T. So the load balance policy used 
in this work is: let the length of each F is equal. 

)(nO

In other words, T is divided as follows: 

 
    The length of each F is calculated by 
equations (1): 
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    Where y is the length of each F. The  F 

is started with  and ended with 

, . 
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3.3 Description of PME 
In this work, parallel processing on three 

levels is utilized to improve the performance of 
NIDS PME., as shown in Figure 1. Firstly, AC 
algorithm is adopted to search all the patterns in 
the rule set simultaneously. Secondly, parallel AC 
algorithm employed on F level to decrease the 
latency of processing T. Thirdly, multi-PMC is 
utilized on T level to increase the throughput of 
PME. 

 
Figure 1. The flow chart of parallel PME 

3.4 Implementation on IXP2850 
Intel’s NP is a programmable chip tailored 

for network-specific applications. IXP2850 is the 
newest member of Intel IXP2XXX NP product 
line. It integrates a high-performance parallel 
processing design on a single chip for processing 
complex algorithms, deep packet inspection, 
traffic management and forwarding at wire speed. 
By combining a high-performance Intel XScale 
core with sixteen 32 bit independent 
multi-threaded MEs (microengine), IXP2850 
provides more than 23.1 giga-operations per 
second. The detail diagram of IXP2850 is shown 
in Figure 2 [9]. 

 
Figure 2. IXP2850 network processor [9] 

The implementation of the parallel PME 
proposed in this work is shown in Figure 3.  

 
Figure 3. Implementation on IXP2850 

We utilize h+1 MEs with each ME run f 
threads to construct f PMCs. The threads are 
numbered from 0 to f. The h+1 threads have the 
same thread number in different MEs make up of 
a PMC. For example, PMC0 is constituted by all 
the Thread0. Load balance unit is implemented 

 



on thread0 of load balance ME; every thread0 of 
ME1 to MEh implements one PMU. All the 
threads share memory structure of AC in SRAM.  

Furthermore, “defer tokens” characteristic of 
IXP2850 is utilized to improve the performance. 
Branch decision instruction in IXP2850 would 
cause one or more instructions in the execution 
pipeline to be aborted. By using “defer tokens”, 
one or more instructions that follow a branch 
decision instruction are allowed to execute before 
the branch takes effect. So the branch latency can 
be hidden if there are useful works to fill the 
wasted cycles after the branch instruction. With 
Intel’s SDK (software development kit), the 
deferred token can be inserted automatically by 
the assembler’s optimizer, or the programmer can 
do it manually [9]. 

4.0 Experiment and analysis 
The added computations induced by the 

parallel AC are: the load balance, 
synchronization communication and the overlap 
fractions of the neighboring fragments. The load 
balance algorithm is very simple and its 
computation time is short compared with the 
pattern matching algorithm. On the other hand, it 
is in pipeline with pattern matching; this can hide 
the load balance computation time. The 
synchronization communication is mainly the 
signal exchange between load balance unit and 
PMUs. It’s execution time is also very short. The 
main added burden is the overlap fractions of the 
neighboring fragments. 

Suppose the length of the input text is n. The 
length of the longest pattern is w. There are h 
PMUs in one PMC. The overlap fractions of all 

the fragments is: . The processing 

time of AC algorithm can be measured by the 
length of T. Ignore the time consumed on load 
balance; the processing time of the parallel AC 

algorithm can be represented as: 

)1()1( −⋅− wh
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Obviously the latency of processing each T 
decreases if tp < n, i.e. 
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On the other hand, if 1−< wn , the 
processing time will worsen, meaning the 
algorithm does not apply when the length of T is 
shorter than w-1. 

The speedup of parallelism on fragment 
level is: 
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We can find that the bigger n is, the bigger 
Sh is. This characteristic is very useful in NIDS, 
because we need to check the data flow in one 
session in some situations. In this scenario, n 
become very big. Therefore the speedup is high. 
When dealing with packets, according to the data 
in [8], the average lengths of different packet 
traces are all bigger than 300bytes. The length of 
longest pattern in snort is 37. So the pattern 
matching time will decrease in all the testing 
traces according to equation (3).  

Equation (5) can also be translated into: 

hn
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w

Sh
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So the bigger h is, the bigger Sh is. This 
means the pattern matching time decreases along 
with the increase of the number of PMU. 

We did experiments on Intel’s IXDP2850 
dual NPU platform. In the experiments the value 
of w is set to 41. The result is shown in Figure 4. 

 



The horizontal axes represent h (i.e. the number 

of the PMU). The vertical axes represent = 

1/S

1K

h and we let
12 −

=
w

nK . 

Figure 4 shows that the processing time 

decreases along with the increase of h or . The 

results validate our analysis above. When 

 and using eight PMUs, the processing 

time can be reduced to 60.44%. When 

2K

22 =K

502 =K  

and using eight PMUs, the processing time can 
be reduced to 14.42%. 

 
Figure 4. Performance of speedup vs. K2 and h 

Note that when  and ,  

increases a little bit. This is mainly caused by the 
synchronization communication. The 
synchronization time is increase along with the 
increase of PMUs. When n is small, the speedup 
of parallelism will decrease. 

22 =K 5≥h 1K

To analyze the effectiveness of parallelism 
on T level, we implemented multi-PMC with one 
ME. Each PMC deals with one T with the same 
length. All the PMCs use the same AC FSA in the 
SRAM. The result is shown in Figure5. The 
horizontal axes represent f (i.e. the number of the 

PMCs). The vertical axes represent = (the 

time of all f PMCs complete pattern matching) / 
(the time of running only one PMC). And we 

let

3K

5
12 =

−
=

w
nK . We can find that, increasing 

the number of PMCs almost has no effect on the 
processing time of each PMC. In other word, the 
time of using f PMC to processing f different 
“input text” with the same length n is almost 
equal to the time of running one PMC to 
processing an input text of length n. Therefore 
the throughput of PME can increase f times when 
using f PMCs.  

 
Figure 5. Performance of processing time vs. f 

There are two reasons for this. First, there 
are many I/O operations (mainly SRAM and 
DRAM accesses) in pattern matching algorithm. 
The processor must wait for the I/O operation to 
complete. Hence, there are many idle cycles. 
Second, in the MEs of IXP2850, each context has 
its own register set, Program Counter, and 
Context Specific Local Registers. This eliminates 
the need to move context specific information 
to/from memory and ME registers when doing 
context swap. So the contexts waitting for I/O to 
complete can be swapped out with almost no cost, 
and allows other context to do computation. 

Above all, the speedup of using all the three 
level parallelism is (using 8 PMUs and 8 PMCs): 

                  

48.55~24.138
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5.0 Conclusions and future work 
We have studied the performance of NIDS 

pattern matching algorithms, and presented the 
parallel AC algorithm. We implemented the 
parallel algorithm on NP and designed a simple 
and efficient load balance policy for it. Based on 
the parallel AC algorithm, a new NIDS PME 
utilizing parallel processing on three levels is 
proposed. 

Experimental results show that the 
processing time of the parallel AC algorithm 
decreases along with the increasing of h and 

ratio
1−w

n
. When using eight PMUs, the 

processing time decrease to 60.44% ~14.42%, 
reflecting speedup of throughput of PME for 
13.34~55.48 times when using eight PMUs and 
eight PMCs at the same time. 

Furthermore, our results also allow for some 
more general observations to be made on the 
design and analysis of parallel NIDS pattern 
matching algorithms and the application of NP in 
NIDS.  

Future work could include better load 
balance policy for parallel AC algorithm. 
Improve the performance of AC algorithm based 
on the characteristic of NP, such as increase the 
memory efficient. Design load balance policy for 
different pattern matching clusters. Apply 
network processor in other modules of NIDS. 
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