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ABSTRACT
Dozens of signature and anomaly based solutions have been pro-
posed to detect malicious activities in computer networks. How-
ever, the number of successful attacks are increasing every day. In
this paper, we developed a novel entropy based technique, called
Edmund, to detect and mitigate Network attacks. While analyzing
full payload network traffic was not recommended due to users’
privacy, Edmund used netflow data to detect abnormal behavior.

The experimental results showed that Edmundwas able to highly
accurate detect (around 95%) different application, transport, and
network layers attacks. It could identifymore than 100Kmalicious
flows raised by 1168 different attackers in our campus. Identify-
ing the attackers, is a great feature, which enables the network
administrators to mitigate DDoS effects during the attack time.
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1 INTRODUCTION
Internet bandwidth was improved dramatically, during these last
years, in which wider range of online services like P2P file shar-
ing, Voice Over IP (VOIP), e-commerce, internet banking, are used
every day. This issue raised a new challenge in network environ-
ment.

The number of abnormal network traffic raised drastically. Sev-
eral illegal activities such as worm propagation, Denial of Service
(DoS) Attack, Scan, Botnets, and Flooding Attacks are performed
every day. In recent decades, due to botnets and numerous open
source attack tools1, attackers launch attacks especially massive
Distributed DoS (DDoS), easily.

1Such as Low Orbit Ion Canon (LOIC), XOIC, DDoSIM, DAVOSET, PyLoris, and so
on.
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Each successful attack causes huge damage on any enterprises.
More than 20% of companies have seen at least one successful
DDoS attack against their network, in which a complete DDoS
causes 444K USD financial loss on the average [9]. Akamai in
[1] reported that the most attractive area for the attackers is gam-
ing (around 80%). There are other considerable reports about the
power and impact of network attacks in the world [15, 21, 10].

Generally, network attack detection techniques are categorized
into “Signature based” and “Anomally based” detection algorithms.
Signature based techniques use a set of pre-defined rules to detect
network attacks. In this approach, the network traffic is compared
with the rules, so that in case of finding a match, the traffic is
considered as malicious [5, 2, 11, 17, 7]. Although, signature based
techniques have no false positive, the false negative rate is directly
related to its signature database. Namely, the richer the ruleset,
the smaller the false negative rate. As a result, it is not possible to
detect zero-day attacks by using signature based methods.

Anomaly based detection is another approach to find malicious
traffic, in which network and/or host level features are extracted
to determine abnormal behavior with a controlled false positive
and false negative rates. An example to abnormal behavior is a
sudden jump in the rate of packets, which can be caused by worm
propagation.

The main challenge of anomaly based detection systems is to
minimize false positive and false negative rates in different situa-
tions. Network behavior is varying during time. In addition, dif-
ferent networks serve unalike services. Hence, network statistics
are changing inconsistently, and proposed anomaly based detec-
tion system needs to deal with the changes.

As a practical solution, we proposed a novel technique called
Edmund to detect and mitigate various kinds of network attacks
using netflow data as soon as possible. Edmund computes the en-
tropy values of Source Network Address, Destination IP Address,
Source Port Number, Destination Port Number, TCP flag, Num-
ber of Packets per Flow, amd Flow Size. Higher entropy value
means less related flows. The extracted values are used to detect
malicious flows. Entropy has a great advantage to detect malicous
behavior, in which, in the normal case, the entropy values of differ-
ent network features change smoothly. While, in the attack time,
a significant change is seen in the entropy value/s of one or more
features [19].

The proposed method consists of learning and detection phases.
In the learning phase the system is trained by normal traffic and
the detection phase, the trained model is used to detect abnormal
traffic. All the malicious are filtered automatically, while those
flows considered as normal are used to refine the trained model.
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As a result, the learned model is changing during time according
to the network behavior. This is the main contribution of Edmund
model.

2 RELATEDWORK
There has been several entropy based solutions to detect abnormal
behavior in computer networks. Zhang et al. in [22] proposed an
entropy based method aiming to avoid false positive and false neg-
ative. Although, the proposed method provided accurate results,
their method needed more resources to analyze traffic and was
very time consuming.

Mehdi et al. in [13] used maximum entropy estimation to ob-
serve benign traffic distribution and then, utilized it as a baseline
to detect network attacks. However, the authors focused on low
rate bandwidth traffic like home environment to test their method.
Ma and Chen [12] employed Lyapunov exponent and computed
the entropy values of source and destination IP addresses in differ-
ent time intervals to detect DDoS attacks, with a low false positive
rate.

In [16] Terzi et al. proposed an unsupervised learning detection
system based on analyzing netflow data to detect UDP flooding at-
tacks. Vidal et al. in [18] also, proposed an entropy based model
called AIS to predict anomalies, which provides the ability to de-
tect flooding attacks. Although, AIS achieved reasonable results
in simulated environment, the scenarios of real world may affect
the results.

David and Thomas in [4] focused on decreasing the overhead
of detection and proposed a fast entropy approach to detect DDoS
attacks. Flow based analysis as well as fast entropy approach re-
duced the detection time, significantly, while having reasonable
accuracy.

Jun et al. [8] proposed a DDoS detection technique using both
entropy of packet header fields and traffic volume, in which, at the
step, they used the traffic volume information to detect suspicious
behavior. Then, they further analyzed suspicious traffics using the
entropy of packet header fields to identify attacks.

In [6], Giotis et al. proposed an entropy based anomaly detec-
tion technique. They extracted header fields including source/des-
tination MAC addresses and 5-tuples. Then, they detected net-
work anomalies based on entropy of the distribution value of each
field. They labeled these anomalies as DDoS attack or worm prop-
agation. In addition, Rui Wang et al. in [20] employed entropy
based technique in SDN to detect DDoS attacks. The proposed so-
lution runs over OpenFlow to reduce the heavy communication
between controller and switches, and detect DDoS attacks locally.
However, identification of attackers during the attack time pro-
vides a powerful mechanism to mitigate the attack costs effec-
tively. As a result, Edmund method was proposed in this paper
as an entropy based DDoS detection engine to find and filter ma-
licious flows during the attack time, automatically.

3 EDMUND METHOD
This section is aimed to describe the proposed novel technique (Ed-
mund) in detail. Edmund uses a machine learning model to detect
network attacks. It includes “learning” and “detection” phases, in

which, at first, the system is trained by normal traffic to gener-
ate expected behavior. Then, in the detection phase, Edmund ana-
lyzes incoming flows and assign them benign or malicious labels,
according to the trained model. The overall procedure of Edmund
is described by Figure 1.
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Figure 1: Edmund Architecture.

As illustrated in Figure 1, our proposed model consists of four
important modules: “Feature Extraction”, “Learning”, “Anomaly
Check” and “Malicious Flow Detection”. The rest of this section
describes each module in detail.

3.1 Feature Extraction Module
Extracting statistical features from netflow data is the first step in
both learning and detection phases. We used Shannon’s Entropy
proposed in [14] as it provides a better insight compared to tradi-
tional anomaly detection systems.

Definition 3.1. Let X = {x1,x2, ...,xn } be the set of qualitative
variable X and P = {p1,p2, ...,pn }, be their probabilities. The
Shannon’s Entropy of given set is computed as follows.

H(X ) = −
n∑

i=1

P(xi ) logn P(xi ) (1)

For each time interval, Edmund computes the entropy values
of seven features containing source network address, destination
IP address, source and destination port numbers, TCP flag, num-
ber of packets per flow, and flow size. Higher entropy value means
less related flows. In the learning phase, Edmund uses these seven
entropy values to build expected behavior, while in the detection
phase, these values reveals malicious activities. In fact, the en-
tropy values should be close to the expected results. However, in
the attack time, there are several reasons to have significantly less
(or sometimes more) entropy values. The attack can be performed
against a single victim, which increases the number of flows with
the same destination IP address. Moreover, DDoS can be launched
by a botnet that creates a huge number of flows with the same
“number of packets” or “flow size” features. Another situation is
SYN Flood attack, which netflows’ TCP flag are the same. As a
result, the entropy values goes down incredibly.
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3.2 Modeling Module
This module is responsible to predict the expected result by com-
puting the “average” and “standard deviation” values of each indi-
vidual feature during time, incrementally.

Definition 3.2. Let Fn+1 = { f1n+1 , f2n+1 , ..., f7n+1 } explains
the entropy values of extracted seven features of the n+1th time
interval. Also,Mn = {m1n ,m2n , ...,m7n } andΣn = {σ1n ,σ2n , ...,σ7n },
be the set of average and standard deviation of extracted features
based on the first n time intervals, respectively. The average and
standard deviation values of n + 1th interval is computed incre-
mentally, by the following equations.

min+1 =
(min × n) + fin+1

n + 1
1 ≤ i ≤ 7 (2)

σin+1 =

√
(
n − 1
n
× σ2

in
) +

(fin+1 − σ2
in
)2

n + 1
1 ≤ i ≤ 7 (3)

The computed average and standard deviation values of the fea-
tures are used to calculate “Expected Range” as follows.

Definition 3.3. Let Mn = {m1n ,m2n , ...,m7n } and
Σn = {σ1n ,σ2n , ...,σ7n }, be the set of average and standard devia-
tion of the features based on the first n time intervals, respectively.
The Expected Range of seven extracted features,
ERn = {ER1n ,ER2n , ...,ER7n }, is computed as below:

ERin = [min +− (α × σin )] 1 ≤ i ≤ 7 (4)

whereα is configured tomanage system false positive and false neg-
ative rates.

3.3 Anomaly Check Module
The next step is to check the feature values with the computed ex-
pected results, in which the entropy values are checked by their
corresponding expected range. It is important to note that the net-
work behavior is changing during time. Hence, when the system
determines that the input interval is normal, the learned model is
updated. The whole procedure is described in Algorithm 1.

Algorithm 1: Anomaly Check Module
input : F as feature set and ER as expected range
output : Label of seven extracter features

1 foreach feature in F do
2 i f ( feature i s in ERf eature )
3 label [ feature ] ←− ”normal”
4 else
5 label [ feature ] ←− ”malicious”
6 return label

It is noteworthy that the time interval is considered as normal
when all its seven features are placed in their corresponding ex-
pected range.

3.4 Malicious Flow Detection
As described before, more similar behavior, caused by running dis-
tributed attacks, leads to lower entropy value. As a result, one
can detect similar (malicious) records by grouping all flows, based
on the out-of-range feature(s). In addition to detecting abnormal
flows, thismodule assignsmalicious probability to each flow based

on the number of similar features. The more similar the features,
the higher probability of the malicious flow.

As an example assume that a SYN Flooding attack using IP
Spoofing technique is happening in the network, in which, so
many flows with the same destination IP address and port num-
ber, TCP Flag, number of packets, and flow size are seen in the
netflow data. As a result, the entropy values of these five features
go down significantly. Edmund considers this time interval as ma-
licious. Then it tries to detect malicious flows by grouping them ac-
cording to these five features. Edmund reports all malicious flows
according to the rules provided in Figure 2, in which the malicious
probability is 5

7 × 100 = 71.4%.

Detected Attack Types
Network Layer

Port Scan … number of flows with the same
dst_ip and different dst_port
is high

Range Scan … number of flows with the same
dst_port and different dst_ip
is high

Transport Layer
TCP

Land … src_ip = dst_ip and
src_port = dst_port

TCP Flooding … packet_count is large and
flow_size is large

SYN Flood … number of SYN packets is
large

UDP
Ping Pong … dst_port = reflecting port and

src_port = reflecting port
Fraggle … dst_port = reflecting port and

dst_ip = broadcast
UDP Flooding … packet_count is large and

flow_size is large
ICMP

Smurf … echo request and
dst_ip = broadcast

Ping of Death … flow_size/packet_count is too
high

ICMP Flooding … packet_count is large and
flow_size is large

Application Layer
TCP Anomalies … FTP, HTTP, Telnet,

SMTP, SSH, DNS, HTTPS,
POP3, NTP, RPC, IRC,
IMAP, NetBIOS, MySQL,
RDP, MSSQLServer, Ora-
cle, and SIP Anomaly

UDP Anomalies … DNS, IRC, IMAP, RPC, RDP,
and SIP Anomaly

Figure 2: DDoS Attack Type Detection Rules.

4 EVALUATION
In this section, the Edmund method was evaluated with the help
of two different netflow data as below.
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(1) Two days real network traffic of the campus, captured
from 2017-07-10 00:00:00 to 2017-07-11 23:59:59. The to-
tal number of flows were around 1.1 million.

(2) The first day of CTU-13 botnet traffic dataset, captured in
CTU university in 2011 [3]. The dataset have a large real
botnet traffic2 mixed with normal and background data,
including about 2.8 million flows, which around 41K are
malicious.

Apache Spark framework was used to create and analyze the data
using the Edmund model. The evaluation part served three pur-
poses:

(1) To highlight the important need to update the model dur-
ing detection phase.

(2) To show the usage of malicious flow detection module,
which tries to detect the attackers, so that in the attack
time, they can be filtered to mitigate the attack effects.

(3) To observe the accuracy of Edmund.

4.1 System Learning
As described in the previous section, system learning plays the
most important role in the accuracy of the model. Also, the com-
puted entropy value of the features should be around one. Figure
3 shows the entropy values of the features during the learning
phase.
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Figure 3: The Entropy values during the Learning Phase.

We computed the expected range of each feature, according to
the average and standard deviation of their entropy values during
the learning phase.

4.2 Malicious Behavior Detection
Edmund model used the expected range to distinguish abnormal
traffic from normal one. Figure 4 illustrates the result of detection
during our experience, while the expected range’s lower and up-
per bounds are highlighted by red and green colors respectively.
It is worth mentioning that, the network behavior is changing dur-
ing time, which the learned model was updated during detection
phase, in case of considering the interval as normal. Figure 4 high-
lights this important requirement as well.

As depicted in Figure 4, most of the time intervals were normal
because their entropy values were in the expected range (around
2Neris Botnet

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Src Port

Dst IP

Dst Port

TCP Flag

# Packets

expacted upper
evatopy
expacted lower

0

0.2

0.4

0.6

0.8

1

D
a
y
1

-0
0

D
a
y
2

-2
4

D
a
y
1

-1
2

D
a
y
2

-0
0

D
a
y
2

-1
2

D
a
y
1

-0
6

D
a
y
1

-1
8

D
a
y
2

-0
6

D
a
y
2

-1
8

Src Net

Flow Size

Figure 4: The Result of Detection during our Experience

%89). However, the entropy values of some intervals were signif-
icantly lower than the starvation range. An example can be the
time interval of the second day, 03:57 A.M. The entropy values of
“Source Network”, “Source Port”, “destination IP”, and “TCP Flags”
were close to 0.05which were magnificently lower than the lower
boundary of this range. In fact, most captured traffic during this
time interval was sent by some attackers via the same network, us-
ing one specific source port, and against one victim server. Table
1 summarizes the results of this module.

Table 1: Summary of Malicious Intervals.

Intervals
Item Total Normal Malicious

Quantity 2880 2563 317

4.3 Malicious Flow Detection
The next step is to deeply analyzed malicious time intervals to ex-
tract attack flows, which causes the entropy values of the features
to become lower than the expected/starvation range. This proce-
dure is done in the malicious flow detection module. The result is
summarized in Table 2.

As highlighted in Table 2, the number of captured flows during
these two days was 1108156, while more than 120Kwere labeled as
malicious, and just a bit lower than one million were normal. The
result revealed that 1168 attackers tried to send around 673 MB
data to 42 victims during the test time using various techniques.
The detected attack types were categorized into network layer and
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Table 2: Summary of Detecting Malicious Flows.

Number of Flows
Total 1108156

Malicious 121470
Normal 986686

Transfered Data
(Byte)

Total 40.83 GB
Malicious 673.17 MB
Normal 40.16 GB

Number of
Transfered Packets

Total 57657933
Malicious 1839563
Normal 55818370

Number of Attackers 1168
Number of Victims 42

application layer classes. Network layer contained DDoS Flood-
ing, Port and Range Scan, and Slowloris, while in the application
layer, different attacks to DBMSes (like Oracle, MSSQLServer, and
MySQL), mail servers (SMTP, POP3, IMAP), and other protocols
(HTTP, FTP, SSH, DNS, Telnet, SIP, NetBIOS, RPC, and RDP) were
detected. Figures 5 and 6 compare the number of network layer
and application layer attacks, and different attack types, respec-
tively.

Network Layer Transport Layer Application Layer
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Figure 5: The Comparison of Network, Transport, and Ap-
plication Layers Attacks.

4.4 Observing the Accuracy
The CTU-13 botnet traffic dataset was used to observe the accu-
racy of Edmund. The dataset contains around 2.8 million labeled
netflowversion 5 records including normal, botnet, and background
labels. The analysis result is provided in Table 3.

According to the table, around 98.55% of the total traffic were
normal, while the rest of 1.45% malicious flows generated by just
one attacker. Edmund could detect more than 99.72% of malicious
flows. However, it marked around 5% normal traffic as malicious.
Different measurements of the experiment including False Posi-
tive and Negative Rates, Accuracy, Precision, Recall, and F_Score
are computed as described in Table 4.

(a) The Number of Attacks.

(b) The Percentage of Attacks.

Figure 6: The Comparison of Different Attack Types.

Table 3: Analysis Result of CTU-13 Dataset

(a) Flow

Real Data
Normal Malicious Total

Ed
m
un

d Normal 2637565 116 2637681
Malicious 143124 40831 183955
Total 2780689 40947 2821636

(b) Source IP Address

Real Data
Benign Attacker Total

Ed
m
un

d Benign 531254 0 531254
Attacker 10667 1 10668
Total 541921 1 541922

FPR =
FP

FP +TN
FNR =

FN

FN +TP

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Accuracy =
TP +TN

All Data
F_Score = 2 × Precision × Recall

Precision + Recall
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Table 4: Edmund False Positive and Negative Rates, Accu-
racy, Precision, Recall, and F_Score.

FPR FNR Accuracy Precision Recall F_score
Flow 0.003 0.051 0.949 0.999 0.948 0.974

Source IP 0 0.02 0.98 1 0.98 0.99

5 CONCLUSION
This paper proposed a novel entropy based DDoS detection and
mitigation engine using netflow data, called Edmund, to detect
and mitigate DDoS attacks. It was not practical to analyze the
whole network traffic including packet headers and payload due to
several reasons, including user privacy, encrypted data, and huge
analysis cost. Hence, Edmund chose netflow to detect abnormal
behavior in the network traffic.

The experimental results show that Edmund provides a high
accurate framework to do online attack detection. It also detects
attackers during the attack time. Therefore, the gateway can fil-
ter incoming packets sent by detected attackers early at network
entry point.

Although network attacksmake the traffic abnormal, some other
reasons such as flash crowd can change flow statistics, as well. It is
important to distinguish between attacks and flash crowd, so that
only the attackers are filtered during the attack. In the future, we
plan to study different scenarios that change the flow behavior in
order to find a better solution to handle these benign traffics.
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