

Abstract—Traditional NAC system in enterprise network is in

coarse granularity (e.g. IP or MAC address) and lack of
flexibility. Recently the demand in tight control of the enterprise
network to defense the misuse and security issues become more
and more urgent. Based on the TCG TNC standard, an
application level network access control mechanism is proposed
and implemented. With TNC client/server model in hand, a
client is designed to enhance TNC client with the function of host
flow controller (HFC), and intercepts each application network
access request(ANAR) and transfer it to PDP server to authorize
the access request. When a sensor (i.e. intrusion detection
system) detects any malicious traffic, host flow controller and
network flow controller can identify the application that origins
this traffic by querying Metadata Access Point (MAP) server
and block this application’s network access. A prototype system
is implemented to demonstrate the design and can be used to
defense the anomaly network behaviors. The prototype system
demonstrates that the hosts, switches, firewalls and IDS can
work together to detect, diagnose and protect enterprise
network from the malicious applications attack initiated inside
or outside of an enterprise network, quarantine unhealthy hosts
and make the enterprise network more reliable and trustworthy.

Index Terms—Network Security, Access Control, Trusted

Network Connect, Application Level Access Control.

I. INTRODUCTION
sers can access enterprise networks from anywhere in the
world at any time, via kinds of access technologies and

devices running any operating systems, operating
environments, and applications. That has made network
border increasingly blurred, and brought great difficulties on
the management of enterprise networks. What’s more, as the
rapid development of Internet, more and more network
applications emerge every day, and people install variety of
applications on their computers, most of which have not been
audited, so, Trojans, viruses, malicious codes and the
backdoor are likely hidden in these applications. A survey of
security professionals conducted by CSI/FBI shows that half of
the attacks on enterprise networks start from inside [1].

Traditionally, network access systems use the
username/password mechanism or X.509 certificate to
authenticate users and let the corresponding IP or MAC traffic
pass through. In order to ensure that each computer in the
network is healthy, NAC technology considers not only the
user’s identity but also the health status of endpoint devices.

This work is supported by Natural Science Foundation of China No.

90718040, National High-Tech Program No.2007AA01Z468, Hosun Tech.

But this scheme still can’t restrain Worms, Trojans and other
malicious programs from spreading in enterprise network, and
can’t restrict P2P applications, E-games and online videos.

This paper presents an application level network access
control mechanism based on TNC architecture for enterprise
network and implements a prototype system. The system
intercepts each application network access request (ANAR)
through host flow controller, authenticates and authorizes
these network access requests through enhanced PDP, reports
these requests information to MAP server, controls these
network accesses through host flow controller and network
flow controller, inspects communication of applications
through network sensors.

This paper is organized as follows: Section 1 introduces the
research background and application scenarios. Section 2
presents the basic TNC technology which is the foundation of
TNC system. Section 3 explores the system framework and
components, and also describes the prototype implementation,
and the application access procedure in detail. Finally, the
section 4 concludes the paper.

II. TNC OVERVIEW

AR PEP

Switch/
Firewall/

VPN Gateway

VerifiersVerifiers
CollectorCollector

Integrity
Measurement

Collectors

Integrity
Measurement

Verifiers

IF-IMC IF-IMV

TNC
Client

Network
Access

Requestor Policy
Enforcement Point

Network Access
Authority

TNC
Server

IF-TNCCS

PDP

IF-M

In
te

g
ri

ty
M

e
a
su

re
m

e
n
t

L
a
ye

r

In
te

g
ri

ty
E

va
lu

a
ti
o

n
L

a
ye

r

N
e
tw

o
rk

A
cc

e
ss

L
a
ye

r

IF-T

IF-PEP

Non-edge
Policy

Enforcement
Points

Flow Controllers,
Sensors, etc.

Metadata
Access Point

IF-MAP

IF-MAP

MAP

VerifiersVerifiers
Flow Controllers,

Sensors, etc.

IF-MAP

IF-MAP

IF-MAP
Supplicant/

VPN Client, etc.

Edge Switch/
Access Firewall/
VPN Gateway

AAA Server IF-MAP Server IDS, Interior
Firewalls, etc

Figure 1. The TNC Architecture

TNC is an open standard network access control
architecture, which is defined and promoted by Trusted
Computing Group (TCG) [2-4] (See Figure 1). TNC defines
entities and several standard interfaces between components,
indicated by arrowhead lines in the architecture diagram. The
architecture, as specified in [4], consists of Access Requestor
(AR), and the Policy Decision Point (PDP). The optional
entities are the Policy Enforcement Point (PEP), the Metadata
Access Point (MAP), and Flow Controllers and Sensors.
Interfaces in the TNC architecture are included as follows:
Integrity Measurement Collector Interface (IF-IMC[5]),
Integrity Measurement Verifier Interface (IF-IMV[6]), TNC
Client-Server Interface (IF-TNCCS[7]), Vendor-Specific

Application Level Network Access Control System Based on
TNC Architecture for Enterprise Network

Zhen Chen, Fa-Chao Deng, An-An Luo, Xin Jiang, Guo-Dong Li, Run-hua Zhang, Chuang Lin
Research Institute of Information Technology

Department of Automation and Computer Science & Technologies
Tsinghua National Laboratory for Information Science and Technology (TNList)

Tsinghua University, Beijing 100084, China

U

IMC-IMV Messages (IF-M[8]), Network Authorization
Transport Protocol (IF-T[9]), Platform Trust Services
Interface (IF-PTS[10]), Policy Enforcement Point Interface
(IF-PEP[11]) and Metadata Access Protocol (IF-MAP[12]).

III. SYSTEM PROTOTYPES
3.1 Application Access Control Requirements
Best to our knowledge, there are no application level access

controls using current TNC architecture. In current TNC
specification [4], PDP authenticates user and hosts for
network access control based on identification and integrity
report. After the PDP’s decision and authorization, the access
granularity is quite coarse, such as L2 on-off access control
based on 802.1x, while more and more application–level
network access control require a more fine granularity in
network access control from TNC architecture.

IMC
 (Others)

TNC Client

Network
Access

Requestor

Network
Access

Authority

TNC Server

AAVIMV
(Others)

Applications

Metadata
Access
Point

802.1x
Switch

HFC

Flow
Controller

Sensors

AR Network-based
PEP PDP MAPHFC Network-based

PEP

XACML

IF-M

IF-TNCCS

IF-T

IF-PEP

IF-MAP

IF-MAP

IF-MAP

IF-MAP

IF-MAP

IF-MAP

IF-IMVIF-IMC

Figure 2. System Framework

 Capture of application network access request

In order to control the network accesses of applications, we
have to capture the network access request first. There are
several ways to capture the request, but no more than the
following two means: one is capturing the request at the
endpoint, which needs to install agent software, such as host
firewall software; the other is capturing the request at network
gateway, which needs protocol recognition technology. The
second mean is more difficult to implement, and what’s more,
the effect is always not good enough. On the contrary, the first
mean is easier to implement, but additional agent software is
needed. Generally, agent software is also needed by TNC
system, which can be extended with the help of interface of
IF-IMC. And for enterprise network, it is feasible to ask every
employee to install a agent software in their computers.

 Authentication and authorization of application network
access request

 After we capture the network access request of applications,
we also need a mechanism to check the validity of this request,
i.e., determining whether this request is compliant with
network administrator’s policies. This process is called
authentication. After that we need another mechanism to
authorize the request. We hope these authentication and
authorization mechanisms must be standard, widely accepted,
and suitable for current systems.

 Application level network access control

After authenticate the application access request (AAR), we
need a scheme to control the application access in a host. Such
control scheme can be implemented in host or in gateway. The
control scheme will became easier to be deployed in host, e.g.
most PC firewall can control the application’s network access
easily.

To achieve the goal of application-level access control, we
need to deploy a host flow controller (HFC) in host to intercept
the applications access request (AAR), extract AAR’s detailed
info, and generate a XACML (eXtensible Access Control
Mark Language)[13] access request to PDP. This AAR is
evaluated by PDP’s XACML policy evaluation engine based
on the access policy. After evaluation, PDP sends back a
XACML response to HFC of the host. When the HFC received
the corresponding XACML responses from PDP, it will
deploy the corresponding policy (allow or deny rule) for this
application.

3.2 System Framework
According to requirements proposed above, we design the

system framework and the key components wherein. The oval
block is the PEP, and there are three sub-components of PEP,
i.e., HFC, 802.1x Switch, Network Flow Controller.

 TNC Entities

Existed entities in TNC architecture are in the gray blocks
in Figure 2.

 Host Flow Controller (HFC)

HFC is deployed in host, similar to host firewall, but
enhanced with TNC-compatible PEP capabilities. HFC
intercepts every application access request (AAR), and
controls the application network access on-off based on PDP’s
decision. The HFC also consists of a subcomponent as IMC in
TNC architecture, and interacts with corresponding IMV
module in PDP which is shown in Figure 3.

XACML
Requestor

PEP-HFC

Application

XACML
Converter XACML

ConverterXACML
Policy

Evaluation
Engine

Policy-AAV

Application Info
Decision

HFC AAV

Figure 3. Inner structure of HFC and AAV.

 Application Access Verifier (AAV)

An IMV is customed for HFC’s IMC functionality. The
application’s access policy and evaluation procedure engine
are all implemented in this module.
 3.3 XACML based IMC-IMV Scheme for Application Level
Access Control

3.3.1 The eXtensible Access Control Markup Language -
XACML

XACML which is designed to support the needs of most
authorization systems, is a general purpose policy system. At
its core, the syntax for a policy language and the semantics for
processing those policies are defined by XACML. There are
also semantics for determining applicability of policies to
request, and a request and response format to query the policy
system. The later represent a standard interface, between a
PDP that presents standard behavior when processing policy
and a PEP that issues requests and handles responses.
3.3.2 Application Level Access Control on XACML[14]

This use case explores the possibility of applying XACML
policy for verifying the given Application Access Request
against PDP, and demonstrates how XACML policy engine
generates verification results (see Figure 4). XACML can
return “ VALID”, “INVALID”, or “UNVERIFIED”
according to the verification criteria.

<AARequest>
…
 <SnapshotCollection>
 <Values>
 szApplication , IE, etc.
 </Values>
 </SnapshotCollection>

 <CompositeHash>
 IE, etc.
 </Compositehash>

 <PcrValue>
 IE
 </PcrValue>

</AARequest>

<Request>
 <ResourceContent>
 <iwg:AARequest>

<iwg:Component>
 <iwg:Id> A
 <iwg:Hash>
111
 </
iwg:Component>
 </iwg:AARequest>
 </ResourceContent>
</Request>

<Policy
PolicyId=“P1”>
 <Rule
effect=“Permit”>

 <Condition>

 <Obligation>
</Policy>

<PDP>

 <Values>
 szApplication , IE,
etc.
 </Values>
 <CompositeHash>
 IE, etc.
 </CompositeHash>

</PDP>

<PDP>

 <Values>
 szApplication , IE,
etc.
 </Values>
 <CompositeHash>
 IE, etc.
 </CompositeHash>

</PDP>

“VALID”
“INVALID”
“UNVERIFIED”
 with
policy / rule IDs
parent component ID

<VerifyAARequet>
 VALID
 INVALID
 UNVERIFIED
</VerifyAARequest>

AARequest to XACML
Converter

PDP to XACML
Converter

XACML Policy
Evaluation Engine

Decision to VeriAARequest
Converter

Application Access Request（AARequest）

XACML Request Context

Verification Results

XACML Response Context

XACML Policy

PDP

Decision

input

XACML

Figure 4. XACML-based Validation Framework

Application HFC
TNC

Client
802.1x
Switch

TNC
Server

AAV
MAP

Server

Identity

Request health status

Response health status

result

result
Info of

application request

Capture
application

access request
XACML Request(protocol, port, path, hash value)

Info of
application request

XACML Response(permit or deny)

IF-IMC EAPOL IF-PEP

EAP-TNC

IF-IMV

IF-MAP

XACML

Flow
Contorller

IF-MAP

Figure 5. Message Flow diagram

3.4 Application Level Access Control Procedure

Message flow in Application level Network Access Control
is divided into two stages: the first is the stage of
authentication and authorization when hosts request for a
network connection, and the second which is called
AAC(Application Access Control) is the stage of
authentication and authorization when applications request to
access network. And the whole messages exchange is shown
in Figure 5.

TNC stage message flow:

(1) User connects his computer terminal to the switch with the
functionality of 802.1x.
(2) User supplies his user identity information (EAP-MD5 or
WAP-TLS), and then requests for authentication initiatively.
Before authentication, no packages but packages for EAPOL
can pass because of the mechanism of 802.1x. The
representative authentication flow in TNC as follows:

a) Switch sends the authentication information from AR
to PDP server, and PDP server authenticates the
user’s identity.

b) After User Authentication succeeded, PDP publish
user identity information, role information and
related request information to MAP Server, and
requests AR to validate the machine’s healthy state
information, such as the name, version number and
mend condition of AR’s operation system, name,
version number, run state and virus base state of
Anti-virus software, run state of HFC.

c) AR extracts the local host’s healthy state information
according to corresponding IMC, packs the
information into message accord with TNC and
sends it to PDP.

d) PDP authenticates AR’s healthy state information,
and makes corresponding decision according to
healthy policy. PDP possibly makes the final
decision after several handshakes. Decisions maybe
permit user to access, maybe deny to access and
maybe permit to access to certain VLAN. PDP will
supplies mend policy for AR that is not accord with
policy. Besides, PDP need to publish AR’s healthy
information to MAP Server.

e) Switch transmits the decision made by PDP to AR,
and takes corresponding actions according to the
decision, such as opens up or closes the
corresponding port and comes under certain VLAN.

AAC stage message flow

 (1) When certain application (such as IE7 browser) triggers
a network attempt, PEP-HFC module of HFC captures the
application’s access request. HFC produces outline
information of network access attribute (includes the type and
port of protocol, application’s path, application’s
characteristic and so on) about this access request, and
converts the information into message based on XACML
description by the XACML Converter inner HFC and then
send it to PDP.

 (2) The message is passed TNCS module of PDP to AAV

for authentication. Meanwhile, PDP publish the network
access authentication information to MAP Server. Flow
Controller of boundary obtains the information from MAP
Server and makes policy for policy consistent with host.

If the application is permitted to access network after
authentication, it not only can access inner network of
enterprise, but also pass Flow Controller all right and access
outer network or sensitive network of enterprise. If the
application is prohibited to access network after
authentication, it can not access network because of restrict of
HFC, and it still cannot get out of the control from Flow
Controller even if it can bypss the HFC’s restrict by certain
measures. Therefore, it effectively protects the enterprise’s
sensitive network resources, prevents the enterprise’s
confidential information from releasing, and limits the use of
some network application.

If AR is prohibits to access network after authentication, the
corresponding port of switch is closed and any network access
request from the host’s any program is invalidate, and the
AAC stage is denied. However, AAC stage is taken when
AR’s application triggers a network connection attempt if AR
is permit to access network after authentication.

3.5 System Implementation
3.5.1 Client Program

a) TNC Client (TNCC)
The client is TNC-compliant and running on Windows

Platform, i.e., Windows XP and Windows Vista. We port
TNC@FHH (for Linux) to windows platform because the
windows platform is more popular. According to TNC
specifications, the client program is organized in four layers:
GUI, IML, IEL and NAL. The GUI is shown as Figure 6.

Figure 6. TNC Client GUI

b) Host Flow Controller
The host flow controller is complemented both in the kernel

and application level. When setup the connection, the
controller downloads the kernel filter rules from PDP, which
is encapsulated by XACML through the TNC Client. When an
application intends to access the network, the controller will
capture the information about the application such as
attributes of the application, then encapsulate them in
XACML, at last send the encapsulation to PDP through
TNCC.

The host flow controller is composed of three modules:
report module, application level filter module and kernel level
filter module.

The report module provides interaction between PDP and
the flow controller, such as downloading the filter rules from
PDP. It is also used for communicating with application level
filter module and kernel level filter module. Its work flow is
like this: downloading the kernel filter rules from PDP and
transfer those to kernel level filter module when the
connection is set up, sending the request to PDP and receiving
the decision from PDP when an application attends to visit the
network.

Application level filter module is used to capture the
invocations of Winsock[15]. It checks the rights of each
application that intends to access network with the application
rules which are dynamically obtained from PDP through
report module. It is built into DLL (Dynamically Link Library)
and installed in the directory of Winsock. All the applications
have to invocate the DLL service provider, so it can capture all
the invocations of Winsock.

Figure 7. NAR

Kernel level filter module is a NDIS intermediate driver

(IM driver). It deploys the kernel filter rules from report
module that obtained from PDP when connection is set up.
Intermediate driver between protocol driver and miniport
driver can capture and filter all the packets. We develop the
program on the basis of the Passthru which is an sample of IM
driver in Windows DDK[16]. The report module
communicates with PDP, fetches the application filter rules
and sets application rules which are used to filter the
application requests. DLL modules send the status of the
network and the requests to report module. The report module
sets the kernel filter rules through I/O control codes.

Figure 8. IEL.

Report
Module

SYS Module

DLL ModuleDLL ModuleDLL module

Application
1 connectting
the network

Send Request

Set App Rule

 NIC NIC NIC

Kernel Mode
User Mode

Application
3 connectting
the network

Application
2 connectting
the network

IOCTL

IMC flow
controllor

Load SYS Rule

App Visit Request

App Visit Decision

TNCC

Host Flow Controller

Figure 9. The components in HFC implementation.

From the Figure 8, it is more reliable that each application
intending to access network will be filtered in both application
level and kernel level.

3.5.2 Network Flow Controller
PDP publishes access requestor of authentication, VLAN,

and other status to the MAP server. A TNC server publishes
access requestor compliance status after performing an
integrity check.

Both TNC Server and network flow controller are MAP
clients. The TNC Server is also a publisher, while the network
flow controller is a subscriber. Network flow controller (such
as a layer 3 firewall) subscribes to notification of endpoint’s
application access request information. After performing the
XACML access policy evaluation, TNC server will send back
a XACML response to endpoint. In the mean time, TNC
server publishes information about policy compliance of the
application. Then network flow controller detects a previously
unseen flow from an access requestor and queries an MAP
server to obtain authentication and compliance status
associated with this access requestor in order to make
enforcement decisions about the new flow.

Network flow controller subscribes to notifications from an
MAP server about changes in authentication, compliance,
vulnerability, or other status for an access requestor so the
network flow controller can make appropriate enforcement
adjustments to an existing flow.

When the TNC server detects that the endpoint is no longer
policy compliant, the TNC server updates the information in
the MAP server. The MAP server notifies the network flow
controller and the network flow controller blocks the access to
the network from the new non-compliant device.
3.5.3 Network Sensors

A sensor, i.e. an intrusion detection system, is deployed in
enterprise network to detect the anomaly traffic and malice
attacks. A sensor also publishes information related to an
application access request or flows originated from an access
requestor (vulnerability detection, flow classification, flow
compliance, etc.) to the MAP server.

PDP queries the MAP server for metadata that a sensor has
associated with an access requestor (e.g. flow classification or
vulnerability information). The PDP uses the metadata to
make appropriate policy decisions. The PDP subscribes to
notifications from the MAP server about changes to the access
requestor’s metadata so the PDP can adjust the access
requestor’s access when the access requestor’s metadata
changes.

Network flow controller can also subscribe to notifications
from the MAP server about the metadata that a sensor has
collected from an access requestor (e.g. flow classification,
misbehavior or vulnerability information). The network flow
controller uses these metadata to make appropriate policy
decisions to block or restrict network access.

IV. CONCLUSIONS
Based on TNC architecture, this paper presents an

application-level network access control framework. An
application access request is described as an XACML request
and evaluated by PDP’s XACML policy evaluation engine
based on access policy. We extend the PEP in TNC
architecture to Host-based PEP (i.e. Flow Controller) for
application access control, and propose a holistic strategy to
integrate the distributed security resources into coordinated
network protection system under MAP scheme.

With the above application-level network access control
framework, a prototype system is implemented and shows that
the whole network access procedure is correct and
non-ambiguous. The prototype system demonstrates that the
hosts, switches, firewalls, IDS can work together to detect,
diagnose and protect from the malicious application attacks
initiated inside or outside of an enterprise network, quarantine
the unhealthy hosts and improve the reliability and security of
the enterprise network.

ACKNOWLEDGMENT
We thank the NSLAB and QoSLAB colleagues’ generous

help for this paper and prototype work.
We thanks for Hosun Tech. for their generous support.

References
[1] Computer Crime and Security Survey. CSI/FBI. 2005;

 http://www.cpppe.umd.edu/Bookstore/Documents/2005CSISurvey.pdf
[2] R. Whiteley, Demystifying NAC: Going Beyond Basic Admission

Control, tech. report, Forrester Research, Inc. Sept, 2006.
[3] INTEROP LABS. What is Cisco NAC. May, 2007
[4] Trusted Computing Group. TCG Trusted Network Connect TNC

Architecture for interoperability Specification Version 1.3. April 2008.
[5] Trusted Computing Group. TCG Trusted Network Connect TNC IF-IMC.

Technical report, 2008.
[6] Trusted Computing Group. TCG Trusted Network Connect TNC IF-IMV.

Technical report, 2008.
[7] Trusted Computing Group. TCG Trusted Network Connect TNC

IF-TNCCS. Technical report, 2008.
[8] Trusted Computing Group. TCG Trusted Network Connect TNC IF-M.

Technical report, 2008.
[9] Trusted Computing Group. TCG Trusted Network Connect TNC IF-T.

Technical report, 2007.
[10] Trusted Computing Group. TCG Trusted Network Connect TNC IF-PTS.

Technical report, 2006.
[11] Trusted Computing Group. TCG Trusted Network Connect TNC IF-PEP.

Technical report, 2007.
[12] Trusted Computing Group. TCG Trusted Network Connect TNC IF-MAP.

Technical report, 2008.
[13] OASIS eXtensible Access. Control Markup Language. (XACML). XML

Community of Practice, 21 June 2006.
[14] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, Sumit Shah

‘First Experiences Using XACML for Access Control in Distributed
Systems,” ACM2003

[15] Microsoft
MSDN http://msdn.microsoft.com/en-us/library/ms740673(VS.85).aspx

[16] Microsoft Corporation. Windows driver kit(WDK)documentation,
http://msdn.microsoft.com/en-us/library/aa469207.aspx

http://msdn.microsoft.com/en-us/library/ms740673(VS.85).aspx�

	INTRODUCTION
	TNC Overview
	System Prototypes
	3.3.1 The eXtensible Access Control Markup Language - XACML
	3.3.2 Application Level Access Control on XACML[14]
	3.4 Application Level Access Control Procedure
	3.5.1 Client Program
	3.5.3 Network Sensors

	Conclusions
	Acknowledgment

