
LOAD SCHEDULING FOR FLOW-BASED PACKET PROCESSING ON
MULTI-CORE NETWORK PROCESSORS

Fei He1,2, Yaxuan Qi1,2, Yibo Xue2,3 and Jun Li2,3

1 Department of Automation, Tsinghua University, Beijing, China
2 Research Institute of Information Technology, Tsinghua University, Beijing, China

3 Tsinghua National Lab for Information Science and Technology, Beijing, China
hefei06@mails.tsinghua.edu.cn

ABSTRACT
Load scheduling is critical to the performance of parallel
processing network devices. With the rapid development
of multi-core technology, efficient load scheduling
scheme optimized for multi-core network processors
becomes increasingly important and motivates intensive
research today. In this paper, we study the relationship
between two canonical scheduling schemes, packet-level
scheduler and flow-level scheduler, and find out that
scheduling at flow-slice level can further exploit
parallelism while preserving per-flow packet-order. An
adaptive load scheduling scheme at flow-slice level is
proposed and evaluated. The experiment results show
that this scheme can achieve better balance of workload
than that of flow-level scheme, while keeping high cache
utilization rate in typical system configurations.

KEY WORDS
Load Scheduling, Network Processor, Flow-based Packet
Processing, Multi-core Processor

1. Introduction

With the rapid increase of network bandwidth, packet
processing systems are facing more and more challenges.
The biggest challenge is lack of computing resource. One
solution to this challenge is parallel processing using
multi-core network processor (NP) which employs
multiple processing engines (PE) to handle network
traffic in parallel in order to achieve both high
performance and good scalability. Load scheduler is the
key and fundamental module in parallel packet processing
systems.

Another trend of packet processing system is that most
applications are built within a common framework, which
is called flow-based packet processing. Under different
definitions of flow, applications including stateful
inspection firewall, intrusion detection/prevention system,
IPSec VPN, and flow-aware router can be regarded as
flow-based applications. Basic operations of flow-based
packet processing include flow classification, flow state
lookup and updating. Since packets belonging to the same
flow share the per-flow state maintained by the
application, concurrently accessing and updating these
shared flow-states by multiple processing engines can

incur significant overhead due to mutual exclusion. Thus,
load scheduler aware of the characteristics of flow-based
packet processing is very essential to such multi-core
packet processing systems. Such systems can achieve
good performance only if the load scheduler distributes
the traffic evenly among multiple processing engines.

There are two types of load scheduling scheme in the
context of packet processing systems:

 Packet-level Scheduler, which dispatches each packet
to processing engine independently.
 Flow-level Scheduler, which dispatches packets
belonging to the same flow to a specific processing
engine.

The advantage of packet-level scheduling scheme is that it
can achieve a finer-grain parallelism. But it requires
additional techniques to preserve packet order, which has
great impact on system performance. When consecutive
packets in a single flow are dispatched to different
processing engines, packet-level scheduling scheme will
incur significant overhead, which will greatly decrease
system performance. One reason is that access to flow-
state must be synchronized by mutual exclusion
techniques such as locking. Another reason is that packet-
level scheduling could lower the cache hit rate since each
processing engine has its local cache [1].

Comparing to packet-level scheduling scheme, flow-level
scheduling scheme can avoid the overhead incurred by
synchronization and achieve high cache hit rate.
However, it has coarse-grain parallelism in comparison to
packet-level scheduling scheme, and cannot fully use all
PEs’ resource. In addition, it is hard for a flow-level
scheduling scheme to achieve ideal work-load balance
among multiple PEs by predicting the flow behavior,
because flow characteristics, such as the size and the
arriving pattern, are statistically various.

In this paper, we propose an adaptive scheduling scheme
that distributes load at a sub-flow level (flow-slice). This
scheme can achieve good balance of workload and high
system throughput. Main contributions of this paper are:

 Scheduling Granularity Comparison: Backbone
traces are used to compare the difference of scheduling
at different granularity. Experiment results show that

631-032 41

debbie
New Stamp

scheduling at flow-slice level can exploit finer
parallelism than flow-level.
 Adaptive Scheduling Schemes: We propose an
adaptive load scheduling scheme which can exploit
finer parallelism than flow-level scheduling scheme
while still preserving per-flow packet-order. In shared
cache multi-core systems, cache hit rate using our flow-
slice level scheduling scheme is almost the same as that
using flow-level scheduling scheme. Even in distributed
cache systems, the decrease of cache hit rate is small
and can be compensated with a little increase of cache
size.
 Cycle-driven Performance Simulation: We evaluate
different load scheduling schemes with a cycle-driven
simulator using real-life backbone traces. The
experiment results show that our scheme can reduce the
packet loss rate to almost zero using relatively small
buffer size, while keeping high efficiency of cache-
utilization.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 explains the load
scheduling problem and describes the system model.
Section 4 describes the proposed adaptive scheduling
scheme at flow-slice level. Section 5 provides the
simulation results and performance evaluation. Finally,
we come to our conclusions and discussion on the future
work in section 6.

2. Related Works

Hash-based load scheduling scheme is a canonical flow-
level scheduling scheme which incurs low overhead. Z.
Cao et al. [2] evaluate the performance of different hash
functions used in Internet traffic splitting, and find out
that hashing using a 16-bit CRC over flow identifier gives
good load balancing performance. D.G. Thaler et al. [3]
propose another hash mapping scheme, Highest Random
Weight (HRW), in the context of multi-server Web server
systems. The main advantage of HRW over other hash
schemes is that it can achieve fault tolerance with
minimum disruption, which means that a minimum
number of requests are remapped during server failures.

Since these two hash-based schemes only provide load
balancing over the hash key space, they are vulnerable to
traffic locality in Internet traffic [4]. Under the
assumption of Zipf-like flow popularity distribution, W.
Shi et al. [5] prove that hash-based schemes using the
flow space as input space are not able to achieve load
balancing. Accordingly, L. Kencl et al. [4] proposed an
adaptive scheduling scheme for parallel packet
forwarding system based on HRW. The scheme is an
adaptive extension to the HRW scheme in order to cope
with biased traffic patterns. The adaptor evaluates
processor utilization periodically and compares it to a pair
of thresholds to determine whether the system is

unbalanced. If necessary, the adaptation is invoked to
adjust the weights of every processing engine used in
HRW. Another adaptive scheduling scheme [5] classifies
flows into two categories: the aggressive flows and the
normal flows, and applies different scheduling policies to
the two classes of flows. This scheme exploits flow-level
traffic characteristic to detect aggressiveness using a
small number of packets in a flow. The problem of this
scheme is that it still schedules packets at flow-level. It
shifts only aggressive flows when the system is not
balance to a certain extent, in order to minimize the
adaptation disruption to the cache of the processing
engines. But when some aggressive flows require
processing capacity that exceeds what one PE can provide,
shifting flows from one PE to another will not solve the
problem of imbalance,.

These adaptive schemes [4][5] may cause packet
reordering when the adaptation is invoked. When flows
are shifted from an overloaded processing engine to a
low-loaded one as the result of the adaptation, the original
packet order may not be preserved. The occurrence of
packet reordering, which can severely affect end-to-end
TCP performance, should be avoided in packet
forwarding systems. S. Kandula et al. [6] focuses on the
traffic splitting problem in multipath routing. It exploits a
simple observation that if the time between two
successive packets is larger than the maximum delay
difference between the parallel paths, the second packets
can be routed to any paths without causing packet
reordering.

The type of application running on processing engines is
considered to have great impact on choosing or designing
proper load scheduling schemes. In this paper, we take
application characteristics, i.e. flow-based packet
processing, into consideration when designing load
scheduling scheme. Based on the similar observation of S.
Kandula et al., we propose an adaptive scheduling scheme
at flow-slice level that outperforms existing flow-level
scheduling schemes while avoiding packet reordering
caused by packet-level schedulers.

3. Problem Statement

3.1. System Model

There are N PEs to process packets dispatched from the
traffic scheduler in typical multi-core network processor
system. A packet destined to PEi is appended to the input
queue of PEi, where 1 ≤i ≤ N. All these input queues share
a fixed size of memory, which means that the length of an
input queue is between zero and the buffer size B, and the
limitation of a queue's length depends on the length of
other queues.

42

We use Pi to denote the processing capacity of every PE,
μi to denote the utilization rate of PEi. By λi we denote the
packet arrival rate at PEi, which is the actual workload
dispatched to PEi. The total processing capacity

is . The aggregate arrival rate is
1

N

i
i

P
=

= ∑
Scheduler

P1= P/N

P2= P/N

PN= P/N

PEQueue

Incoming Packets

λ1

λ2

λN
Figure 1. System model

P
1

N

i
i

λ λ
=

= ∑ . In

this paper, we only consider the case that each PE is
homogeneous, i.e. Pi =P/N, for 1 ≤i ≤ N. Also, we use hi
to denote the cache hit rate of every PE.

The application considered in this model is called flow-
based packet processing. Most of packet processing
applications can be regarded as flow-based packet
processing under different definition of flow. Flow-based
packet processing applications access two types of data
structures: packet data structures and flow state structures.
Backbone traffic studies [7] show that packet data
structures (including packet header, payload, etc.) exhibit
little temporal locality. On the other hand, flow state
structures (e.g. a hash table used for flow classification,
etc.) exhibit considerable temporal locality [8]. The
temporal locality of flow state in flow-based processing
application is the most important characteristic that must
be taken into consideration when designing the
scheduling scheme, since the efficient of cache utilization
for flow state structures has a great impact on the
throughput of the application.

Therefore, two performance metrics are mainly concerned
in our model: system’s utilization rate and cache hit rate.
These two metrics determine the throughput of the packet
processing system.

3.2. Scheduling Objectives

The goals of load scheduling scheme for network systems
are similar [2]. Firstly, the latency introduced in splitting
the traffic must be strictly limited. With respect to flow-
based packet process systems, packet-level traffic
scheduling schemes may incur significant overhead
induced by synchronized access to flow-state information.
Therefore, flow-level traffic scheduling schemes are more
suitable for flow-based packet processing systems
comparing to packet-level scheduling schemes.

Secondly, because balance of workload is crucial for the
system to achieve its full processing potential, the
proposed scheduling scheme should minimize the
imbalance of traffic. The responsiveness to load
imbalance determines the system’s utilization rate.

In addition to performance guarantee, a load scheduler for
packet processing among multi-core NPs should possess

the following properties:
 Per-flow Packet Order Preservation: The original
packet order should be preserved, when packets
belonging to one flow are dispatched to several PEs
 High Cache Hit Rate: The cache hit rate on a PE is
mainly determined by the temporal locality in traffic
dispatched to it. The cache hit rate can greatly affect the
throughput of the system.

3.3. Source of Imbalance

The disadvantage of flow-level scheme is that under most
circumstances it may not distribute traffic evenly. The
most commonly used flow-level scheme is hash-based
traffic scheduling scheme. The hash-based load scheduler
maps the incoming flows onto each PE. Flow identifier vi
consists of a set of unvarying fields in packet header of a
particular flow. The hash-based scheme uses a function H
that maps vi into the set of PE number. That is

H (vi) → {1, 2, 3, ..., N} (1)
A typical example of a flow identifier would be the
traditional 5-tuple, which is the combination of source
address (SA), destination address (DA), source port (SP),
destination port (DP), and protocol type (PT). In this
paper, we use the 5-tuple to define a flow, and we use
flow bundle to refer to flows that have the same hash
value.
There are two sources of load imbalance in flow-level
schemes:

 Coarse-granularity: Flow-level scheduler restricts the
available parallelism to the number of active flows.
Thus, the size and randomness of input set to hash
function is limited, which makes it difficult for a hash
function to generate random outputs.
 Heterogeneous Unit of Scheduling: A hash-based
flow-level scheduler dispatches flows as the unit of
workload. Flow size affects the processing time.
Because of the long-tailed distribution of flow size [10,
11], hash-based flow-level scheduler may not distribute
workload evenly, even if hash function generates

Table 1. Experiment Dataset

Trace Packet/second Bandwidth (Mb/s) Active Connection (conn/s) New Connections (conn/s)
Abilene-III 225k 2150 617k 9960
CENIC-I 72k 498 115k 1076

43

random outputs.

Figure 2. Scheduling at flow-slice level

4. Scheduling Scheme at Flow-Slice
 Level

The flow-level scheduling scheme increases temporal
locality of flow state accessed by each PE, which
consequently increases the cache hit rate. Its main
disadvantage is that it may not distribute workload
evenly. Scheduling schemes should be designed to
achieve better balance of workload than the flow-level
scheduling scheme while keeping high cache rate high.
The scheme proposed in this paper can achieve this.

4.1 Scheduling at Flow-slice Level

Consider the scenario in Figure 2, where a series of
packets arriving at the scheduler. Given two consecutive
packets in a flow, P1 and P2, if P2 reaches the scheduler
after P1 leaves the PE, the scheduler can distribute P2 and
the packets after P2 to any PE without any possibility of
reordering. In our model, we define flow-slice as
consecutive packets in a flow the inter-arrival time
between which is not larger than maximum processing
latency (MPL) of PE.

Use Ti to denote the arrival time of packet i in a flow.
Formula (2) is sufficient to determine the end of a flow
slice.

1 (1) (1)i i
i i i

B BNT T
P Pμ μ+ − > =

− −
 (2)

Recall that B is the buffer size in packets, μi is the
utilization rate of PEi, and Pi is processing capacity of PEi.

4.2. Observation

Backbone traffic traces are used to observe the property
of flow-slice in this section. The dataset used in this paper
consists of backbone packet traces from NLANR PMA
[9], collected at the OC192c Packet-over-SONET link
from Internet2's Indianapolis Abilene router node (the
Abilene-III trace) and the 10 Gb CENIC HPR backbone
link (the CENIC-I trace) respectively. Table 1
summarizes our dataset.

S. Kandula et al. [6] point out that the main origin of
flow-slice is the burstiness of TCP at RTT and sub-RTT
scales, which is caused by ACK compression, slow-start,
and other factors [10][11]. But in our application, the
maximum processing latency is typically several
microseconds, much smaller than a RTT. And we also
find out that flow-slices exist not only in TCP traffic, but
also in non-TCP traffic. Figure 3 shows that the
proportion of flow-slice number to flow number in TCP
traffic differs little from that in non-TCP traffic, when
MPL varies from 1ms to 10ms.

In backbone network node, the number of active
connection is the same order of magnitude as the number
of packet per second (Table 1). We think another origin of
flow-slice is the mixing of different flows.

The average flow length in IPLS-trace is 27.56, i.e. the
proportion of number of packets to number of flows is
27.56. Figure 3 shows that the proportion of the number
of flow-slices to the number of flows is larger than 10,
which means there are more than 10 slices per flow in
average, so scheduling at flow-slice level greatly finer the
granularity of load splitting in comparison to scheduling
at flow level.

Figure 4 and 5 shows the popularity of both flows and
flow-slices in different size. It is showed that scheduling
at flow-slice level also makes the size distribution of the
splitting unit less skewed than scheduling at flow level.

4.3. An Adaptive Scheduling Scheme at Flow-slice
 Level

0

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10 11 12 13 14

η

MPL (ms)

TCP

non-TCP

Figure 3. The proportion of number
of flow-slices to number of flows (η)

versus MPL

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000 10,000 100,000 1,000,000

nu
m

be
r o

f f
lo

w
s

f low size
Figure 4. Flow size distribution,
flow size versus number of flows

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1 10 100 1,000 10,000 100,000 1,000,000

nu
m

be
r o

f f
lo

w
-s

lic
es

f low-slice size

Figure 5. Flow-slice size distribution,
flow-slice size versus num of flow-slices

44

We propose an adaptive scheduling scheme that
distributes traffic at flow-slice level. The scheduling
scheme proposed can be described using pseudo code in
Figure 6. The scheduler uses a hash table to map flow-
slices to PEs. Each table entry contains last arrival time
and last PE ID.

In our model, there are N parallel PEs, and the aggregate
packet arrival rate is λ. On the assumption of ideally
balanced workload, the arrival rate at each PE is λ/N. The
maximum processing latency (MPL) is (B⋅N)/λ. For IPLS-
trace, λ = 225kpps. A typical network process system, N
is around 8 to 32 (we choose N = 16), and B ranges from
50 to 200 packets. Thus, MPL ranges from 3.55ms to
14.2ms.

5. Performance Evaluation

5.1. Simulation Parameters

We conduct cycle-driven simulations of adaptive load
scheduling scheme based on a generalized network
processing system, which has 16 parallel processing
engines (PEs) with cache implemented. Flow table lookup
and update (implemented using a hash table) is executed
as the main process of a flow-based packet processing
application in the simulator. The simulator is executed
with two types of inputs: packet traces (described in
Section 3.3), and a flow state table constructed using the
packet traces.

Two types of cache model are implemented in the
simulator: shared cache model and distributed cache
model. All the PEs share one cache in shared cache model,
while each PE has a separate cache in distributed cache
model. LRU algorithm is used as the replacement

algorithm in the simulator, and the line width of the cache
is one word.

pkt = Receive_packet();
flowID = Hash(pkt);
if (pkt.timestamp < flow_table[flowID].last_arrival + MPL)
{

Dispatch(pkt, flow_table[flowID]. PE_ID);
}
else { // new flow-slice

old_PE_ID = flow_table[flowID].PE_ID;
if (queue[old_PE_ID] < THRESHOLD)
{

Dispatch(pkt, old_PE_ID);
}
else {

new_PE_ID = Adaptation(pkt, old_PE_ID);
flow_table[flowID].PE_ID = new_PE_ID;
Dispatch(pkt, new_PE_ID);

}
}
flow_table[flowID].last_arrival = pkt.timestamp;

Figure 6. Pseudo codes of the proposed
 scheduling scheme

Given a trace and the number of PEs (N=16), the
processing rate of each PE (μi) is estimated using μi =λ/N.
The average packet arrival rate (λ) is measured for each
trace.

Parameters that have major impacts on system
performance include: the processing buffer size B, the
size of flow-slice table F, and the triggering threshold H.
Performance metrics we are mainly concerned about are
the packet loss rate, PE utilization rate, and cache hit rate.

5.2. Packet Loss Rate

In our simulations, packet loss happens only in the
following situation. The workload is not properly
balanced among the PEs, some PEs are idling while other
PEs are overloaded. When the number of packets in a
PE’s queue increases to the limit of its buffer size, newly
arriving packets are dropped.

Figure 7 shows packet loss rate of hash-based flow-level
scheme and the flow-slice scheme proposed in this paper.
The hash-based flow-level scheme has high packet loss
rate, and increasing buffer size does help after buffer size
is larger than 200 packets. When the buffer size is small,
the flow-slice scheme has some packet losses. After the
buffer size increases to over 200 packets, there is no
packet loss any more.

5.3. Processing Engine Utilization Rate

Figure 8 shows the average PE utilization rate. The
adaptive scheme scheduling at flow-slice level makes the
system utilized close to its full potential. This means the
workload is properly balanced among the PEs.

5.4. Cache Hit Rate

The cache hits in flow-based packet processing system are
mainly resulted by the temporal reuse of flow state
structures. Since the temporal reuse of these data
structures occurs primarily when multiple packets
belonging to the same flow are processed. Hence, in
shared cache model, cache misses happen when two
packets belonging to the same flow are separated by a
large number of packets of other flows (the cache entry is
replaced). In distributed cache model, cache misses can
also be caused by shifting of flow-slice between PEs.

Figure 9 shows that there is not much difference between
the cache hit rates of both schedulers when using shared
cache model. Since the cache is shared by all PEs, the
shifting of a flow-slice from one PE to another does not
have much impact on the locality properties of the traffic.

45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700 800

pa
ck

et
 lo

ss
 ra

te

Buffer Size (packets)

flow

flow-slice

Figure 7. Packet loss rate versus buffer
size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

P
E

 u
til

iz
at

io
n

ra
te

Buffer size (packets)

flow

flow-slice

Figure 8. PE utilization rate versus

buffer size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20 24 28 32 36 40

H
it

Ra
te

Cache Size (KB)

shared-flow

shared-flowslice

distributed-flow

distributed-flowslice

Figure 9. Cache hit rate of the schedulers

Using distributed cache model, the cache hit rate of flow-
slice level scheduler is lower than flow-level scheduler
when the cache size is small. However, when the cache
size is relatively larger, the cache hit rates of both
schedulers become almost the same. Despite the fact that
flow-slice shifting affects the temporal locality of traffic
reaching each PE, this result shows that a little increase in
cache size can compensate for the reduction in cache hit
rate caused by that.

6. Conclusion and Future Work

We analyze the difference between the different
scheduling schemes at various granularities and show that
scheduling at flow-slice level can exploit finer parallelism
than flow-level and it can also make the size distribution
of splitting unit less. We propose an adaptive load
scheduling scheme that distributes traffic at flow-slice
level based on our analysis. The proposed scheduling
scheme exploits further parallelism than flow-level
scheduling scheme while preserving per-flow packet-
order.

In our experiment and performance evaluation, we use a
cycle-based simulator with real-life backbone traces. The
experiment results show that the proposed scheduling
scheme can achieve much better balance of workload than
flow-level scheme, and the packet loss rate is reduced to
almost zero using a small buffer. In shared cache NP
system, our scheme does not reduce the efficiency of
cache utilization, and even in distributed cache NP system,
a little increase in cache size can compensate for the
reduction in cache hit rate caused by the shifting of flow-
slices.

Our primary plans of future works involve implementing
these scheduling schemes on different multi-core
platforms, such as Cavium Octeon Processors [12] and
Intel IXP Network Processors [13], to further evaluate the
performance of the proposed scheduling scheme.

Acknowledgements

This work was granted by National High-Tech R&D (863)
Plan of China (No. 2007AA01Z468). The authors also

would like to acknowledge the colleagues in the Network
Security Lab for their suggestions.

References

[1] T.L. Riché, J. Mudigonda, and H.M. Vin,
Experimental Evaluation of Load Balancers in Packet
Processing Systems, Proc. 1st Workshop on Building
Block Engine Architectures for Computers and Networks
(BEACON-1), 2004
[2] Z. Cao, Z. Wang, and E. Zegura, Performance of
hashing-based schemes for Internet load balancing, Proc.
IEEE INFOCOM, 2000.
[3] D.G. Thaler and C. V. Ravishankar, Using name-
based mappings to increase hit rates, IEEE/ACM Trans.
Networking, 6(1), 1998.
[4] L. Kencl and J.L. Boudec, Adaptive load shareing for
network processors, Proc. IEEE INFOCOM, 2002.
[5] W. Shi, M.H. MacGregor, and P. Gburzynski, Load
balancing for parallel forwarding, IEEE/ACM Trans.
Networking, 13(4), 2005.
[6] S. Kandula, D. Katabi, S. Sinha, and A. Berger,
Dynamic load balancing without packet reordering, ACM
SGICOMM Computer Communication Review, 37(2),
2007.
[7] K. Thompson, G. Miller, and R. Wilder. Wide-area
traffic patterns and characterizations. IEEE Network, 1997.
[8] J. Mudigonda, H.M. Vin, R. Yavatkar. A Case for
Data Caching in Network Processors.
http://www.cs.utexas.edul/~vin/pub/pdf/mudigonda04case
.pdf
 [9] NLANR PMA: Special Traces Archive,
http://pma.nlanr.net/Special/.
[10] H. Jiang and C. Dovrolis, The origin of TCP traffic
burstiness in short time scales, Technical report, Georgia
Tech., 2004.
[11] Z.L. Zhang, V. Ribeiro, S. Moon, and C. Diot,
Small-time scaling behaviors of Internet backbone traffic,
Proc. IEEE INFOCOM, 2003.
[12] Cavium Networks, http://www.caviumnetworks.com/
[13] Intel Network Processors, http://www.intel.com/
design/network/products/npfamily/index.htm

46

