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HBD: Towards Efficient Reactive Rule Dispatching in
Software-Defined Networks

Chang Chen, Xiaohe Hu, Kai Zheng, Xiang Wang, Yang Xiang, and Jun Li�

Abstract: Most types of Software-Defined Networking (SDN) architectures employ reactive rule dispatching to

enhance real-time network control. The rule dispatcher, as one of the key components of the network controller,

generates and dispatches the cache rules with response for the packet-in messages from the forwarding devices.

It is important not only for ensuring semantic integrity between the control plane and the data plane, but also for

preserving the performance and efficiency of the forwarding devices. In theory, generating the optimal cache rules

on demands is a knotty problem due to its high theoretical complexity. In practice, however, the characteristics

lying in real-life traffic and rule sets demonstrate that temporal and spacial localities can be leveraged by the rule

dispatcher to significantly reduce computational overhead. In this paper, we take a deep-dive into the reactive rule

dispatching problem through modeling and complexity analysis, and then we propose a set of algorithms named

Hierarchy-Based Dispatching (HBD), which exploits the nesting hierarchy of rules to simplify the theoretical model

of the problem, and trade the strict coverage optimality off for a more practical but still superior rule generation

result. Experimental result shows that HBD achieves performance gain in terms of rule cache capability and rule

storage efficiency against the existing approaches.
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1 Introduction

The ultimate goal of networks today is to improve
traffic processing performance and reduce network
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deployment and operation cost, while satisfying diverse
policies for network control. These policies are mostly
presented in the form of packet processing rules
installed in the forwarding devices, which process the
incoming packets according to values of specific fields
in their headers.

To better support the growth and innovation
of networks, Software-Defined Networking (SDN)
offloads the control logic from the forwarding
devices to a separate and centralized control plane.
Correspondingly, control policy determining is thus
separated from data-plane packet processing, and this
makes the packet processing rules in the forwarding
devices logically become the cache of control policies
in the controllers. Under this clear division of roles, an
urgent issue regarding the execution of control policies
emerges: in respond to the data plane’s rule installation
requests (i.e., packet-in message[1]), how does the
controller reactively generate proper rules and dispatch
them to the corresponding devices, while preserving
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semantic integrity (i.e., decision consistency of control
plane and data plane) and optimizing efficiency? We
call it the reactive rule dispatching problem.

To realize an elastic SDN with fine-grained
control, reactive rule dispatching is the basis of
dealing with complex and dynamic events (e.g.,
host mobility, abnormal traffic analysis, and failure
recovery). Although rules can, alternatively, be
proactively pushed into the data plane[2–5] before
specific traffic comes, however, due to the expensive
and limited fast data-plane flow table, it is costly or even
infeasible for the forwarding devices to cache potential
rules all at the bootstrapping stage. Fortunately,
network traffic has both temporal and spatial localities
in most scenarios[6], which makes it possible for
reactive rule dispatching to perform well by optimal
caching of rules.

Figure 1 shows the general architecture of reactive
rule dispatching in an OpenFlow-based SDN. As a core
module of the controller, the rule dispatcher logically
sits between the rule matching module in the controller,
which holds the entire control rules, and the rule table
(or flow table) in the forwarding device, which caches
the recently dispatched rules. To handle a “cache miss”
message (i.e., a packet-in message) for certain traffic
flow, it is performance critical for the rule dispatcher to
determine which or what rule(s) to be dispatched to the
forwarding device, not being too generic (i.e., with too
much wildcards or too large ranges to lead to semantic
error) or too specific (i.e., limiting the probability of
covering more upcoming traffic and leading to high
cache miss ratio).

Using some straightforward approaches to preserve
decision consistency, reactive rule dispatching is
implemented in various types of SDN architectures
and systems[2, 7–9]. However, all these straightforward
approaches (which will be detailed in Section 2) lack
the consideration of performance. For example, they

Fig. 1 General model of reactive rule dispatching.

usually generate exactly matching rules for the traffic on
a per flow basis and thus accompany with remarkably
high cache miss ratio.

From a high level, an optimized cache rule generation
method should take into consideration the following
performance criteria:

(1) Low latency: Generally, in the case when
the rule required for the specific packet to forward
resides locally in the forwarding device (i.e., in the
case of cache hit), the forwarding time is on the
order of nanosecond. In contrast, the processing
latency in the case of a cache miss is on the order of
millisecond[10]. The high time penalty of a cache miss
comes essentially from network transmission overhead
between the controller and the forwarding devices.
Obviously, the higher processing latency on the orders
of magnitude suggests that the dispatched cache rules
should cover as much potential upcoming traffic as
possible (e.g., with more wildcard fields or larger range
to match).

(2) Efficient memory utilization: The feasibility
of implementation can be enhanced if the generated
cache rules make optimal use of the limited memory
space in forwarding devices. For example, Ternary
Content Addressable Memory (TCAM) is one of the
popular lookup mechanisms for packet classification.
However, as TCAM is space-limited, expensive, and
power-hungry, the commodity switches usually support
only thousands to tens of thousands of rules. Under
these constrains, the rule dispatcher should also be
responsible to ensure the efficient use of storage
resource in forwarding devices.

Reactive rule dispatching is inherently hard to
optimize due to the existence of rule dependency
(caused by rule overlap and rule priority). Simply
generating and dispatching cache rules regardless of
rule dependency may cause the action inconsistency
between the full rule set and the cache rules. On the
other hand, finding the optimal cache rule regarding
high traffic coverage (a.k.a., high cache hit ratio)
implies high computational complexity in theory, which
is usually unacceptable for real-time packet processing.
For the sake of feasibility, it is necessary for the
rule dispatching algorithms to exploit the inherent
characteristics lying in real-life rule sets and traffic, and
to flexibly trade strict optimality off for a more practical
but still superior solution. In general, the proposed work
makes the following main contributions:

Problem deep-dive: The geometrical model and
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complexity of rule dispatching problem are studied in
this paper, along with the summary and classification of
existing works according to different design decisions.

Heuristic rule dispatching algorithm: Based on
the observation of characteristics of real-life rule
sets, we propose Hierarchy-Based Dispatching (HBD),
including a set of algorithms for determining the near-
optimal cache rules according to packet-in messages.
Besides, the cache rules dispatched by HBD have an
addtional bonus attribute: Any pair of the cache rules
is either disjointed or harmlessly overlapped (i.e., the
two cache rules overlap with each other but are derived
from a same original rule). This nice attribute[11] can
be leveraged accompaning with various kinds of packet
classification schemes for faster cache rule lookup on
the data plane.

Performance evaluation: Based on both synthetic
and real-life rules, the proposed algorithms as well
as several existing approaches are evaluated in terms
of performance metrics such as cache hit rate, traffic
coverage capability, and processing time.

The rest of this paper is organized as follows: The
related works are reviewed in Section 2. In Section 3
we introduce the optimization objective and modeling
of reactive rule dispatching problem. In Section 4 we
discuss several design principles in detail, and give a
short study on the overlap characteristic of real-life
rules. The proposed algorithms are presented in Section
5 and evaluated in Section 6. In Section 7 we conclude
our work.

2 Related Work

2.1 Straightforward approaches

The straightforward rule dispatching approaches
applied in prior SDN architectures can be summarized
as follows: (1) Exact dispatching: Dispatching exact-
match rule for the specific packet to forward, which
is employed in several prior SDN architectures such
as Ethane[7] and DevoFlow[10]. This approach suffers
from high cache miss ratio due to the weak traffic
coverage capability of exact-match rules. (2) Abundant
dispatching: Dispatching the rule matching the specific
packet along with all the dependent rules (where the
dependency chain of rules is studied in Ref. [12]).
This approach leads to excessive rule space usage in
devices and in some cases, many of the dispatched
dependent rules do not help to hit the subsequent
traffic. (3) Fragmented dispatching: Transforming

interdependent rules into a set of disjointed sub-rules
before dispatching. This approach has relatively nice
traffic coverage but the overlaps between multi-
dimensional rules may lead to the explosion of the
population of the transformed sub-rules[13].

2.2 Prior algorithms

Unlike the straightforward approaches mainly focusing
on semantic correctness of the dispatched rules, several
prior arts also target at meeting the performance
requirements through well-designed rule dispatching
algorithms, which can be summarized according to
different design decisions:

(1) Evolving-based algorithm: In evolving-based
algorithms, the boundaries of the dispatched rules
are dynamically expanded (i.e., evolved) according to
incoming traffic. Though they are designed for the
scenario of two-stage rule matching schemes inside a
packet forwarding device, the proposed algorithms are
still enlightening today’s SDN scenarios. In Ref. [14],
Smart Rule Cache (SRC) introduces a representative
evolving cache rule construction algorithm, which is
also applied in DIFANE[2]. Another evolving-based
algorithm is introduced in Storm[15], which proposes
a rule caching system for software routers. However,
the performance of SRC and Storm relies too much on
the traffic pattern. For example, every single packet in
an address-incrementing SYN flood traffic may trigger
a cache miss because of the incremental extension of
rule boundaries. Besides, their high cache hit ratios to
some extent result from the aggregation of rules with the
same action, which leads to incapability of preserving
statistical information for each individual flow.

(2) Dependency-based algorithm: As an
improvement to the straightforward abundant
dispatching approach, the Cover-set algorithm
presented in CacheFlow[12] finds each rule’s immediate
ancestor rules in the dependency graph as the “cover-
set” of the rule, and dispatches rules associated with
their cover-sets to preserve semantic correctness. In
the CacheFlow architecture, the Cover-set algorithm is
used to proactively dispatch to the hardware switches
a group of rules with high “weights” and low “costs”.
At run-time, the packets that match the cover-sets
are redirected to some software switches for further
handling.

(3) Cut-based algorithm: As one latest work
targeting at reactive rule dispatching, CAching in
Buckets (CAB)[16] dispatches a set of buckets
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associated with their overlapped rules, and implements
a two-stage table pipeline in the forwarding device. The
bucket generation procedure, which directly affects
cache performance, shares similarity with space
decomposition based packet classification algorithms
such as HiCuts[17] and HyperCuts[18].

The advantages of the proposed approaches against
the prior-arts will be discussed later in Section 4.

3 Problem Statement

To make a clear view of reactive rule dispatching
problem, we introduce the theoretical model, set the
optimization objective, and propose an optimal solution
to the problem in this section.

3.1 Modeling

As shown in Fig. 1, the forwarding devices rely
on packet classification to associate the forwarding
rules or actions with the traffic. Formally speaking, a
packet is classified according to some specific header
fields values (e.g., the typical 5-tuples, source and
destination IP addresses, source and destination ports,
and protocol number). From a geometrical point of
view, a packet P D fp1; p2; : : : ; pDg is a point in a D-
dimensional address space S , where D is the number
of header fields required to classify the packets, and
the d -th field value of P is denoted as pd . A rule
R D fŒr1s; r1e�; Œr2s; r2e�; : : : ; ŒrDs; rDe�g also contains
D components. The d -th component RŒd� D Œrd s; rde�

refers to a range in the d -th dimension of S , and all
the D ranges of R compose a D-dimensional hyper-
rectangle.

Packet classification can be regarded as a point
location problem in computational geometry.
Accordingly, the process of generating an optimal
dispatched rule can be considered as finding the largest
inscribed hyper-rectangle for a given point in the
address space.

Figure 2a shows a 2-dimensional rule set example
and Fig. 2b is the corresponding geometrical model.
There are 8 rules in a 2-dimensional address space. For
packet classification, some of the rules overlap with
each other and the priority determines the final match
for packets in the overlapped regions. As illustrated in
Fig. 2c, given the packet P D f12; 7g which matches
R7, the rule dispatcher needs to generate and dispatch
to the forwarding device a proper rule.

Due to rule overlapping and different priorities for the
corresponding forwarding actions, simply dispatching

(a) An example rule set

(b) The geometrical model (c) The optimal cache rule for packet P

Fig. 2 A two-dimensional example.

the intact rule R7 D Œ8; 15�; Œ5; 12� might break the
action consistency (For example, in the space covered
by R4, which is nested in R7, the action associated
withR4 should be taken instead of that ofR7 according
to their priority; thus simply applying the action of
R7 to the entire hyper-rectangle covered by R7 may
lead to loss of consistency). As a straightforward idea,
“exact dispatching” is to dispatch the very specific rule
representing only the single point as the packet header
P indicates directly, i.e., Œ12; 12�; Œ7; 7�. This obviously
preserves the action consistency but may suffer from
high cache miss ratio due to the very low coverage of
address space. In contrast, “abundant dispatching” is
to dispatch all the dependent rules (e.g., R7, R2, R3,
and R4 in our example), which occupies excessive rule
space in the underlying forwarding device. Moreover,
some of the “remote” dispatched rules (e.g., R2) may
not actually help with increasing cache hit ratio due to
traffic’s spatial locality.

Suppose that the dispatcher only generates one cache
rule. The optimal rule to generate should potentially
cover the maximum space in which the corresponding
rule action is with the highest priority. As shown by
the shaded rectangle in Fig. 2c, the optimal cache
rule for the example is Œ8; 15�; Œ7; 8�, which is the
largest inscribed hyper-rectangle that preserves the
action consistency.
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3.2 Optimization objective

In an SDN with reactive rule dispatching, the average
time for processing a packet can be approximated by

Tavrg D Thit C �miss � .Ttrans C Tgen/ (1)

where Thit is the average rule lookup time in the
forwarding device, �miss is the rule cache miss ratio,
Ttrans is the average delay of the transmission between
two planes, and Tgen is the average time for generating
a cache rule.

The optimization objective of rule dispatching
includes two aspects:

(1) To reduce Tavrg according to

Tavrg D Thit C Ttrans � �miss �

�
1C

Tgen

Ttrans

�
(2)

Generally, Thit is on the order of nanosecond and
Ttrans is on the order of millisecond[10]. For the other
two arguments, it is critical to reduce �miss for the
obtimization objective, while Tgen is the cost to achieve
this. In order to ensure that the benefits outweigh the
cost, the rule dispatching algorithm needs to produce
high-coverage rules efficiently; it is equivalent with
reducing �miss and guaranteeing Tgen � Ttrans.

(2) To satisfy the rule space constraints in the
forwarding devices (e.g., the TCAM table size
constraint): The reduction of �miss should not rely
merely on installing larger number of rules on the
devices. Instead, the focus should be on leveraging
the temporal and spacial localities of the traffic and
generating less but higher coverage rules (i.e., as more
wildcards or larger ranges in the generated rules as
possible while preserving the semantic consistency to
the control rules).

3.3 The optimal solution and complexity analysis

In this section, we brief an optimal solution to the
problem of determining a single optimal cache rule and
analyze its complexity.

Let point P represent the input packet, hyper-
rectangle Rmatch represent the highest priority rule that
matches P , and R represent the optimal cache rule we
wish to generate. Suppose R is initialized to be the
exact-point rule located at P . The mission is to keep
expanding and adjustingR’s boundary (i.e., Œrd s; rde� of
R, d D 1; 2; : : : ;D) until finding the largest possible
hyper-rectangle, which represents the optimal cache
rule. There are three constrains of the expansion of R:

(1) R covers P :

8d 2 Œ1;D� W pd 2 RŒd� (3)

(2) R is nested in Rmatch, that is, Rmatch forms a hard
limit for the boundary expansion of R:

8d 2 Œ1;D� W RŒd� � RmatchŒd � (4)

(3) The rules that overlap withRmatch and have higher
priorities, referred to as R�, must not overlap with R;
in other word, R� forms the obstacles for the boundary
expansion of R:

8d 2 Œ1;D� W RŒd� \R�Œd � D ∅ (5)

For each R�, if there are exactly M (0 6M < D)
dimensions in which the range of R� covers the
projection of P (i.e., pd 2 RŒd�), Rmatch can be
simplified as an M -dimensional obstacle, which
provides D �M possibilities for the boundary
adjustment of R. For example, in Fig. 3a, the matching
rule Rmatch D R8, the obstacle rules R� D R1 �R7.
As shown in Fig. 3b, R8 forms R’s boundary limit.
R1, R5, and R6 are simplified as three 1-dimensional
obstacles (lines), each of which provides only one
choice for boundary expansion of R (field-x for R1 and
R5, field-y for R6). R2, R3, R4, and R7 are simplified
as four 0-dimensional obstacles (points), each of which
provides two choices for boundary adjustment (field-x
or field-y).

In the worst case, all the obstacles are points, and
all possible combinations of boundaries need to be
examined. Thus the optimal solution requires extra
�.ND/ memory space and �.DN / computation time,
where N is the number of rules that overlap with
Rmatch and also have higher priorities. As we can see,
the complexity of finding the optimal cache rule is
unacceptable in practice.

4 Design Decision

4.1 Design principles

Compared with the prior-arts, the proposed approach is
based on four distinct principles:

(a) An input packet matching R8 (b) Simplified obstacles

Fig. 3 Finding the optimal cache rule.
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(1) Constructing new cache rules rather than
preserving original ones: Unlike Cover-set algorithm
that determines “which rule to be dispatched”, we
determine “what rule to be dispatched”. This makes it
more possible to customize and therefore optimize the
dispatched rule. Besides, every reconstructed rule in
our approach is derived from an original rule, thus the
action and more attributes (e.g., counters) of the original
rule can be inherited directly.

(2) Dispatching only one rule per “packet-in”:
According to the observation on the spatial locality of
real-life traffic, the nearer the distance to the “packet-in”
point, the more possible the dispatched rule may hit the
future traffic. Thus we argue that dispatching multiple
overlapping-but-sparse rules to the forwarding device
will have little advantages yet incur significant storage
overhead. Therefore, in the proposed rule dispatching
scheme, we concentrate on finding the “best” single rule
which covers the largest “inscribed” hyper-rectangle for
a given “packet-in” point in the address space.

(3) No assumption on device functionality: Unlike
CAB that requires the forwarding device to support
two-stage flow table pipeline (i.e., to be compatible
with OpenFlow specification), we make no assumption
on device functionality. Our approach should be
compatible with the legacy forwarding devices with any
kind of packet classification approach applied.

According to different design decisions, we compare
the main attributes of existing works along with our
proposed approach in Table 1.

(4) Adapted to the diversity of rule sets
characteristics: As mentioned before, the challenges
of the rule dispatching problem comes from the
existence of rule overlap and rule priority. We do not
assume that the control rules are basically disjointed

Table 1 Existing work.

Approach
Rule

recons-
truction

Number of rules
dispatched

per packet-in

Assumption
on forwarding

device
Exact — Single No
Abundant No Multiple No
Fragmented Yes Single No
Evolving-based Yes Single —

Cover-set No Multiple
Need extra

software
switches

CAB No Multiple
Need two-stage

flow table
Our work Yes Single No

or, conversely, seriously overlapped. As a matter of
fact, different kinds of rule set tend to form different
kinds of overlap characteristics. For example, the
traditional routing or switching rules are more likely to
be non-overlapping, but the ACL rules at a multi-tier
network are more likely to be overlapped with each
other because of the differentiated permissions to
different subnets or individuals.

Since rule overlap cannot be avoided, in the next
section we study the rule overlap characteristics in
several real-life rule sets, in order to further introduce
the heuristic to the algorithm for simplifying the cache
rule generation process.

4.2 Overlap characteristic

The overlap characteristic is studied using four
representive real-life rule sets. Two of the rule sets,
ACL1 and FW1, are publicly available from Ref.
[19]. The other two rule sets, vAccess and vGateway,
are extracted from the network controller and the
security controller of a cloud management platform,
respectively. This platform[20, 21] provides secure virtual
private cloud service in a Tier-IV datacenter. vAccess
is for the access software switch in a physical server,
containing 1982 OpenFlow rules; and vGateway is for a
tenant virtual gateway that delivers routing and security
services among multiple virtual networks, containing
3106 five-tuple rules.

To study the overlap degree of these rule sets, we
define the number of overlap tiers as the maximum
depth of the rule set’s dependency chains[12]. (The
overlap tiers can be built in a bottom-up traverse of
the rule set. The default rule forms the bottom tier.
Any two rules in the same tier must not overlap with
each other.) Table 2 shows the number of overlap tiers
of each rule set and suggests the diversity of overlap
degree of different kinds of rules.

Moreover, we define three relations between two
overlapped rules (R1 and R2) as follow:

(1) Nested: R1 is nested in R2 if

8d 2 Œ1;D� W R1Œd � � R2Œd � (6)

We call R1 the subset rule and R2 the superset rule.

Table 2 The four real-life rule sets.

Set Number of rules Number of overlap-tiers
ACL1 753 38
FW1 270 5

vAccess 1982 4
vGateway 3106 11
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(2) Crossed: R1 and R2 are crossed if

9d1; d2 2 Œ1;D� W

R1Œd1� � R2Œd1� and R1Œd2� � R2Œd2�
(7)

(3) Partially overlapped: The other cases.
Suppose that all the rules can be organized in a

complete “nesting hierarchy”, namely, for each pair of
rules, they are either disjointed or nested in priority
order (i.e., the higher-priority one is nested in the lower-
priority one). For the optimal solution presented in
Section 3, the number of “obstacle” rules needed to be
examed during the boundary adjustment of R can be
significantly reduced. It is because that after examing
a “obstacle” superset rule, all the corresponding subset
rules nested in this superset rule will certainly not affect
the further boundary adjustment of R, and thus can be
ignored.

For the purpose of observing the nesting
characteristic, we further provide a more intense
analysis on overlap type using ACL1, which is the
worst case among the four rule sets. Figure 4 presents
the overlap characteristic of ACL1 in detail. The x-axis
represents the ID of the rules; the rule with a smaller
ID has a higher priority. The blue curve shows the total
number of rules overlapped with a specific rule, the
green curve shows the number of higher priority rules
overlapped with a specific rule (i.e., the rules that might
cause action inconsistency), while the red curve shows
the number of rules overlapped but non-nested with a
specific rule. We can see that: (1) For a specific rule R,
the number of higher-priority rules that overlap with R
might be numerous, especially for the large-sized low-
priority rules; (2) Though most of the overlapped rule
pairs tend to be “nested”, the “crossed” or “partially
overlapped” relations still exist among rules.

5 Hierarchy-Based Dispatching

The proposed HBD approach includes the following
three threads: (1) Pre-processing: The rule dispatcher
divides all the control rules into several groups, such
that each of the groups forms a complete nesting
hierarchy in the address space, respectively. (2) Cache
rule generation: With the nesting hierarchy trees
built in pre-processing, the rule dispatcher reactively
generates high-coverage cache rules using a greedy
algorithm at run-time. (3) Rule set update: The rule
dispatcher supports dynamic rule set update by means
of incrementally updating the nesting hierarchy trees.

5.1 Pre-processing

According to the observation on overlap characteristics,
we cannot assume that the rule set is normally organized
in a complete nesting hierarchy. In the example of Fig.
5a, even if most rules form a nesting hierarchy, there
are still some rule pairs that are crossed or partially
overlapped, including R5 and R7, R6 and R8, R7

and R8, and R8 and R9. The rule that is crossed or
partially overlapped with another rule is reffered to as a
“saboteur rule” in the following.

In order to build the nesting hierarchy of the rule set
where all saboteur rules are eliminated, HBD employs a
“grouping + decomposing” strategy for pre-processing.

5.1.1 The naive decomposing strategy
One intuitive solution to handle saboteur rules is to
decompose them into some sub-rules until no saboteurs
exist. Using this strategy, the operation of building
a nesting hierarchy can be accomplished in a single
bottom-up traverse of the rule set. Algorithm 1 shows
the process of building the nesting hierarchy (which
is organized as a tree structure). During the bottom-

Fig. 4 Overlap characteristic of ACL1.
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(a) An example rule set (b) The naive decomposing strategy

(c) Grouping-based nesting hierarchy

Fig. 5 A two-dimensional example.

Algorithm 1 Decomposing-based pre-processing
1: function BUILDHIERARCHY DECOMPOSING(Ruleset)
2: stack D fg
3: for each R in Ruleset (decending priority/ do
4: stack.push.R/
5: end for
6: tree D fstack.pop./g
7: while stack not empty do
8: R D stack.pop./
9: for each Rt in tree do

10: if R is nested in Rt then
11: Rt :addChild.R/
12: continue
13: end if
14: if Rt :is Saboteur.R/ then
15: R0 D spaceIntersection.R;Rt /

16: Rt :addChild.R0/

17: stack.push.R �R0/

18: end if
19: end for
20: end while
21: return tree
22: end function

up traverse, when a new saboteur rule (i.e., crossed
or partially overlapped with some pre-traversed rule)
is encountered, it will be decomposed until every
sub-rule of it can find a certain pre-traversed rule

to be its superset. The decomposing is achieved
by function spaceIntersection(). Figure 5b shows the
nesting hierarchy of the example rule set using this
naive decomposing strategy. R5, R6, R7, and R8

are decomposed into several nested sub-rules, which
afterwards meet the nesting hierarchy requirement.

However, the R �R0 step in line 17 might generate
numerous sub-rules of R (2D in the worst case),
which causes indeterminacy to the number of rules after
building the nesting hierarchy. As shown in Table 3,
the “decomposing” column suggests the infeasibility of
direct decomposition of all saboteur rules. For example,
after the direct decomposition, the size of vGateway
swells from 3106 rules to over 200 thousand rules.

5.1.2 Grouping strategy
Instead of directly decomposing the saboteur rules, the
grouping strategy eliminates the potential risks of rule
number explosion by means of partitioning the rules
into different groups where no saboteur rule exists
in each group. It should be noticed that the default
rule which covers the entire address space needs to be
assigned to every group.

The grouping strategy is based on the following
observation. Suppose that the original rules are divided
into K groups. Consequently, the original problem of
finding large inscribed hyper-rectangle R for a packet-
in point P can be partitioned into K sub-problems.
The result (i.e., generated cache rule) to each sub-
problem is referred to as Ri (i D 1; 2; : : : ; K). The
intersected space of allRi forms the final resultR to the
original problem (i.e., R D \Ri ), which can guarantee
the correctness. Thus, when dealing with a cache
miss, the cache rule generation algorithm (which will
be described later) is executed on all groups (i.e., rule
subsets) parallelly. After that, the dispatcher conducts
a space intersection of all intermediate cache rules to
form the final result.

Algorithm 2 shows the grouping operation as well
as building each group’s nesting hierarchy. Each tree

Table 3 Scalability of the two strategies.

Rule set
Number

of
rules

Decomposing Grouping
Number of
rules after
building

Number
of

groups

Number of
rules after
building

ACL1 753 2338 3 755
FW1 270 154 257 5 274

vAccess 1982 2154 3 1984
vGateway 3106 234 874 5 3110
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Algorithm 2 Grouping-based pre-processing
1: function BUILDHIERARCHY GROUPING(Ruleset)
2: stack D fg; list D fg
3: for each R in Ruleset .decending priority/ do
4: stack.push.R/
5: end for
6: tree D fstack.pop./g
7: while stack not empty do
8: R D stack.pop./
9: for each Rt in tree do

10: if R is nested in Rt then
11: Rt :addChild.R/
12: continue
13: end if
14: if Rt : is Saboteur.R/ then
15: list.add.R/
16: end if
17: end for
18: end while
19: add tree to trees list
20: if list not empty then
21: list.reverse./I list.add.Rdefault/

22: BuildHierarchy Grouping(list)
23: end if
24: end function

represents a group, and the trees list contains all the
trees (groups). The grouping procedure is implemented
as a recursive function: when a saboteur rule is
encountered, it is excluded from current group, and will
be explored in later iterations. The algorithm terminates
until in each group the rules form a complete nesting
hierarchy. Figure 5c shows the grouping result of the
example rule set, where the original rules are divided
into two groups, and in each group the rules form a
complete nesting hierarchy. The intersected space of
the cache rule results of the two groups (as shown in
red) represents the final cache rule result (the properties
of the cache rule are inherited from R9, which is with
the higher priority). The “grouping” column in Table
3 shows the number of groups needed for eliminating
saboteurs completely, which is small enough for reliable
performance. However we can not assume that all
rule sets in real-life have similar characteristics. To
support the limitation of the group number (especially
for large-sized rule sets), we combine the grouping and
decomposing strategies to enhance the feasibility of
implementation.

5.1.3 Combination of the two strategies
In the grouping process, the algorithm can introduce
moderate rule decompositions in current group (instead

of excluding all saboteur rules) based on the cost
of decomposing a specific saboteur rule. The cost
is defined as the number of sub-rules that would be
produced by step R � R0 in Algorithm 1. Whether to
decompose a saboteur rule or exclude it from current
group depends on a pre-defined cost threshold: if the
cost is not larger than the threshold, the algorithm
chooses the former option; otherwise, the latter is
chosen. For example, the cost of decomposing a rule
that is partially overlapped on only one dimension
might be 1, thus the algorithm decomposes the rule and
keeps it in current group. But the cost of decomposing
a rule crossed on multiple dimensions is usually high,
thus this rule might be excluded from current group.

The question of how to set the cost threshold and the
upper limit of group number leaves open. Generally,
the upper limit of the group number should follow the
maximum number that a particular platform supports to
execute in parallel (e.g., 8 cores or threads), and the cost
threshold depends on the overlap degree of rules. In our
approach, the upper limit of group number is set to 4,
and the cost threshold is set to 2.

5.2 Cache rule generation

With the rule set’s nesting hierarchy, the cache rule
generation process can be significantly simplified.
Given the packet-in point P and its matching rule R, if
R is on the topmost tier, the original R can be directly
dispatched; otherwise, exploring only the immediate
nested rules of R (i.e., the rules that the child nodes
of R represent) is sufficient for preserving semantic
integrity and optimizing performance. Thus in HBD
the rule generation problem is simplified to a two-tier
nesting model, containing only R and its immediate
nested rules.

The theoretical optimal solution presented in Section
3 needs �.DN ) time to find the optimal cache rule
because of DN boundary adjustment possibilities in
the worst case. It is impractical to apply this solution
in practice due to the exponential computational
complexity. Thus in HBD the optimality of coverage
can be traded off for a much more efficient but still
superior greedy algorithm. As shown in Algorithm 3,
the output cache rule Rout is initialized to the packet’s
matching rule R. During the process of adjusting the
boundary of Rout, Rout greedily reduces its boundary
based on each immediate nested rule of R.
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Algorithm 3 Cache rule generation
1: function CACHERULEGENERATE(packet, tree)
2: Rm D packet.match./
3: if Rm is a leaf node of tree then
4: return Rm

5: else
6: Rout D Rm

7: for each child node Robs of Rm in tree do
8: for each d in Œ1;D� do
9: predict volume loss % W lossŒd �

10: end for
11: choose d with the minimum lossŒd �
12: adjust Rout in the d -th dimension
13: end for
14: return Rout

15: end if
16: end function

In contrast with the strict optimal solution, the greedy
algorithm reduces the time complexity to �.ND).
Additionally, the data size N is significantly reduced
as the nesting hierarchy simplifies the problem model.

5.3 Rule set update

The nesting hierarchy naturally supports rule set update
in the dynamic SDN scenarios. When adding a new set
of rules to the rule set, the rule set update thread of HBD
first uses Algorithm 2 to partition this new rules into
several groups, each of which we refer to as a branch.
Then the update thread incrementally adds each branch
to the nesting hierarchy trees according to the location
of the branch’s root rule. The algorithm for adding a
branch is shown in Algorithm 4.

As for a rule deletion request, HBD simply gives the
rules descendants to its father node, and removes this
rule node from current hierarchy tree.

5.4 Bonus attribute of HBD

The cache rules dispatched by HBD have an bonus
attribute: Any pair of the cache rules are either
disjointed or “harmlessly” overlapped (i.e., the two
cache rules overlap with each other but are derived
from a same original rule). It is called the order-
independent attribute. The impact of this attribute is
studied in SAX-PAC[11], one latest work that simplifies
the classifier matching problem into several sub-
problems. In general, the order-independent attribute
can be leveraged by the packet processing module
of forwarding devices in the following aspects:
(1) The order-independence can eliminate all types
of rule conflictions caused by rule-overlapping[22].

Algorithm 4 Add branch
1: function ADDBRANCH(branch, tree)
2: R D branch.root
3: if R:leftcorner.match./Š D R:rightcorner.match./ then
4: AddBranch(branch, next tree/
5: return
6: else
7: Rm D R:leftcorner.match()
8: end if
9: list D fg

10: for each child node Rc of Rm in tree do
11: if Rc is nested in R then
12: list.add.Rc/

13: else if Rc and R are overlapped then
14: AddBranch(branch, next tree/
15: return
16: end if
17: end for
18: R:addChildren(list)
19: Rm:deleteChildren(list)
20: Rm:addChild.R/
21: end function

(2) Order-independent rules are disjointed in the
search space, which can improve both the spacial
and time performances of most packet classification
algorithms[23, 24]. (3) As the space that a certain rule
locates is associated with only one single action, it is
more convenient to track and debug these rules.

In this part, we brief an order-independent rule
lookup method based on Open vSwitch (OVS)[25] for
improving its packet processing performance. As shown
in Fig. 6a, the dispatched rules are installed in the
userspace of OVS and organized in a two-stage list
structure. Originally, due to the dependency among
rules, the classifier needs to organize the priority
information and sort the former stage list in terms of
the rule priorities. The main cost of the rule lookup
process comes from two aspects: (1) the traverse of
the two-stage list, which can hardly be pre-terminated
due to rule dependency; and (2) the degradation of
“megaflow”[25] that will be inserted to the kernel of
OVS. Specifically, the megaflow (with many wildcards)
is always degraded to a “microflow” (with no wildcards)
when identifying the mask associated with the flow,
which correspondingly degrades the packet process
performance. It is because that the sorting method of
the rule lists is bound with the rule priority and thus
cannot be customized for performance consideration.

Using HBD, since the rules dispatched to OVS are
order-independent, the traverse of the rule lists can be
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(a) Original rule classifier in OVS userspace

(b) Simplification of the classifier

Fig. 6 Improvement on OVS classifier leveraging the order-
independent attribute.

directly terminated when a rule matching occurs, and
the OVS classifier no longer needs to sort the rule
lists based on priorities. Furthermore, to maximum the
wildcard number of megaflows, as shown in Fig. 6b,
we sort the former stage list in descending order of
wildcard number. Thus, the coverage of megaflows can
be enhanced and the netlink overhead of OVS can be
significantly reduced.

6 Evaluation

The performance of HBD is evaluated through
simulation, and three other algorithms are implemented
for comparison, which includes: (1) the naive
exact dispatching approach; (2) a dependency-based
algorithm that works in reactive mode, copies the
strategy of Cover-set[12], and treats the hits on the cover
sets as cache misses (We refer to it as Dependency-
Based Dispatching, DBD); and (3) the cache rule
generation algorithm used in CAB[16].

For DBD, it should be noted that in the experiments,
we use the Cover-set strategy as a benchmark on the
reactive dispatching model, which is different from the
use case in CacheFlow (i.e., in the proactive dispatching
model)[12]. If the number of dependent rules triggered

by a packet-in exceeds the cache limit, DBD simply
dispatches an exact-match rule.

6.1 Data set and test-bed

The rule sets used for the evaluation include: (1) two
real-life rule sets described in Section 4, vAccess and
vGateway; and (2) another two larger-sized synthetic
rule sets in Classbench[19], ACL1-5K and FW1-5K,
with 4415 and 4653 five-tuple rules, respectively.

For vAccess, the corresponding traces are captured
at the physical server where the access software switch
locates, with a duration of one hour. For vGateway, the
traces are captured at the virtual gateway with a duration
of 15 minutes. For the two synthetic rule sets, we rewrite
the trace generation function of ClassBench to generate
synthetic traces that better follow the distribution
of real-life traffic (in terms of locality). Concretely,
we keep Pareto distribution used in trace generator
algorithm the same and replace the copy function, for
depicting the temporal locality of packets. Besides, we
introduce Zipf distribution to replace the random-corner
function, for better depicting the spacial locality of
flows.

On an HP Z220 SFF workstation with 3.40 GHz
CPU, 16 GB memory, and 64 bit Ubuntu Server 12.04
LTS, we simulate a controller along with a connected
forwarding device. In the controller, the HyperSplit[13]

algorithm is adopted for finding the matching rule of
a “cache miss” packet. In the forwarding device, the
Least Recently Used (LRU) algorithm is adopted for
cache rule replacement. Besides, all the source code
of the evaluated rule dispatching algorithms is written
in C language.

6.2 Experimental results

For the optimization objective of (1) reducing Tavrg D

Thit C �miss � .Ttrans C Tgen/ and (2) satisfying the rule
space constraints in the forwarding devices, we first
define the evaluation metrics.
� Cache miss ratio (���miss): the percentage of cache

miss packets when testing on the corresponding
trace of a specific rule set.
� Average cache generation time (Tgen): the

maximum packet-in rate that guarantees no packet
loss in the controller dispatcher.
� Average Traffic Coverage Capability (ATCC):

ATCC D
hyper volume.[Rcache/

n
(8)

where n is the maxinum rule number of a
forwarding device, [Rcache is the union of all
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hyper-rectangles representing the current cache
rules. Note that this metric reflects the coverage
range of cache rules but does not regard traffic
locality.
� Effective ATCC (e-ATCC):

ATCC D
hyper volume.[Reffective-cache/

n
(9)

where Reffective-cache is the cache rules that are
actually hit by traffic.

6.2.1 Effectiveness on reducing Tavrg

The cache miss ratios �miss across a range of rule-
cache size are illustrated in Fig. 7. As a benchmark,
the exact dispatching method reflects the temporal
locality of traffic. According to the results, though DBD
better reduces the cache miss ratio against the exact
dispatching method, the cache capability achieved by
CAB and HBD are much more significant, indicating
the feasibility and benifits of reactive rule dispatching.
For example, on the rule set vAccess, cache rules
generated by HBD are able to cover 90% traffic with
only 8% cache size. Compared with CAB, we can
see that the smaller the cache size, the better cache
capability HBD achieves than CAB. It is due to the
“one cache rule per packet-in” principle of HBD, which
concentrates on making optimal use of every single rule
space in the forwarding devices.

For calculating Tgen, we measure the throughput of
the rule dispatchers, i.e., the maximum packet-in rate
that guarantees no packet loss in the dispatcher. As
shown in Table 4, the throughput of the HBD dispatcher
is around one million of packets per second (pps),
indicating that Tgen � Ttrans. Thus, according to the

Table 4 HBD dispatcher throughput.

Set Throughput (Mpps)
ACL1 5K 1.19
FW1 5K 0.82
vAccess 1.55

vGateway 0.98

analysis in Section 3, HBD guarantees that the benefit
(i.e., the significant reduction of �miss) outweighs the
cost (i.e., Tgen).

6.2.2 Efficiency on memory utilization of
forwarding device

The ATCC and the e-ATCC are used for testing device
memory utilization. Unlike the ATCC calculating all
the dispatched cache rules, the e-ATCC only takes into
consideration the effective cache rules among them (i.e.,
rules that are actually hit by the traffic). For example,
the cache rules dispatched by DBD have high ATCC,
but only a small proportion of them are actually useful
for handling traffic, which is indicated by e-ATCC. For
HBD, ATCC equals to e-ATCC because of the “one
cache rule per packet-in” principle.

To calculate the ATCC and the e-ATCC for a
specific algorithm, we set the rule-cache size to 10%
(a reasonable cache size with both space efficiency
and cache hit rate guaranteed), and take three cache
snapshots during the algorithm processing. The ATCC
and the e-ATCC illustrated in Fig. 8 are the average
value in the three snapshots. As we can see, though
the ATCC of HBD is usually less than that of DBD and
CAB (because HBD calculates the accurate “inscribed”

Fig. 7 Cache miss ratio.
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Fig. 8 Traffic coverage capability.

hyper-rectangle representing a cache rule, instead of
finding several intact rules or generating a large-
coverage bucket), the e-ATCC of HBD is usually larger
than that of DBD and CAB, especially for the rule
sets with serious rule overlaps such as FW1-5K and
vGateway.

6.2.3 Effectiveness of the greedy cache generation
algorithm

To test the effectiveness of the greedy cache rule
generation algorithm, we compare the cache rules
generated by HBD with the cache rules generated by
the optimal solution presented in Section 3. As shown
in Table 5, on the two small-sized real-life rule sets,
ACL1 and FW1, ATCC of the HBD-generated rules is
close to ATCC of the optimal rules. The latter takes our
workstation more than twenty hours to compute.

To conclude, according to the above experimental
results, the naive exact dispatching approach suffers
from high cache miss penalty due to the weak traffic
coverage capability of exact-match rules; and the
dependency-based algorithm is not suitable for reactive
dispatching mode because it usually inevitably cache
numerous dependent rules (even if the cover-sets splice
the dependency chains), most of which are ineffective
for covering upcoming traffic. Given limited cache size,
HBD outperforms CAB in terms of cache hit ratio.
Addtionally, to achieve the nice performance, CAB
requires the underlying forwarding devices to support
two-stage flow table pipeline. In contrast, HBD is
compatible with the legacy forwarding devices with
any kind of packet classification approach applied.
Moreover, as an additional (but not mandatory) bonus
option, the forwarding devices can leverage the order-

Table 5 ATCC: Greedy vs. optimal.

Method ATCC on ACL1 ATCC on FW1
Greedy 15.25 14.85
Optimal 16.40 15.50

independent attributes of cache rules dispatched by
HBD to further optimize their rule lookup processes.

7 Conclusion

In this work, we take a deep-dive to the reactive rule
dispatching problem in software-defined networks, and
propose the HBD approach for optimizing the rules to
be dispatched. Compared with existing approaches, the
strategies used in HBD enable the network to achieve
better performance in terms of transmission latency and
device memory utilization.

The code of HBD and the trace generation function
we used for evaluation will be available on our
website[26] to encourage more intensive research in this
area.
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