
SwinTop: Optimizing Memory Efficiency of Packet Classification in Network
Devices

Chang Chen

Department of Automation,
Tsinghua University,

Beijing, China
chenchang13@mails.tsinghua.edu.cn

Liangwei Cai
College of Information Engineering,

Shenzhen University,
Shenzhen, Guangdong, China

cailw@szu.edu.cn

Yang Xiang
Research Institute of Information Technology,

Tsinghua University,
Beijing, China

sharang@tsinghua.edu.cn,

Jun Li
Tsinghua National Lab for Information Science and

Technology,
Tsinghua Universit,

Beijing, China
junl@tsinghua.edu.cn

Abstract—Packet classification is one of the key functionalities
provided by network devices for QoS and network security
purposes. Recently the rapid growth of classification ruleset
size and ruleset complexity has caused memory performance
woes when applying traditional packet classification
algorithms. Inheriting the divide-and-conquer idea of pre-
partitioning the original rules into several groups for
significant reduction of memory overhead, this paper proposes
Swin Top, a new ruleset partitioning approach based on
swarm intelligent optimization algorithms, to seek for the
global optimum grouping of rules. To enhance convergence
accuracy and speed up the iterative process, Swin Top employs
several novel ideas, such as the introduction of grouping
penalty, the combination of PSO and GA, and a new memory
usage estimation method. On the publicly available rulesets
from Class Bench, SwinTop is shown to achieve 1 to 4 orders of
magnitude lower memory consumption than simply applying a
traditional packet classification algorithm without ruleset
partitioning, and outperform the state-of-the-art partitioning
algorithms EffiCuts and ParaSplit on all kinds of large-sized
rulesets.

Keywords - QoS; network security; packet classification;
memory efficiency; ruleset partitioning; swarm intelligence
optimization

I. INTRODUCTION

The rapid development of the Internet and the fast
increase of network services have brought great challenges to
deploying high-speed and quality-of-service (QoS)
guaranteed networks. Besides packet forwarding, modern
network devices need to provide more advanced services,
such as access control, firewall, IDS (intrusion detection
system) and VPN (virtual private network), etc. All these

functionalities require the network devices to identify the
packets being transmitted.

Packet classification, as a fundamental technique
employed by network devices, is the process of classifying
packets based on pre-defined rules. Each rule specifies a
desired action (e.g., drop, forward) on a set of packets
identified by some specific fields of the packet header (e.g.,
source IP, destination IP, source port, destination port,
protocol type).

Although packet classification has been widely studied
for years [1] [2], researchers are still motivated to seek novel
packet classification solutions to keep pace with the
emerging applications on the Internet. Recently it has been
noticed that despite the optimization for throughput, the
memory performance of software-based algorithms has
become one of the major issues regarding the practical usage
(or even the feasibility of implementation) of packet
classification. The reasons are as follows in Table I:

TABLE I. MEMORY CONSUMPTION OF HYPERSPLIT

Ruleset FW_1K FW_10K IPC_1K IPC_10K

rules 791 9311 938 9037

Memory consumption 3.6MB 1.01GB 1.5MB 66.8MB

Space inefficiency of traditional algorithms: Traditional

packet classification algorithms have relatively low memory
efficiency, and the memory requirements are in-deterministic
with the ruleset size [3]. Specifically, the sizes of the data
structures (e.g., decision trees) generated by these algorithms
may inflate to multiple times their common sizes if the
ruleset size scales up or the rules are extensively overlapped.
As shown in Table I, the size of the decision tree generated
by HyperSplit (the state-of-the-art decision tree based

125

978-1-47��-����-� /1�/$31.00 ©201� IEEE

algorithm) [4] for a real-life ruleset IPC_1K [5] (with 916
five-dimensional rules) is only 85KB, while that for ruleset
FW_10K (with 9,311 five-dimensional rules) is up to
1.01GB.

Fast growth of real-life ruleset size: In order for fine-
grained management, the ruleset size of a server at today’s
multi-tenant data centers can be up to 200K [6], causing
memory performance woes to traditional packet
classification schemes.

Memory limitation for running packet classification: The
memory used for running packet classification is always
limited, for which the concerns are twofold. First, the data
structure size required for a complex ruleset may exceed the
available memory size (e.g., the quota memory size for Xen
hypervisor is less than 1GB). Second, the memory-
consuming algorithms have to be implemented with mass-
but-slow memories (e.g., SDRAMS), which undermines the
classification speed.

TABLE II. AN EXAMPLE 2-DIMENSIONAL RULESET

Rule Dimension X Dimension Y Action

R1 [4,5] [0,7] Drop

R2 [0,7] [0,1] Forward

R3 [4,7] [4,7] Forward

R4 [0,1] [6,7] Drop

R5 [0,3] [0,7] Drop

R6 (default) [0,7] [0,7] Forward

Recently, several advanced solutions [3][7][8][9] have

shown the superiority of ruleset partitioning in the
improvement of memory performance. The basic idea is to
trade classification performance for significant reduction in
memory requirement, which can be achieved by partitioning
the original ruleset into several sub-rulesets and build
independent decision trees for the subsets using traditional
packet classification algorithms. However, the existing
solutions either scale poor as the dimension number grows,
or bring uncertainty in eliminating rule replications and thus
trap into local optimum.

Going beyond existing solutions, this paper presents a
novel ruleset partitioning algorithm named SwinTop (SWarm
INTelligence Optimization based Partitioning) that seeks for
the global optimum grouping of rules. The main
contributions of this paper include:

The ruleset partitioning problem is modeled as an integer
programming problem with a huge and unsmooth search
space, for which it is suitable to apply swarm intelligence
algorithms. Moreover, inspired by the selective tree merging
procedure of a previous work, the grouping penalty of rule
pairs is defined to further provide guidance in the rule
grouping process.

A novel intelligent ruleset partitioning algorithm is
proposed for acquiring the global optimum grouping of rules
in terms of memory consumption. The proposed algorithm is
based on Particle Swarm Algorithm and Generic Algorithm,

which are revised and combined in our approach in order to
adapt to the ruleset partitioning problem.

A new method of estimating the memory consumption
trends is proposed for significantly improving the time
efficiency of the ruleset partitioning process.

The performance of SwinTop is evaluated on 18 rulesets
of various sizes ranging from 100 to 50K rules. Experimental
results show that on the large-sized rulesets, SwinTop
achieves 1 to 4 orders of magnitude lower memory
consumption than applying a traditional packet classification
algorithm without ruleset partitioning. Compared with the
state-of-the-art partitioning algorithms, SwinTop requires
30%~95% less memory than EffiCuts [7] and 20%~35% less
memory than ParaSplit [9].

The rest of the paper is organized as follows: Section II
introduces the background and relates work; Section III
describes some preliminaries and Section IV presents the
proposed algorithm in detail; Section V introduces the
optimizations to the implementation of the algorithm;
Section VI provides evaluation results; Section VII
concludes the paper.

II. BACKGROUND

A. The Packet Classification Problem

The purpose of packet classification is to find the
matching rule from a pre-defined ruleset for a packet. Each
rule R contains D fields, and each field is a range match
expression on a selected field of the packet header.
Mathematically, packet classification can be viewed as a
point location problem in computational geometry: In a D-
dimensional search space S, a packet P is viewed as a point
and a rule R is viewed as a D-dimensional hyper-rectangle.
A packet P matches a rule R if the point represented by P
locates inside the hyper-rectangle specified by R. If a packet
hits more than one rules (some rules may be overlapped with
each other), among them the highest-priority rule will be the
final result. Table II shows an example ruleset with 6 two-
dimensional rules, and Figure I shows the geometrical model
of the ruleset.

x

y

R3

R4

R5

R6 (default)

0 7

7
R1

R2

Figure 1. The geometrical model of the 2-D example ruleset

126

The theoretical complexity bounds derived from
computational geometry show that a packet classifier with N
rules and D fields need either  logN time and ()DN

space; or  1Dlog N time and ()N space [10]. Thus in

theory, even a ruleset with 1K five-dimensional rules can
consume 1000TB memory in the worst case.

In practice, fortunately, the complexity can be
significantly reduced by the well-designed packet
classification algorithms for two reasons. First, despite the
variety in statistical characteristics, the complexity of real-
life rules is always far less than the theoretical worst case [4].
The common distribution patterns lying in the rules can be
leveraged for lowering the size and depth of the decision
trees. Second, given the ruleset, the classification data
structure is generated during pre-processing (offline), and
hence can be optimized in numbers of ways to achieve fast
classification speed with rational memory usage.

B. Traditional Packet Classification Algorithms

Most well-known traditional packet classification
algorithms are based on search space decomposition: the
search space is decomposed into multiple sub-spaces, each of
which is associated with a subset of rules (with rule
replication); by recursively applying the decomposition, a
decision tree is finally built for the run-time classification
process.

HiCuts[11], HyperCuts[12] and HyperSplit[4] are typical
examples of such algorithms. HiCuts and HyperCuts apply
equal-sized cutting to decompose the current space at each
stage into equal-sized sub-spaces. In contrast, HyperSplit
applies unequal-sized binary splitting at each stage, which
avoids the inefficiency of equal-sized cuttings for non-
uniformly distributed rules, and achieves superior
performance compared to HiCuts and HyperCuts.

However, it is important to note that all these algorithms
inevitably introduce rule replication in the decomposition
steps, which may significantly increases the decision tree
size. For example, in the HyperSplit decision tree illustrated
in Figure 2(a), R2 and R5 are inevitably replicated once,
causing memory overhead. As a matter of fact, the memory
consumption of the decision tree grows exponentially as the
size of ruleset or the number of dimensions increases.

C. Ruleset Partitioning Solutions

In recent years, several solutions based on ruleset
partitioning [3][7][8][9] have been proposed to tackle the
memory overhead issue.

In ruleset partitioning solutions, the original ruleset is
divided into several subsets according to particular heuristic
information; each of the sub-ruleset is then applied a
traditional packet classification algorithm independently. In
general, the sum of the sizes of the data structures built from
each subset individually can be far smaller than the size of
the data structure built from the full ruleset. This effective
divide-and-conquer strategy makes it possible for the
complex classification data structures to meet the overall
memory consumption constrains again.

According to different ruleset partitioning methods,
existing solutions can be categorized into structural
characteristic based and stochastic search based.

Structural characteristic based partitioning: This kind of
algorithms partitions the original ruleset according to the
distribution or overlap characteristics of rules, in order for
the rules in each sub-ruleset to have relatively nice
“separability”. As a representative algorithm of this category,
EffiCuts[7] defines the rules in a subset to be separable if all
the rules are either small or large in each dimension, and
partitions the original ruleset by separating rules with
different combinations of wildcard size (large or small) in all
the dimensions. As shown in Figure 2(b), the original ruleset
is partitioned into 4 groups according to this principle.

Stochastic search based partitioning: As one of the latest
works, ParaSplit[9] views ruleset partitioning as a
combinatorial optimization problem and applies simulated
annealing to optimize the grouping of rules.

Both EffiCuts and ParaSplit achieve lower memory
consumption than simply using a traditional packet
classification algorithm (e.g., HyperSplit) alone. However,
EffiCuts partitions the ruleset into (2)D groups, which is
not scalable when the number of dimensions rises. And the
selected tree merging step brings great uncertainty in
performance and may introduce considerable rule replication
in some cases. ParaSplit also suffers the downside of
trapping into local optimum before the pre-defined limited
number of iterations. It is because of the incapacity of
simulated annealing in solving such combinatorial
optimization problems with large and complex solution
space. In general, the potential of ruleset partitioning, for
minimizing the memory consumption of packet classification
algorithms, has not been fully exploited.

III. PRELIMINARIES

A. Problem Modeling

In our approach, since the group number always follows
the maximum number that a particular platform supports to
execute in parallel (e.g., 8 cores or threads), it is given
(determined) before the partitioning process.

Given a ruleset 1 2{ , , , }NRS r r r  and the group number
K, the aim is to find K disjoint subsets that minimize the
overall memory consumption. Mathematically, it can be
viewed as an integer programming problem:

x:4

y:2 x:6

x:2

y:6

R5 R4

R5

R2 R1 y:4

y:2

R2 R6

R3

R4 R1 R2

x:4

y:4

R6 R3

R5

Subset 1 Subset 2 Subset 3

Subset 4

(a) HyperSplit (b) EffiCuts

Figure 2. Decision trees for the example ruleset

127

 

1 2min (, , ,)
. . 1 (1, 2, ,)

(1,2, ,)
= 0 (1,2, ,)

N

i

i

i

M r r r
s t r K i N

r Z i N
C r k k K

  
 

 







where ri = k means that ri is distributed in the kth subset, and

1 2
1

(, , ,) ()
i

K

N r m i
m

M r r r T r


   represents the sum of the

sizes of the data structures built from each subset, i.e., the
overall memory consumption.

According to the principle of inclusion-exclusion, there

are in total
0

1
(1) ()

!

K
i i N

K
i

C N i
K 

  distinct feasible solutions

to the partitioning problem. For example, there are about
9010 possible ways of grouping for the case N = 100, K = 8.

Furthermore, the curve of 1 2(, , ,)NM r r r is not smooth (e.g.
moving only one rule from a group to another may be able to
results in considerable memory increment/reduction in some
cases). Therefore, it is difficult or even infeasible for brute-
force computation or other straightforward methods to search
for the optimal solution.

B. Grouping Penalty of Rule Pairs

To provide guidance to the rule grouping process of the
proposed algorithm (described in the next section), we define
the grouping penalty for two different rules. For a
ruleset 1 2{ , , , }NRS r r r  , the grouping penalty of each rule
pair is calculated as follows:

First, for each rule r, every dimension of r is labeled to
be either small or large according to [7]. For the example of
Figure 1, the six rules are labeled {small, large}, {large,
small}, {large, large}, {small, small}, {large, large}, {large,
large}.

Second, for each rule pair ir and jr , if in the
thd dimension the two rules are both small or both large, the

size-conflict (, ,)size i jC d r r is set to be 0; otherwise 1. If in

the thd dimension the ranges of the two rules are disjoint, the
position-conflict (, ,)pos i jC d r r is set to be 0.5; otherwise 1.

The grouping penalty for ir and jr is calculated as follow:

 2 2

1

(,) ((, ,) (, ,)) /
D

m i j size i j pos i j
d

P r r C d r r C d r r D


 

where D is the number of dimensions.

IV. THE SWINTOP ALGORITHM

Swarm intelligence optimization algorithms, which
simulate the collective behavior of natural systems
(especially biological systems), have made great progresses
on solving combinatorial optimization problems [13].

Since the ruleset partitioning problem is formulated into
an integer programming problem with a huge and unsmooth
solution space, it is very suitable to apply swarm intelligence
algorithms with the characteristics of high searching
capability, easy operation, and no special requirements for
optimized function. Based on these principles, a revised
hybrid swarm optimization algorithm SwinTop, which

combines the best of Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA), is proposed to solve the ruleset
partitioning problem.

In this section we present the details of SwinTop. Some
optimizations to the implementation of SwinTop will be
discussed in Section V.

A. Introduction to PSO and GA

1) Particle Swarm Optimization (PSO)
The basic concept of Particle Swarm Optimization (PSO)

stems from the research on foraging behavior of bird blocks.
PSO was first proposed by Eberhart and Kennedy in 1995
[14], since when PSO has been applied to numbers of fields
including combinatorial optimization and data mining, etc.

Imagine a flock of birds seeking for one piece of food in
a huge searching area. None of the birds knows the exact
location of the food, but they do know the approximate
distance between their positions and the food. As a matter of
fact, the complex but intelligent global behaviors of birds are
actually caused by the interactions of simple rules. By
leveraging the equilibrium between the diversification and
centralization, the bird flock can eventually find the food.

In a PSO algorithm, the location of the food represents
the global optimum solution. The birds keep updating
(optimizing) their speed and location through both
competition and cooperation, until someone finding the food.
As the crucial part of PSO, the three key elements that
influence the update of a bird’s speed include:

Inertia: the bird keeps its previous speed in some degree.
Self-cognition: the bird flies partly towards the best

location that the bird itself has ever found.
Social-cognition: the bird flies partly towards the best

location that the entire flock has ever found.
2) Genetic Algorithm (GA)

Inspired by Darwin's biological theory of evolution, in
1975 J. Holland et al. proposed the first Genetic Algorithm
(GA) [15], which simulates the mechanism of “the survival
of the fittest” in biological evolution. The algorithm gained
extensive attentions with the development of computer
science, and was widely applied in fields like optimal control,
pattern recognition and machine learning, etc.

GA imitates the co-evolutionary process of a population
formed by multiple individuals (i.e., the locations of the birds
in the context of PSO), and keep improving the fitness of the
population until the strongest individual is found. A typical
GA includes the following steps:

Encoding: encode a feasible solution, i.e. an individual,
into a chromosome according to the specific problem;

Initialization: initialize the individuals to form a
population;

Evaluation: evaluate all individuals at current iteration
step and terminate the algorithm if the best individual is
found;

Selection: select some of the individuals according to
certain probability model, promising that the excellent
individuals are more likely to be selected;

Crossover and mutation: conduct chromosome crossover
and mutation operation to the selected individuals and then
return to the evaluation step.

128

B. Design Decisions of SwinTop

Inspired by PSO and GA, the proposed SwinTop
algorithm simulates a bird flock seeking for food, while at
the same time conducting gene (position) exchange and
mutation selectively. The main design decisions include:

The combination of PSO and GA: Dealing with the
multi-dimensional ruleset partitioning model, GA suffers
from low convergence speed due to the randomness of
crossover and mutation operations, but can guarantee global
optimum when adopting the elitist strategy [16]. In contrast,
PSO converges speedily but may trap into local optimum due
to the lack of solution perturbation. In SwinTop, the best of
PSO and GA are combined to keep the good convergence
accuracy and speed simultaneously.

The introduction of individual pair compatibility:
According to the grouping penalties of rule pairs, SwinTop
can dynamically estimate the “compatibility” of two
individuals (which will be explained later) to provide
guidance to the iterations, and thus can further increase both
the convergence accuracy and speed.

In the following part, the SwinTop algorithm will be
presented in the order of encoding, initialization, and
iteration.

C. Encoding

As described in Section III, when partitioning a ruleset
with N rules into K subsets, the objective of SwinTop is to
find the best distribution of rules {r1, r2, … , rN} that
minimizes the overall memory consumption. Table III shows
the correspondence of some concepts and encodings.

TABLE III. CORRESPONDENCE OF CONCEPTS

Problem Concepts Biological Concepts
Integer

programming
Encoding Classic PSO Classic GA

A variable in a
feasible solution

ri (the ID of the sub-
ruleset that this rule
is distributed into,
ranging from 1~K)

Location of
one

dimension
Gene

A feasible
solution 1 2, , (,)Nrr r r Location

(Bird)
Chromosome
(Individual)

Some feasible
solutions

11 1 2

1

1 1

2

()

.....

, , ,

,(,

.

),

.

M M

N

M MN

r

r

r r r

r r r













Bird flock Population

The optimal
solution

1 2, , (,)Nrr r r

that minimize

1 2(, , ,)NM r r r

Location of
the food

The strongest
individual

that maximize
fitness

D. Initialization

In SwinTop, the population (i.e. bird flock) is initialized
with 17 individuals (i.e. birds). Among them 8 individuals
are called pilots, which will update themselves in each
iteration step. Another 8 individuals are called pbest_holders,
responsible for holding the historical best position of each
pilot. The rest one individual is called gbest_holder, which
holds the historical best position of all the pilots (i.e. gbest is
the best of pbests).

To provide a nice initial solution, we propose a new
direct ruleset partitioning algorithm (see Algorithm I) that
approximates a relatively nice grouping of rules, which to
some extent reduces the overall memory consumption and
possesses the potential for further optimization by iteration.

ALGORITHM I. ALGORITHM FOR INITIAL PARTITIONING

function InitPartitioning (Ruleset)
1 Sub_Rulesets = {}
2 while Ruleset is not empty:
3 RS = {}
4 for each rule in Ruleset:
5 If rule is neither crossed nor partially-overlapped with any rule

in RS:
6 RS.insert(rule)
7 Ruleset.delete(rule)
8 Sub_Rulesets.insert(RS)
9 return Sub_Rulesets

The basic idea of this direct partitioning algorithm is to

eliminate all the orthogonal structures of rules. According to
[17], orthogonal structure is the major (and also commonly
encountered) pattern that causes a large amount of rule
replication, leading to significant memory overhead.

For the initial population, one of the pilots is initialized
with the result of the above algorithm, and the other pilots
are initialized with random locations and random speeds.
According to our observation, the special pilot is much likely
to be the best solution among all the initial solutions.

E. Iteration

After initialization, the population begins to evolve. To
evaluate each individual based on the objective function

1 2(, , ,)NM r r r , we define the fitness of individual as follow:

2 2

1

() (_ 2) / (())
i

K

r m i
m

fitness r m node N T r


  


where m_node is the memory size of each node in the
decision tree built by a traditional packet classification
algorithm, and T represents the actual size of a decision tree.
In SwinTop, we choose HyperSplit to be the traditional
algorithm for its superior memory efficiency compared to
others, in which case m_node is 8 (Bytes).

The fitness ranges from 0 to 1. For an individual, the less
memory overhead its grouping causes, the higher fitness it
achieves. For the limiting case that no rule replication occurs
(even for the default rule), the fitness reaches 1.

Next we define the compatibility of two individuals as
follow:

1 2 1(k) 2(k)
1

(,) / (,)
K

m
k

compatibility r r K P r r


  

where mP is the grouping penalty as defined in Section III,

and 1(k)r (2(k)r) is a rule randomly picked from the thk sub-

rulesets of the feasible solution 1r


(2r


) , i.e., 1(k) 2(k)r r k  .

Compatibility is used to estimate the structural similarity
between two individuals. The more compatible the two
individuals are, the more likely that the distribution of their
rules in each subset falls into similar patterns. By

129

continuously checking the compatibility between an
individual and current gbest, the algorithm can determine
whether to conduct speed/position updates, or to conduct
gene communications with other excellent individuals
(including gbest), to evolve the individual itself. When
compatibility is not enough, the former operations are chosen
for encouraging the individual to bravely search in a broader
area while to some extent drawing closer to the flock;
otherwise, the latter is chosen, for making the individual
carefully perturb current solution according to the effective
information of others

The pseudo-code of SwinTop algorithm is as below:

ALGORITHM II. THE SWINTOP ALGORITHM

function SwinTop (Ruleset)
1 Encode()
2 Initialize()
3 Calculate_fitness()
4 while termination condition not reached:
5 Update_pbests()
6 Update_gbest()
7 for each pilot in the population:
8 if pilot.fitness decreased and compatibility(pilot, gbest) not

improved:
9 Update_speed(pilot)
10 Update_location(pilot)
11 else:
12 if rand(0,1) < p_crossover:
13 Cross(pilot, gbest)
14 if rand(0,1) < p_crossover:
15 Selected_pbest = Select(pbests)
16 Cross(pilot, selected_pbest)
17 if rand(0,1) < p_mutation:
18 Mutate(pilot)
19 Calculate_fitness()
20 return gbest

For line 9 and line 10, the methods of updating the speed

and location is defined as follow:
(1) () ()

0 1
()

2
(1) () (1)

(0,1) ()
(0,1) ()
1, 2, ,

n n n
i i i i

n
i i

n n n
i i i

v c v c rand pbest v
c rand gbest v

r r v i N



 

     
   

   

where we set the inertia weight 0c = 1, the self-cognition

weight 1c = 1.5, and the social-cognition weight 2c = 0.9.
For line 12 to line 18, the crossover and mutation

operations are illustrated in Figure 3. We set the possibility
of crossover p_crossover = 0.5 and the possibility of

mutation p_mutation = 0.2. In line 15, the Roulette Wheel
Selection strategy is used to select one of the pbests based on
their fitnesses (i.e., fitness-proportionate selection).

When any of these two criteria reached, the iteration
terminates: (1) the fitness of gbest reaches 1, (2) the fitness
of gbest has not increased for a certain number of iteration
steps.

V. OPTIMIZATION TO SWINTOP IMPLEMENTATION

During the iterations, the time-consuming packet
classification algorithm (HyperSplit in our case) is frequently

called to compute the accurate memory consumption for
evaluating the fitnesses of individuals, resulting in significant
amount of computation time before convergence. To tackle
this issue, we propose a new concept, named overlapping
degree, to estimate the memory consumption trends of
rulesets much more efficiently.

The memory overhead of decision trees mainly comes
from the overlap of rules [4]. We categorize the overlapping
relations of two ranges into four types according to different
possibilities of causing rule replication, as shown in Figure 4.
We first define the overlapping degree of two rules:

1

_ (,) (, ,) ()
D

i j i j
d

ovlp r r r seg r r d w d


 

where

0 1

1 2
(, ,)

2 3

3 4

th

th

i j th

th

if case in the d dimension

if case in the d dimension
seg r r d

if case in the d dimension

if case in the d dimension



 



.

For a ruleset, ()w d is proportional to the number of

unique end-points if all rules are projected on the thd

R1 R2 R3 R4 R5 R6

Individual a

Individual b

2 1 1 4 2 3

1 3 2 4 4 2

R1 R2 R3 R4 R5 R6

Individual a

Individual b

2 3 2 4 2 3

1 1 1 4 4 2

R1 R2 R3 R4 R5 R6

Individual a

Individual b

2 3 2 4 2 4

1 1 1 4 4 2

(a) An example of two individuals. For (b) Crossover: randomly choose a part (c) Mutation: randomly choose a position
 instance, R1 is distributed in subset (e.g. (R2, R3)) and swap the genes (e.g. R6) and mutate the gene in this

No.2 for the grouping represented by of the two individuals in this part. position.
individual a.

Figure 3. Crossover and mutation

Case 1: disjointed Case 2: coincident

Case 3: nested and exactly
one end-point coincident

Case 4: the other relations

Figure 4. The four types of relations for two ranges

130

dimension, and
1

() 1
D

d

w d


 . The ovlp_r values are

computed and stored in the initialization procedure, and will
be directly read during iterations.

Next, the overlapping degree of a ruleset is defined as
follow:

,
2

,()

1_ () _ (,)
i j i jr r RS r rsize RS

ovlp g RS ovlp r i j
C  

  

which is the average of the ovlp_r of all the rule pairs. Thus
in SwinTop, the objective function (i.e., the accurate overall
memory consumption) can be replaced by:

�
1 2

1

(, , ,) _ ()
i

K

N r m i
m

M r r r overlap g r


  

When implementing SwinTop, the estimation objective
function �M is first applied in the early stage of iterations, for
efficiently finding a near-optimal grouping of rules. The
accurate objective function M is then applied for acquiring
the optimal grouping.

VI. EVALUATION

A. Data Set and Test-bed

The effectiveness and performance of the proposed
SwinTop approach is evaluated using publicly available five-
dimensional packet classification rulesets from ClassBench
[5]. We use in total 18 rulesets, each of which is named
according to its type (ACL: access control list, FW: firewall,
IPC: IP chains) and size (100, 1K, 5K, 10K, 20K, 50K).

On an HP Z220 SFF workstation with 3.40GHz CPU,
16GB memory and 64bit Ubuntu 12.04, we implement
SwinTop along with the two state-of-the-art partitioning
algorithms, EffiCuts and ParaSplit, for comparison. The
number of sub-rulesets is set to 8 for SwinTop and ParaSplit
in all cases. For EffiCuts the number depends on the
selective tree merging strategy and usually exceeds 8.

B. Effects of Combining PSO and GA

The iteration design of SwinTop is based on the revision
and combination of classic PSO and classic GA. To verify
the effects of this strategy, we implement the two classic
optimization algorithms as well, using the same parameters

as SwinTop (e.g., population size, crossover/mutation
possibility, inertia/self-cognition/social-cognition weight,
etc).

On each of the rulesets ranging from 100 to 5K, the three
intelligent optimization algorithms (PSO, GA and SwinTop)
are applied with the same initial population. We record the
memory consumption of current best grouping when the
iteration reaches 500 steps, 5000 steps, as well as when it
meets the termination criteria.

In Table IV, the experimental results compared with
classic PSO and GA manifest that the revised and hybrid
swarm intelligent algorithm improves both the efficiency and

accuracy of convergence. Specifically, in the early stage of
iterations (see the memory consumptions of the 500th step),
SwinTop searches for better solutions as fast as PSO does
due to the target oriented strategies (i.e., location updates or
crossover with excellent individuals); In the later stage of
iterations (see the memory consumptions of the 5000th step
and TERM.), SwinTop successfully avoid trapping into local
optimum (which PSO is much likely to encounter due to the
lack of solution perturbation). As the basis of the
combination of PSO and GA, the introduction of
“compatibility” enables the algorithm to adaptively switch
between the two strategies during iterations.

TABLE IV. MEMORY CONSUMPTION IN DIFFERENT STATES OF
ITERATIONS (KB)

Algorithm
of

iterations

ACL FW IPC

1K 5K 1K 5K 1K 5K

Classic
PSO

500 139 1312 282 1720 146 1308

5000 80 429 56 799 84 615

TERM. 78 433 53 455 83 405

Classic
GA

500 158 1380 319 1774 157 1341

5000 79 483 55 1018 84 670

TERM. 75 379 51 392 70 351

SwinTop

500 135 1320 243 1713 134 1312

5000 81 428 54 682 83 586

TERM. 75 368 51 375 70 324

Figure 5. Memory consumption: SwinTop vs. traditional packet classification algorithms

131

C. Memory Efficiency

The memory performance of SwinTop is first compared
against two representative packet classification algorithms,
HiCuts and HyperSplit, in terms of memory consumption. In
our workstation with only 16GB memory, it is always
infeasible to build the decision trees for rulesets larger than
20K when simply using HiCuts or HyperSplit alone. Thus
only the 100~10K rulesets are used for this experiment. The
results are shown in Figure 5. For ACL rulesets, the memory
reduction of ruleset partitioning is not significant (because
the ACL rules are not intensively overlapped [4]). For FW
and IPC rulesets, SwinTop achieves 1 to 4 orders of
magnitude lower memory consumption compared with
HiCuts and HyperSplit. For example, instead of building one
huge decision tree for FW10K, by pre-partitioning the ruleset
into 8 subsets and building 8 decision trees accordingly, the
overall memory consumption is reduced from over 1GB to
719KB, which can fit in small-but-faster kinds of RAMs.

For comparing memory performance with EffiCuts and
ParaSplit, the larger-sized rulesets (20K and 50K) are also
tested. As shown in Figure 6, SwinTop outperforms the other
two algorithms on all the rulesets. On average, SwinTop
requires 50% less memory than EffiCuts and 25% less
memory than ParaSplit. It benefits from SwinTop’s
capability of finding the global optimum grouping of rules.

D. Effectiveness of Memory Comsumption Estimation

In Section V, overlapping degree (OD, for short) is
introduced to approximate the trends of memory
consumption. On the representative ruleset FW_1K, we use
OD-oriented SwinTop to optimize grouping, while at the
same time calculating the accurate memory consumption
(MC) in each iteration step. As shown in Figure 7(a) and
7(b), OD and MC share similar trends (i.e., as OD dives, so
does MC), and the linear fitting effect is preferable, which
meets the hypothesis of nice estimation.

Figure 7(b) also indicates that the best OD does not
represents the best MC. However, the goal of OD in not to
precisely replace MC, it is to provide a rough but much more
efficient way to lower the objective function for the early
stage of iterations. According to our test, compared with
using MC all along, the introduction of OD achieves on
average 20-fold reduction in convergence time.

VII. CONCLUSION

To tackle the urgent memory utilization issue of packet
classification function in network devices, this paper
proposes SwinTop, a new ruleset partitioning approach for
significantly reducing the size of memory consumed by the
traditional packet classification algorithms. Based on the
study of ruleset characteristics and the modeling of the
ruleset partitioning problem, SwinTop develops a novel
swarm intelligence based algorithm to seek for the global
optimum grouping of rules that minimizes the memory
consumption of packet classification decision trees. The
design of SwinTop is extensible to future network
functionalities with larger, more complex, and higher-
dimensional rulesets used.

REFERENCES
[1] G. Pankaj, and N. McKeown, “Algorithms for packet classification,”

IEEE Transactions on Network, 2011.

[2] S. Haoyu, “Design and evaluation of packet classification systems,”
Doctoral dissertation, Washington University, Department of
Computer Science and Engineering, 2006.

[3] Z. Kai, L. Zhiyong, and G. Yi, “Gear up the classifier: scalable packet
classification optimization framework via rule set pre-processing,”
Proc. of the ISCC, 2006.

[4] Q. Yaxuan, X. Lianghong, Y. Baohua, X. Yibo, and L. Jun, “Packet
classification algorithms: from theory to practice,” Proc. of IEEE
INFOCOM, 2009.

[5] http://www.arl.wustl.edu/~hs1/PClassEval.html

[6] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh
Govindan, “Scalable rule management for data centers,” Proc. of
NSDI, 2013.

[7] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar,
“Efficuts: optimizing packet classification for memory and
throughput,” Proc. of ACM SIGCOMM, 2011.

[8] J. Weirong, V. K. Prasanna, and N. Yamagaki, “Decision forest: a
scalable architecture for flexible flow matching of fpga,” Proc. of
IEEE Field Programmable Logic And Applications, 2010.

[9] F. Jeffrey, W. Xiang, Q. Yaxuan, and L. Jun, “ParaSplit: a scalable
architecture on fpga for terabit packet classification,” Proc. of IEEE
High-performance Interconnects, 2012.

[10] M. H. Overmars, and A. F. van der Stappen, “Range searching and
point location among fat objects,” Journal of Algorithms, vol. 21(3),
1996.

Figure 6. Memory per Rule: SwinTop vs. EffiCuts vs. ParaSplit

 (a) Linear fitting of MC and OD (b) OD-oriented iteration
Figure 7. Effectiveness of memory consumption estimation

132

[11] G. Pankaj, and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” Proc. of Hot Interconnects, 1999.

[12] S. Singh, F. Baboescu, G. Varghese, and W. Jia, “Packet
classification using multidimensional cutting,” Proc. of ACM
SIGCOMM, 2003.

[13] http://en.wikipedia.org/wiki/Swarm_intelligence

[14] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” Proc. of
IEEE International Conference on Neural Networks, 1995.

[15] J. H. Holland, “Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence,” U Michigan Press, 1975.

[16] G. Rudolph. “Convergence analysis of canonoical genetic
algorithms” IEEE Transaction on Neural Networks, 1994.

[17] H. Peng, X. Gaogang, K. Salamatian, and L. Mathy, “Meta-
algorithms for software-based packet classification,” Proc. of IEEE
International Conference on Network Protocols, 2014.

133

