
Abstract-- Packet classification on multiple header fields is one
of the basic techniques for policy enforcement applications in
network devices. In this paper, we analyzed the existing packet
classification algorithms from a theoretical point of view,
focusing on the information exploitation in each algorithm. A
novel packet classification scheme is proposed that exploits not
only the structural characteristics of network packet classifiers
but also the statistical characteristics of network traffic flows.
The proposed algorithm D-Cuts (Dynamic Cuttings) is based on a
decision tree data structure similar to but improved than the
previously well-known algorithm HiCuts. However, the memory
allocation function in D-Cuts is significantly improved by
introducing the statistical characteristics of network traffic. A set
of unified discrimination criterion based on entropy
measurement is also adopted by D-Cuts. Experimental results
show that D-Cuts performs superior to other popular multiple-
field packet classification algorithms. Its average search time is
on the same order as for the HiCuts optimized for speed while its
memory usage is on the same order as for HiCuts optimized for
space.

Index terms—packet classification, traffic statistics, search

space.

A. INTRODUCTION

The Internet is becoming a more and more complex

place to live in because of its use for more and more
mission critical tasks executed by organizations. It is
desired that those critical activities not be subverted
either by heavy traffic sent by other organizations or by
malicious intruders. Traffic engineering, access control,
and many other services require a discrimination of
packets based on multiple fields of packet headers,
which is called packet classification.

Packet classification is employed by policy enforcing
devices to implement a number of advanced Internet
services, such as policy-based routing, access-control,
service differentiation, load balancing, traffic shaping
and traffic billing. Each service requires the Internet
devices to classify packets into different flows and then
perform appropriate actions depending upon which flow
the packet belongs to. These flows are specified by a
classifier containing a set of rules.

With the rapid development of policy enforced
networks, packet classification becomes more and more
important and there is a need for efficient packet
classification algorithms to enable high speed policy
enforcement. Several popular algorithms have been
proposed and some of them provide reasonable solutions.
Most of the new algorithms proposed in recent years,
especially the heuristic algorithms, are inspired by the

observation of redundancy in the data structure of real-
life classifiers. Such observation is introduced into the
design of packet classification algorithms to improve the
classification performance. The importance of the
observation against real-life classifiers is undeniable, but
it was a bottom-up approach and hence lack of
theoretical guidance. Therefore, it is hard to further
improve and refine those algorithms following this
direction.

Our research starts from the theoretical analysis on the
packet classification problem. We compared and
analyzed the existing algorithms from two aspects: the
exploitation of the heuristic information and the division
of the search space. Based on the conclusion of such
analysis, we present a novel packet classification scheme
that adopts network traffic statistical characteristics into
the decision tree based classification algorithms.
Compared to the well-known algorithm HiCuts, its
average search time is on the same order as for the
HiCuts optimized for speed while its memory storage
requirements are on the same order as for HiCuts
optimized for space.

The rest of the paper is organized as follows. SECTION
B gives a mathematic definition of the packet
classification problem; SECTION C compares and
analyzes the most popular existing packet classification
algorithms; SECTION D presents the reasoning to
introduce network traffic statistical characteristics into
the decision tree based data structure; SECTION E
describes the proposed algorithm Dynamic Cuttings (D-
Cuts); SECTION F illustrates the experimental results of
D-Cuts in comparison with the existing algorithms; as a
summary, SECTION G states our conclusions.

B. MATHEMATIC DEFINITION OF PACKET

CLASSIFICATION
Generic packet classification classifies a packet based

on multiple fields of its header. Each rule of the
classifier specifies a class that a packet may belong to,
based on certain specifications on the F fields
(dimensions) of the packet header. The class uniquely
determines the action associated to the rule. Each rule
has F components. The ith component of rule R ,
referred to as []R i , is a regular expression on the ith
field of the packet header. A packet P is said to match a
particular rule R , if, the ith field of the header of P
satisfies the regular expression []R i , for all 0 i F≤ < .

Yaxuan Qi and Jun Li

Packet Classification with Network Traffic Statistics

Research Institute of Information Technology (RIIT), Tsinghua University
Beijing, China, 100084

The classes specified by the rule set may be overlapping,
i.e. one packet can match several rules.

From a theoretical point of view, the F fields of the
packet header make up a multi-dimensional space, which
is called the search space in this paper. Each of the F
fields is a dimension of the search space. A packet P is
a point in the multi-dimensional search space. For the
generalized range matching, the regular expression []R i
refers to a range in the ith dimension of the search space
and all of these ranges make up a F-dimensional hyper-
cube. If a packet P matches a particular rule R , the
point P falls into the hyper-cube specified by R .
Therefore, packet classification can be treated as a point
location problem in computing geometry.

The point location problem is inherently hard to solve.
It has been proved [2] that in its fullest generality, packet
classification requires either 1(log)FO N− time and

()O N space, or (log)O N time and ()FO N space
where N is the number of rules, and F is the number of
header fields. Therefore, it is relatively simple to
perform packet classification at high speed using large
amounts of storage, or at low speed with small amounts
of storage. When matching multiple fields (in another
word, searching in multiple dimensions) simultaneously,
however, it is difficult to achieve both high classification
speed and modest storage in the worst-case.

C. ANALYSIS OF PREVIOUS WORK

The design of classification algorithms is encumbered

by worst-case bounds on search time and memory
requirements that are so onerous as to make brutal force
algorithms unusable [3]. Therefore, it will be futile to try
to find a global optimized algorithm under all
circumstances. Instead we must search for structures or
characteristics of certain classification problems that can
be exploited in pursuit of algorithms that are “fast
enough” and use “not too much” space.

The simplest classification scheme is a linear search of
each rule of a classifier. While it is very efficient in
terms of storage requirements and update time, linear
search requires a comparatively long search time of

()O N . This makes it impractical to deal with large size
classifiers as the search time increase linearly with
larger N .

In resent years, a variety of packet classification
schemes have been proposed to solve the general
problem of multi-dimensional packet classification. The
generic idea to deal with large classifiers is divide and
conquer: Most of the existing algorithms appropriately
divide the multi-dimensional search space into a certain
number of sub-spaces. Since there are fewer rules in

each sub-space, the original classification problem is
simplified and hence easier to deal with. Each algorithm
has its own way to divide the search space. Different
ways in which to apply the division depend on the
information exploited by the algorithms. Such
information includes:
1. Basic attributes of the search space, such as its

dimensionality and the ranges of value in each
dimension.

2. Structural properties of real-life classifiers,
including the distribution, redundancy and many
other characteristics of the given rule set.

3. Statistical characteristics of real-life (or specific,
particular) networks, such as the traffic flow
statistics and the hit rates of the rules.

The above items 1 and 2 are static information. They
are definitely specified by certain classification problems
(IDS/IPS interacting with firewall and introducing
firewall policies reactively can be treated as a special
case and does not impact the generalness of this claim).
The item 3 is dynamic information because statistical
characteristics of certain networks are time-variant.

Srinivasan et al. [5] proposed two algorithms Grid-of-
trie and Cross-producting. Like Hierarchical tries [4] and
Set-pruning tries [4], Grid-of-trie uses a trie-based data
structure and the search space is equally divided bit by
bit at each trie node. Superior to other trie-based
algorithms, Grid-of-trie adopts switch pointers to avoid
the time-consuming back tracking search. These switch
pointers allow the query process to switch from one sub-
space to another. Cross-producting divides the search
space according to the rule segmentations along each
dimension. Each segment refers to a sub-region in one of
the F dimensions, and the cross-product of the F sub-
regions makes up of a sub-space. Search can be done
quickly by separate lookups on each dimension and then
indexing into the cross-product table.

Gupta and McKeown [1,3] introduced two new
algorithms, RFC and HiCuts. HiCuts is based on a
decision tree structure. At each tree node, the current
search space is equally cut (divided) along a chosen
dimension. Which dimension to cut and the number of
cuttings (divisions) depend on the characteristics of the
rules belong to the node. Different from trie-based
algorithms, the division in HiCuts is not a simple binary-
division. The algorithm determines the number of
divisions according to the given rule set. RFC is really
an improved form of Cross-producting that significantly
compresses the cross-product table. In the first phase of
RFC, the division of the search space is the same as that
of Cross-producting. However, RFC is a recursive
algorithm and does not obtain the classification result
though one table lookup. The main idea of RFC is to
place the smaller cross-products into equivalence classes

before combing them to form larger cross-products. This
equivalencing of partial cross-products considerably
reduces memory requirements, because several original
cross-product terms map into the same equivalence class
[8].

Objective evaluation of the performance of each
algorithm can be done both in worst-case analysis and
experimental comparison. We list the worst-case
complexity of time and space in Table.1, from which we
found that it is not obvious that some algorithms are
superior to others. However, experimental results (given
in SECTION F) show that the decision tree based
algorithm mostly works well. This is because the flexible
data structure of the decision tree makes it possible to
exploit more useful information of real-life classifiers
into the design of packet classifiers. We summarize the
existing algorithms as three aspects:
1. The algorithm generality. Some of the existing

algorithms, such as Grid-of-trie, are designed
for 2-dimensional packet classification and not
efficient for multi-dimensional problems.
Although Cross-producting works well with
small number of rules in multiple fields, it is not
able to handle large classifiers. RFC is very
efficient for multi-dimensional classification,
but it is found that RFC consumes too much
storage for classifiers with more than 2000 rules.
HiCuts mostly works well with thousands of
multi-dimensional rules. While it is slower
compared to RFC, HiCuts is able to give a
practical solution for large classifiers. This is
because the memory requirement for the
decision tree data structure does not
explodingly increase.

2. The information exploitation. Grid-of-trie
exploits the information that some of the rules
share the same part of the prefix, so the
searching process can switch from one sub-
space to another in order to avoid the redundant
back-tracking search. RFC takes advantage of
the observation that, in real-life classifiers, the
number of overlapping regions is considerably
smaller than the worst-case, thus a recursive
mapping can be applied. HiCuts exploits much
more heuristic information in such structural
redundancy, especially some abstract
information, such as the discriminating ability
in each dimension. More information exploited,
more efficient will the algorithms be.

3. The search space division. There are two ways
to divide the search space: dividing equally and
dividing according to the rules. Grid-of-trie and
HiCuts adopt the former way. At each node,
Grid-of-trie bisects the search space while

HiCuts divides (cuts) the search space into a
certain number of equal-sized sub-spaces.
Cross-producting and RFC use the latter
method, dividing each dimension of the search
space into segments according to the given rules.
Searching in equal-sized space needs just one
operation while in unequal-sized space
(division according to the rules) it requires a
binary search with log()N operations. On the
other hand, equal-sized division is not as
discriminative as the division according to the
rules, i.e. it requires larger number of divisions
to discriminate the give rules. Figure.1 is a
simple example to compare the two ways for
division. Although at each node, HiCuts applies
an equal-sized division, but when considered
globally, the whole decision tree virtually
divides the search space into unequal-sized sub-
spaces.

Table.1 Comparison of popular algorithms. In this table N is
the number of rules, W is bit-width of header vector in a
certain dimension (e.g. for IP address, 32W =), F is
dimensionality of the search space.

Algorithm Worst time Worst space
Linear Search ()O N ()O N

Hierarchical Tries ()FO W ()O N

Cross-producting ()O FW ()FO N

Grid-of-tries 1()FO W − ()O N
RFC
HiCuts

()O F ()FO N

As a conclusion, the reason why HiCuts can exploit

more useful information is that the decision tree based
data structure of HiCuts is very flexible to adapt to
different classifiers. The proposed algorithm D-Cuts
(Dynamic Cuttings) is also based on decision tree data
structure. Different from HiCuts, D-Cuts exploits not
only the static information, but also the dynamic
information of certain networks. In addition, D-Cuts
uses an improved discrimination criterion in building the
decision tree.

Figure.1 Two ways of the search space division in one
dimension for three rules (1, 2, 3R R R). (a) refers to equal-
sized division. It needs 4 divisions to discriminate the 3 rules
and 1 operation to search. (b) is the division according to the
rules. It needs 3 divisions to discriminate the rules but more
(up to 2) search operations.

D. STATISTICAL CHARACTERISTIC OF NETWORK

TRAFFIC

Most of the existing classification algorithms exploit

the static information, such as the structural
characteristics of real-life classifiers. They assume all
incoming packets are distributed uniformly in the search
space. However, it is unlikely that the traffic in a certain
network evenly spread over all IP addresses and/or port
numbers. For example, most Internet sessions are usually
Web applications so that majority packet headers are
having destination port numbers of 80 or 443 (HTTP or
HTTPS). In a particular network, some of the rules may
be set to prevent networks from virus or other attacks
and thus applicable for almost no traffic being classified.
Although most of time there is no packet matches them,
these rules have to be kept in the classifier for the sake
of security, and thus make the division of the search
space more complex.

Each network has its own traffic patterns, and the
packet classification process is affected by the dynamic
characteristics to a certain extend. Our study focuses on
the exploitation of network traffic characteristics to
achieve more time-efficient and less memory-consuming
classification algorithms. Challenges of adopting this
new idea include:
1. Extracting the dynamic information of network

traffic and expressing them in an appropriate
form that can be employed in classification
algorithms. The dynamic characteristics of
network traffic exploited in our algorithm are
the IP address and port number statistical
distribution in the search space. Periodic
sampling is a practical way to gather statistical
information of IP and port distribution
characteristics. After normalization, the
statistical information is introduced into the

proposed classification algorithm as prior
probability of the IP addresses and port
numbers.

2. Optimizing the algorithm dependency to the
statistical characteristics of network traffic.
Different from the static structural
characteristics of given classifiers, the dynamic
characteristics of network traffic are time-
variant. In the proposed D-Cuts algorithm, the
extent to which it depends on the traffic
statistics is determined by setting two bounds
for the space factor.

3. Applying the statistical characteristics in
classification algorithm. D-Cuts exploits
statistical characteristics of network traffic by
dynamically adjusting the memory allocation
function. Nodes corresponding to larger traffic
flow will be allocated with more memory
storage to reduce the depth of the sub-trees.

Details of the considerations will be elaborated in the
next section.

E. THE PROPOSED ALGORITHM D-CUTS

E.1 An Example

To illustrate the D-Cuts algorithm we proposed in this
paper, a simple 2-dimensional classifier (similar to the
classifier used in [4]) is used for demonstration, shown
in Table.2. This classifier is represented with two fields
in a 2-dimensional space (X-Y plane), where each rule is
represented by a rectangle (Figure.2).

Like HiCuts, the classification scheme D-Cuts is based
on a decision tree structure. However, the way to
implement cuttings on the search space is improved by
exploiting not only the structural characteristics of the
specific classifier, but also the network traffic statistical
characteristics. Spaces where there is more traffic will be
cut into more sub-spaces in order to reduce the depth of
the sub-trees.

Table 2. A sample classifier with 6 two-dimensional rules, the
search space is X-Y plane.

Rule Field1(X) Field2(Y)
R1 00* 00*
R2 0* 01*
R3 1* 0*
R4 01* 00 *
R5 0* 1*
R6 1* 1*

Figure.2 Geometric representation of the sample classifier in
Table.2.

In HiCuts, space available for each N-size node (node

with N rules) v is determined by the
function ()SpaceAv v :

() *SpaceAv v N spfac= (1)
Where spfac is the space factor [1] and often takes

value through 1 to 4 for a time/space tradeoff. A larger
spfac is likely to consume more memory while cost less
search time. ()SpaceAv v sets an upper bound for the
number of cuttings and, in the example, we simply
define the cutting number ()numCuts v by:

() ()numCuts v SpaceAv v= (2)
Figure.3 shows how HiCuts works for the sample

classifier listed in Table.2.

Figure.3 Decision tree built by HiCuts for the sample
classifier listed in Table.2. Leaf nodes (rectangle) have only
one rule while internal nodes (ellipse) have more than one
rules.

In D-Cuts, we simply revised the space allocation

function for node v by:
() * ()*10SpaceAv v N P v= (3)

Where ()P v is defined as the probability of traffic
falling into the region covered by node v along
X dimension. In case of 40% traffic falls into region

[000, 001] of X dimension and the other 60% traffic
distributed uniformly in [010, 111] along X , Figure.4
illustrates the decision tree built by D-Cuts.

Figure.4 Decision tree built by D-Cuts for the sample
classifier listed in Table.2, with 40% traffic falls into region
[000, 001] of X dimension.

It can be derived from Figure.3 and Figure.4 that the

number of nodes in D-Cuts does not increase while the
average depth of decision tree decreases, comparing to
HiCuts. Worst-case search time (determined by the
depth of the decision tree) stays the same while the
average search time is improved because 40% traffic
travels through the 2-level sub-tree in D-Cuts in stead of
the 3-level sub-tree in HiCuts.

E.2 Extracting Statistical Characteristics of Network
Traffic

Network traffic statistical characteristics are obtained
by periodic sampling. First, we get the packet header
distribution information along each dimension, such as
IP prefixes (16-bit for B class) and port number ranges.
For example, a two-dimensional array of 4*65536
entries { [][], 0,...,3, 0,...,65535}count d i d i= = can
be used to count source/destination B-class IP prefixes
(for d=0 and 1) and source/destination port numbers (for
d=2 and 3), e.g. [3][80]count is the number of sampled
packets with destination port 80.

After sampling step, a normalization process is applied
to { [][]}count d i . We use
{ [][], 0,...,3, 0,...,65535}prior d i d i= = to denote the
normalized distribution of network traffic, where

65535

0

[][]
[][]

[][]
j

count d i
prior d i

count d j
=

=

∑
 (4)

E.3 Introducing Statistical Characteristics Of Network
Traffic To D-Cuts

SECTION E.1 gives a simple version of function
()SpaceAv v to illustrate the exploitation of network

traffic statistical characteristics. Here we define two
general forms of function ()SpaceAv v .
FORM-1:

() * ()

* ((min()) *)l l
min v

SpaceAv v N spfac v

N spfac P P K

=

= + −
 (5)

3

0

1
[][]

4

d

d

b
l

v
d i a

P prior d i
= =

= ∑∑ (6)

for max() min() 0

for max() min() 0

() /(max() min())

0

l l

l l

l l

max min

P P

P P

K spfac spfac P P

K

− >

− =

= − −

=

 (7)

where N is the number of rules associated with node
v; l

vP is the prior probability assigned to node v at level l
of the decision tree; [,]d da b is the search range of node

v along the dth dimension; max()lP and min()lP are
the maximum/minimum prior probability among all
nodes in the same level of the decision tree; minspfac

and maxspfac are bounds of the space factor.

FORM-2:
() * ()

* (* * , ,)l l

v avg min max

SpaceAv v N spfac v

N BOUND P D spfac spfac spfac

=

=
 (8)

where () / 2avg max minspfac spfac spfac= + ; lD is the

number of nodes at the same level as node v; l
vP takes

the same definition in (6); and (, ,)BOUND a b c is
defined as the following that has value a with lower
bound as b and upper bound as c (for b c≤):

(, ,)

a

BOUND a b c b

c

=






b a c

a b

a c

≤ ≤

<

>

 (9)

Different from the space factor spfac in HiCuts, the
space factor spfac is not a constant in D-Cuts. It takes
value in [,]min maxspfac spfac . Here minspfac can be

specified for space-optimization, while maxspfac is
specified for time-optimization. Therefore, it can be seen
in both FORM-1 and FORM-2 that nodes with larger l

vP ,
i.e. larger traffic volume, will have more memory
reserved for cuttings to increase the search speed.

E.4 Selecting The Number Of Cuttings (,)numCuts v d

An approximate memory measurement for the cutting
of node v is defined as [1]

(,)

1

(,) () (,)
numCuts v d

i
i

sm v d numRules v numCuts v d
=

= +∑ (10)

where d is the dimension to cut, iv is a child node of v,

()inumRules v is the number of rules colliding with

iv (Rule R is said to “collide with” node v means R

spans, cuts or is contained in the range associated with v).
For 0,...,3d = (,)numCuts v d is determined by
maximizing sm(v, d) in (10) with the limit:

(,) ()sm v d SpaceAv v< (11)

E.5 Selecting The Dimension To Cut ()dimCut v

To select a dimension to cut at node v, ()dimCut v is

determined by the discriminative functions that can be
found in [1] and [7]. In our experiment, we found that
under certain circumstances, these discriminative
functions take the same value, i.e. they cannot determine
which dimension is more discriminative to apply the
cuttings. Figure.5 is an example to show that the
discriminative function (given in [1])

min(max((,)))id i
numRules v d

∀ ∀
 (12)

fails to determine ()dimCut v .

Figure.5 In STEP1, cut1 divide the search space [0000, 1111]
into two equal-sized sub-spaces [0000, 0111] and [1000, 1111].
Both DIM1 and DIM2 have two rules fall into the sub-space
[0000, 0111]. Therefore Eq.12 cannot discriminate which
dimension to cut.

Note that most of the discriminative functions are

based on the number of cuttings. We give an improved
discriminative function that does not depend on the
number of cuttings. This function describes the
uniformity of the rule segments distributed in each
dimension. For the equal-sized division at each tree node
in D-Cuts, it is favorable to divide the dimension with
most uniformly distributed segments. Eq.13 and Eq.14
give the definition of the improved discriminative
function

max((,) / (,))
d

segEntropy v d numSeg v d
∀

 (12)

(,)
, ,

1 , ,

(,) * log
numSeg v d

i d v d

i v d i d

seg range
segEntropy v d

range seg=

= ∑ (13)

where ,i dseg is the ith segmented rejoin along the

dth dimension according to the rules belonging to node
v; ,v drange is the full range along dimension d in the

search space of v; (,)numSeg v d is the total number of
segments along dimension d in the search space of node
v. Adopting this discriminative function, the values
computed for the two dimensions in Figure.5 are: 0.43
and 0.54. Therefore it is more favorable to cut along the
second dimension.

E.6 Implementation Flow-chart

As a summary, the flow-chart shown in Figure.6
describes the implementation of D-Cuts. Because we use
the Breadth First methodology to build up the tree, each
time we try to build a node, all the nodes at the parent
level is already done. This makes it possible to compute
the two forms of ()SpaceAv v for each node.

F. EXPERIMENTAL RESULTS

F.1 Databases

We evaluate D-Cuts both on real-life firewall and core
router rule sets as well as on synthetic rule sets. The real-
life rule sets are obtained from typical enterprise
networks and major ISPs. The two firewall rule sets are
named FW1, FW2, the two router rule sets are CR1,
CR2, and the synthetic rule set is SN1. The number of
rules in the five rule sets varies from 68 to 2000. All the
classifiers are 4-dimensional with source/destination IP
addresses represented as prefixes and source/destination
port numbers represented as ranges. It is reported in [7]
that the structural characteristics of firewall policy tables
(rule sets) are different from core router access control
list (ACL, also rule sets), e.g. most source port ranges in
core routers are [0, 65535], while in firewall policy
tables source port ranges are assigned more specifically.
Statistical characteristics of network traffic are obtained
by sampling or reasonable manual generation.
Characteristics of the testing traffic flow are different
from the sampling traffics in certain extent, in order to
simulate the time-variant networks.

Figure. 6 Flow-chart for implementation of D-Cuts. binth in
the chart is a constant parameter defined as the maximum
number of rules for leaf nodes. In D-Cuts, we set binth=8.

F.2 Performance Evaluation

To test the performance of D-Cuts algorithm with both
real-life and synthetic classifiers, we examined, for each
classifier, the number of memory accesses in the query
process (indicating search time) and the amount of
memory usage for the whole data structure built by the
algorithm. Note that the search time indicates the
average search time which is the mean of the memory
accesses of all testing packets.

The first comparison is done between HiCuts and D-
Cuts on FW2. Figure.7 shows the time/space
performance in histograms for HiCuts-x (spfac x=)
and D-Cuts (using two forms of ()SpaceAv v). It is
obvious that in HiCuts, when the space factor spfac
increases, the search time decreases while the memory
usage blows up. Compared to D-Cuts, the search time is
very close to the optimized search time (HiCuts-4) while
the memory usage is just about 2/3 of HiCuts-4. D-Cuts
effectively balances the storage space usage and the
average searching time.

Figure.7 Time/Space trade-offs for FW2. Memory usage
(Space) are shown by light histograms, Memory accesses
(Time) are shown dark histograms. HiCuts-x refers to HiCuts
with spfac=x. D-Cuts uses FORM1 ()SpaceAv v function
while D-Cuts’ uses FORM2.

Figure.8 and Figure.9 are the comparison on CR2 and
SN1 via memory usage and average search time. It can
be seen that the average search time of D-Cuts is on the
same order as for the HiCuts optimized for speed
(HiCuts-Topt in the figures) while its memory usage is on
the same order as for HiCuts optimized for space
(HiCuts-Sopt in the figures).

Figure.8 Time/Space trade-offs for CR2. Memory usage
(Space) are shown by light histograms, Memory accesses
(Time) are shown dark histograms. HiCuts-Sopt is space-
optimized while HiCuts-Topt is time-optimized.

Figure.10 is the comparison between HiCuts and D-
Cuts via memory usage, average and worst-case search
time on FW1. Note that the improvement of the average
search time is much greater than that of the worst-case.
This is because D-Cuts focus on reducing the depth of
the decision tree where there is larger traffic. Therefore,
if there is no significant traffic flow going though the
deepest nodes of the tree, D-Cuts will not reduce the

depth of them because it dose not help to reduce the
average search time.

Figure.9 Time/Space trade-offs for SN1. Memory usage
(Space) are shown by light histograms, Memory accesses
(Time) are shown dark histograms. HiCuts-Sopt is space-
optimized while HiCuts-Topt is time-optimized.

Figure.10 Time/Space trade-offs for FW1. From left to right
are memory usage (Space), average memory accesses (Av-
Time) and worst-case memory accesses (Ws-Time). HiCuts-
Sopt is space-optimized while HiCuts-Topt is time-optimized.

Table.3 Memory requirements for the popular packet
classification algorithms.

 RFC ABV HiCuts
(Sopt)

HiCuts
(Topt)

D-Cuts

FW1 816 6.2 12 28 23

FW2 910 34.8 15 129 57

CR1 966 1077 85 100 60

CR2 2,220 3,157 2,653 4,235 2,031

SN1 ∞ * 2435 202 789 473

*Running Out of Memory

Comparison of memory usage against other popular

packet classification algorithms is listed in Table.3. The
worst-case search time (memory accesses) for the
decision tree based algorithms varies from 30 to 130
memory accesses. In comparison, the fastest algorithm

RFC needs just 12 memory accesses while ABV requires
up to 200 memory accesses.

G. CONCLUSIONS

Worst-case bounds on search time and memory usage

greatly hamper the design of generic algorithms for
packet classification. Instead we must search for
characteristics of classification problems in pursuit of
“fast enough” algorithms using “not too much” memory
storage. Our research follows the idea that more heuristic
information are adopted, better classification
performance are achieved. The presented algorithm D-
Cuts (Dynamic Cuttings) bases on both structural
characteristics of real-life classifiers (static information)
and statistical characteristics of certain network traffic
(dynamic information). Experimental result shows that
D-Cuts prominently improves the average search time
while keeps modest memory usage.

Future work can be conducted to analyze the impact of
fast changing traffic patterns and burst caused by virus
or other attacks. Future work also includes introducing
traffic statistical characteristics into other existing
algorithms to develop improved algorithms. The code
we wrote for D-Cuts, HiCuts, RFC, and ABV will be
publicly available (on line) to encourage
experimentation with classification algorithms.

H. ACKNOWLEDGEMENT

The authors would like to express their thanks to Dr.
Enke Chen, as well as Quan Huang, for their helps in
providing and preparing data for the experiments.
Thanks also due to Mr. Dongyi Jiang and other
colleagues of RIIT Network Security Lab for their
generous suggestions and encouragement.

I. REFERENCE

[1] P. Gupta and N. McKeown, “Packet classification

using hierarchical intelligent cuttings,” in Proc. Hot
Interconnects, 1999

[2] M.H. Overmars and A.F. van der Stappen, “Range
searching and point location among fat objects,” in
Journal of Algorithms, 21(3), 1996

[3] P. Gupta and N. McKeown, “Packet classification
on multiple fields,” in Proc. ACM SIGCOMM 99, 1999.

[4] P. Gupta, and N. McKewon, “Algorithms for
Packet Classification, ” IEEE Network, March/April
2001, 2001.

[5] V. Srinivasan, et al., "Fast and Scalable Layer Four
Switching," Proc. ACM SIGCOMM, 1998.

[6] F. Baboescu, and G. Varghese, "Scalable Packet
Classification," Proc. ACM SIGCOMM, 2001.

[7] F. Baboescu, and G. Varghese, "Packet
classification Using Multidimensional Cutting," Proc.
ACM SIGCOMM, 2003.

[8] F. Baboescu, S. Singh, and G. Varghese, “Packet
classification for core routers: Is there an alternative to
CAMs?” Proc. INFOCOM, 2003.

[9] V.Srinivasan, S.Suri, and G.Varghese, “Packet
classification using tuple space search,” in Proc.
SIGCOMM, 1999.

[10] S. Singh and F. Baboescu, “Packet classification
repository.” http://ial.ucsd.edu/classification

[11] A. Feldman and S. Muthukrishnan, “Tradeoffs for
packet classification,” in Proc. INFOCOM, 2000.

[12] T. Lakshman and D. Stiliadis, “High speed
policy-based packet forwarding using efficient multi-
dimensional range matching,” in Proc. SIGCOMM,1998.

