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Abstract—Malware traffic classification is an essential pillar
of network intrusion detection systems. The explosive growth
of traffic encryption makes it infeasible to classify malware
traffic with port-based or signature-based approaches. Nowadays,
researchers and industrial developers turn to learning-based
approaches for encrypted malware traffic classification, mining
the statistical patterns of traffic behaviors. However, different
machine learning models with different hyper-parameters can be
used, and one can hardly explain why a learning approach works
or not. To alleviate this problem, this paper conducts encrypted
malware traffic classification with the automated machine learn-
ing (AutoML) approach which contains 7 representative models
in the pipeline and realizes automated hyper-parameter tuning
and model assembling. Experimenting on real-world encrypted
malware traffic, this paper analyzes the performance of the
ensemble model of AutoML and how each model performs in
detail to understand its contribution. Moreover, the analysis
of AutoML feature selection shows discriminant features on
encrypted malware traffic especially TLS metadata related. The
concrete experiments and analysis give insight to the following
studies on encrypted malware traffic classification.

Index Terms—Malware, Encrypted Network Traffic, Auto-
mated Machine Learning, TLS, Traffic Classification

I. INTRODUCTION

Traffic classification is an automated process that has been
introduced to categorize computer network traffic according
to various parameters (for example, based on port number
or protocol type) into several traffic classes. The outstanding
abnormal patterns are mostly referred to us as anomalies or
outliers in this context.

Network encryption refers to the method of encrypting
messages before and decrypting them after they are transmitted
over a network. While it is crucial and necessary to protect
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the confidentiality of network communication and the privacy
of network users, however, encryption prevents traditional
network security products from inspecting the payload of
network traffic being transmitted.

Taking into account that in a network setting, Transport
Layer Security (TLS) has been the most dominant protocol
to offer better encryption for network traffic, genuine traffic
has seen fast adoption of the TLS standard over the previous
decade, taking up as much as 60% of network traffic [1].

Different techniques have been used in anomaly detection,
and data-driven approaches have been proven to be most
effective in all aspects when it comes to encrypted network
traffic, as it has advanced and extended capabilities to better
understand the correlation between data or deeper meaning
from large scale network traffic data.

In numerous studies, mixture or multi-level models have
been recommended to expand the effectiveness and increase
the accuracy in classifying network traffic specifically in
the detection of anomaly [2-7]. The combined utilization of
various dataset mining strategies is known as an ensemble ap-
proach, and the way toward learning the relationship between
these ensemble methods is called meta-learning.

The approach of this research work is to introduce the
significance of each learning paradigm and perceive how every
one of them can be used to benefit overall performance, than
pick the best one over the others. This methodology will lead
us to find an augmented solution to reduce false alarms and
computation time. In this paper, we will design, develop, and
evaluate an efficient classifier for encrypted network traffic that
accurately categorize malware traffic into their given families
with the use of an automated machine learning approach.

The paper is organized as follows: Section II outlines related
previous works concerning the basis of our methodology, and



Section III describes our proposed approach in a more detailed
way as follow: how datasets are captured, how features are
selected and extracted, and how evaluation experiments are
conducted and analyzed, and section IV shows the actual
experimental results with graphs that illustrate the evaluation
metrics in a bigger picture, and section V outlines the conclu-
sion.

II. BACKGROUND

Recognizing and identifying threats in encrypted network
traffic presents critical difficulties. However, two answers have
been advanced in the recent years to take care of this issue.
The traditional techniques basically decrypt all traffic that
flows through a security apparatus, thus referred as Man-in-
the-Middle (MITM) approaches [11]. When the traffic has
been decoded, traditional signature-based strategies, like Snort
[12], can be applied. While this methodology can be fruitful
at discovering threats, there are a few significant inadequacies.
In the first place, this technique does not regard the intended
security protection on the network. Second, this technique is
computationally costly and hard to convey and keep up. Third,
this strategy depends on malware to not change their conduct
when a MITM intervenes.

The advanced techniques for detecting threats in encrypted
network traffic use flow-based metadata. These techniques
analyze significant features of a network flow, such as the
number of packets and bytes within a flow. This informa-
tion is ordinarily sent out and put away as IPFIX [13] or
NetFlow [14]. There have been a few papers that stretch the
boundaries of conventional flow monitoring frameworks. For
example, utilizing NetFlow and outside reputation scores to
classify botnet traffic [15]. These work can likewise be applied
to encrypted network traffic, yet does not exploit the TLS-
explicit data signatures.

There has been a lot of previous work in the field of
anomaly detection with the use of Machine Learning (ML)
and the most challenging aspect of it is dealing with encrypted
traffic, mainly extracting and selecting important features that
have a degree of differentiation as well as finding effective
ML models which accurately detect malicious flows and be
able to adapt to various scenarios.

With regards to the supervised learning approach, straight-
forward multi-classifier model has been proposed for being
used specifically for anomaly detection in network traffic
dependent on big data [8]. With evaluation performed on
the NSL-KDD dataset by utilizing the Weka tool for data
pre-processing, the offered model has shown nice outcomes
regarding anomaly detection accuracy and speed in general.
Comprised of the Decision Tree (or J48), LogitBoost, IBk, Ad-
aBoost, RandomTree classifiers, the model has not been hyper-
parameter tuned to reach the maximum accuracy. In contrast,
our work uses an automated machine learning approach that is
rich in hyper-parameter tuning, and it significantly minimizes
the computation time.

Aljawarneh and others [9] proposed utilizing a hybrid
classifier approach comprising of J48, MetaPagging, Random

Tree, REPTree, AdaBoostMI, DecisionStump, and NaiveBayes
classifiers, with high accuracy and minimization of training
time. However, algorithms were hand-picked and parameters
were not fully optimized in this work, dissimilar to our
approach with an automated feature selection and ensemble
which is fully optimized and suitable in realtime scenarios
due to its adaptability.

Imamverdiyev and Sukhostat [10] proposed a method that
depends on informative data features for anomaly detection
in network traffic. A new advanced method is described by
the size and number of features which has been the funda-
mental issue in the analysis of encrypted network traffic. By
mainly focusing on the most discriminant features, the feature
selection (also known as reduction) procedure significantly
improved the efficiency and accuracy.

Notwithstanding the idea of pure flow-based features to
distinguish encrypted network traffic of malware, there have
been numerous papers that increase and extend detailed data
features about a flow [16-24]. For example, some extracted
size and inter-arrival time of packets to get more insight
about a flow, and others examined data features dependent
on the packet size to analyze site fingerprinting attacks within
encrypted network traffic. However, in our work, we mainly
focused on identifying malware families by analyzing TLS
metadata features.

There has been previous related work that employs active
probing [25] and inactive monitoring to acquire perceivability
into how TLS is utilized over the network [26]. In contrast,
our outcomes explicitly prove that malware’s utilization of the
TLS protocol and the presence of TLS metadata features can
be of great help in classifiers.

Various ML algorithms have been employed to identify
malicious events, and the performance of those approaches
is determined by the features and algorithms. MalFinder,
an ensemble learning-based framework for malicious traffic
detection, broadened the dimensions of statistical features
and sequence features to portray network traffic [36]. Feature
importance analysis and differentiation experiments delineate
the adequacy of their new features. Among their chosen
classifiers reasonable for malicious traffic detection, boosting-
based classifiers XGBoost and LightGBM could lessen bias,
and bagging-based classifier Random Forest could reduce
variance. Stacking, which is the integration strategy for the
classification results utilized in their system, could improve
the speculation capacity of the technique. In comparison, our
AutoML approach leverages a voting-stacking scheme with
fully tuned parameters to further enhance the ensemble model
performance.

Malware grouping and family attribution have had a great
deal of openness in scholarly writing [27-30]. Interestingly,
our work gives a better data collection approach to get more
detailed insight from network flows and explore how malware
flows utilize intraflow data and TLS metadata, and shows
how the features that we selected exposes a high degree of
differentiation for achieving an accurate and effective malware
identification and family attribution.



III. METHODOLOGY

The adaptability of the existing approaches have been facing
challenges. Automated methods are mainly used in dynamic
scenarios where adaptability is a crucial characteristic to take
into account.

Many existing works use the pre-selected feature approach,
however, pre-selected features are really limited and may not
include all/enough heuristics for traffic classification, so auto-
mated feature selection is necessary. Hand-picked algorithms
and their combination has been being difficult especially in
making choices and optimizing parameters, hence an auto-
mated ensemble solution is the way to go.

In this section, we are mainly analyzing and extracting fea-
tures that are having a degree of differentiation for classifying
encrypted malware traffic into their given families as well
as proposing an automated machine learning approach which
outputs a new hybrid ensemble model composed of best classi-
fiers with fine-tuned parameters to achieve maximum accuracy
while reducing false alerts and minimizing computation time.

A. Data Collection

In our study, we used a real traffic dataset that contains
3 TLS encrypted malware families traffic captured from our
sandbox in 2020.

To collect raw network traffic data, we adopted the open-
source package named Cisco Joy [31]. It is usually used to
capture and analyze the network flow data (SourcelP, Destina-
tionIP, SourcePort, DestinationPort, Proto, Number of Bytes,
Number of Packets, and so on), intraflow data (Sequence of
Packet Lengths and Times, Byte Distribution and Entropy,
and so on), TLS metadata (Ciphersuites, Extensions, Server
Name Indication (SNI), Certificate Strings, etc.), DNS data
and HTTP data, for network research and security moni-
toring. Cisco Joy can effectively extract data features from
live network traffic or packet capture (pcap) files, using a
flow-oriented model like that of IPFIX or Netflow, and then
represent all these data features in JSON format. It is also
equipped with various analysis tools that can be applied to
these data for different purposes. Cisco Joy has been used
by many researchers in exploring data at scale, especially in
network security, and threat-relevant data.

B. Feature Selection

The choice of relevant and discriminant features is arguably
one of the most important and crucial steps in the creation
of a high quality model suitable for anomaly detection tasks.
Preferably, these selected features must have the following
properties to fully maximize detection while minimizing man-
agement and storage costs [32]:

o Compact: Considering that the number of bits needed
to store one observation (composed of multiple relevant
features) should be significantly smaller than the original
flow size to ensure that a large number of meaningful
observations can be fully stored and re-used later for
training purposes.

o Informative: the selected features must contain relevant
insights to the initial problem and should be as inde-
pendent as possible from one another to achieve better
results.

o Economical: collecting and capturing network flows and
extracting features should not require excessive comput-
ing power and time.

Considering the observations and a study of TLS parameters
[32] by Cisco, the features that have been selected by Cisco
have been presented in Fig. 1. They can be grouped into 3
following categories:

o Flow Metadata: data features that are not related to TLS

but are observable in any NetFlow over the network.

o Distributions: data features that cannot be directly &
fully extracted from network packets but they can be
considered to be the results of some kind of frequency
analysis when it comes to packets flow.

- Sequence of Packet Lengths (SPL). Packet lengths
are usually placed into bins for better processing. For
example, the packet of size in the range from 0 to 150
will be then placed into the first bin and so on.

- Sequence of Packet Time (SPT). In this case, we can
consider it the same as for SPL but with packets’ inter-
arrival times instead of packet length.

- The Byte distribution. In this case, the length-256 of an
array can be used in keeping the count of each byte size
encountered as the payload of packets.

o« TLS Metadata: These are data features that are fully
extracted from TLS handshake packets (ClientHello,
ServerHello, Certificate, Client Key Exchange, Change
Cipher Specification) to tackle TLS malware activities in
encrypted flows.

Feature Size | Dynamic? | In reduced set? | Type
Ephemeral src port 1 No Yes Boolean

TLS dest port 1 No Yes Boolean

Nb of inbound bytes 1 No No Integer

Nb of outbound bytes 1 No No Integer

Nb of inbound packets 1 No No Integer

Nb of outbound packets 1 No No Integer

Flow duration 1 No No Integer

SPL 100 No No Stochastic matrix
SPT 100 No No Stochastic matrix
Byte dist mean 1 No No Float

Byte dist std 1 No No Float

Byte entropy 1 No No Float
Ciphersuites 146 Yes Yes Binary vector
Extensions 16 Yes Yes Binary vector
Nb of extensions 1 No Yes Integer
Supported Groups 36 Yes Yes Binary vector
Point Formats 4 No Yes Binary vector
Client’s key length 1 No No Integer
Certificate’s validity 1 No Yes Integer
Certificate’s nb of SAN 1 No Yes Integer
Self-signed certificate 1 No Yes Boolean
Total 17 208

Fig. 1. Cisco’s Features for TLS Malware Detection

C. Classification Method

Automated Machine Learning (AutoML) is the method that
enables researchers and developers to build efficient machine
learning models with high scalability, efficiency, and produc-
tivity while sustaining and maintaining the model quality in all



aspects. AutoML itself is also an ML method that focuses on
automating the time-consuming iterative tasks of ML model
development. The built-in ensemble learning capabilities of
AutoML improve the predictive performance of the modeling
result by combining multiple different algorithms into one as
opposed to using individual algorithms. It also uses both voting
and stacking ensemble methods so that the final ensemble
model comes out with fully tuned hyper-parameters to reach
maximum accuracy and a shorter training time. During the
training stage, AutoML builds several pipelines in parallel for
different algorithms and parameters and then iterates through
all given ML algorithms paired with feature selections, where
each iteration output a model with a training score. The higher
the score, the better that specific model will be considered to
fit the target dataset.

Many traditional ML model development methods are usu-
ally resource-intensive, requiring significant domain knowl-
edge as well as the time to produce and compare many models.
The use of AutoML surely accelerates the time it takes to get
production-ready ML models with great ease and efficiency in
all aspects.

In our study, an open-source automated machine learning
python package named “mljar-supervised” is adopted. Under
the MIT license, it has been proven to be efficient while
performing feature engineering as well as hyper-parameter
tuning, with source code and documentation publicly available
[33, 34].

Our approach is based on an AutoML pipeline that contains
7 representative algorithms that have been commonly used
in related works and have proven to be the most effective
in supervised learning methods as follows: Decision Tree,
Logistic Regression, Random Forest, XGBoost, CatBoost,
LightGBM & Neural Networks. This AutoML method utilizes
a stacking approach where the stacked models are built from
past (unstacked) models. The stacked models reuse tuned
hyper-parameters of effectively discovered great models.

« During the stacking stage up to 10 best models from every

algorithm are utilized.

o The out-of-folds predictions are utilized to build broad-
ened training dataset and the stacking just mainly works
for validation strategy="kfold” (k-fold cross-validation).

e In our case, the AutoML chooses the best models from
unstacked XGBoost, LightGBM, CatBoost models, and
reuses their tuned hyperparameters to prepare and train
stacked models.

AutoML results in a new hybrid ensemble model which
accurately classifies encrypted malware traffic in their given
family. The ensemble procedure in AutoML performs a greedy
search of used models and attempts to add (with re-iteration)
a model to the ensemble to improve its performance [35]. The
ensemble performance is computed dependent on out-of-folds
predictions of utilized best models. In Fig. 2, we introduced an
AutoML approach that uses a voting-stacking scheme to pick
the best classifiers to be used in the ensemble model. The
main benefit of this approach is that the AutoML pipeline
does the work for us in testing all scenarios when tuning

parameters as well as finding the best-ensembled model which
will be effective in classifying the encrypted malware traffic
accurately and minimizing computation time.

Dataset structure

Raw Encrypted Network Traffic
(.pcap)

Structured Data Features (json)

Foature 1, Feature 2

Feature Extraction
o
Rank 1st Classifier 3 Ensemble model
ek 19
Data Features (.csv)

Voting - stacking scheme

Fig. 2. An AutoML Approach With Voting-Stacking Scheme

IV. EVALUATION

This section presents the results obtained from the AutoML
pipeline which used 7 representative algorithms. Our real
traffic dataset contains network traffic of 3 malware families,
where 0 indicates Benign, 1, 2, and 3 indicates Zbot, Bublik,
and Small, respectively.

e Zeus, ZeuS, or Zbot is a Trojan horse malware that

usually runs on various versions of Microsoft Windows.

o Bublik (also known as Pkybot) malware steals informa-
tion about the affected systems and transmits it to a
remote server.

e Small is another type of Trojan horse malware that
secretly downloads malicious files from a remote server,
then installs and executes the files on the victim system
without end-users awareness.

A. AutoML Overall Performance Metric Results

As shown from Fig. 3, after running the AutoML pipeline
with 7 classifiers we got the overall performance of all
classifiers in terms of log loss value and training time. The
AutoML pipeline has automatically built an ensemble model
for this experiment by combining the best classifiers to build
a more optimized and advanced model named “Ensemble” its
log loss value significantly proven to be best in consideration
with it’s training time after many testing trials. From Fig. 3, we
can see each classifier’s performance relative to other ones and
the AutoML pipeline decided to use the best ones as shown
with less log loss value.

B. Ensemble Model Performance

In table I, we can see the structure of the ensembled model
that we got from the AutoML pipeline which is composed of
all classifiers used as well as their weight which is equivalent
to how many times it has been re-used to reach the maximum
accuracy as well as reducing training time.

In Fig. 4, we used 3 metric types, i.e. precision, recall, and
support, to measure the performance of our ensemble model.

In Fig. 5, the learning curve shows the evaluation metric
values in each iteration of the training. The learning curves are
plotted for training and validation datasets. The log loss has
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Fig. 3. Overall Performance of Individual and Ensemble Models

TABLE I
ENSEMBLE MODEL STRUCTURE

Modal Weight
LightGBM 4
XGBoost 2
CatBoost 1

significantly dropped down and reached a very low level only
after two iterations. This indicates that our ensemble model
performs well.

Next, we illustrate how the best classifiers performed in
a detailed way to understand the main reason it has been
voted to be used considering feature importance metrics in
our ensemble model.

1) LightGBM Classifier Performance: Again, precision,
recall, and support are the metrics types leveraged to measure
and visualize the performance of the LightGBM Classifier. As
seen from Fig. 6, all 4 classes achieved at least the precision
of over 99% which contributed a lot to the ensemble model,
however, the recall which is also known as the true positive
rate has relatively dropped on Bublik and Small malware in
comparison to their precision which is also the reason why
the AutoML pipeline added more classifiers to compensate
on this weakness. Fig. 7 shows the learning curve of the

Ensemble

W precision WM recall — support

1005 3000
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Benign Zbot malware family Bublik malware family

Fig. 4. Ensemble Model Performance Metric
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Fig. 5. Ensemble Model Learning Curve

LightGBM Classifier, where the vertical line shows the optimal
iteration number. It can be seen that the logloss value dropped
significantly with iterations, and the train test logloss value
distributions align close to each other. It proves that the model
has successfully classified datasets at the testing stage, in
respective classes as it has been trained.

LightGBM
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Fig. 6. LightGBM Classifier Performance Metric
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Fig. 7. LightGBM Classifier Learning Curve

In Fig. 8, all data features are significant and have con-
tributed a lot to this model performance, however, the top 5



discriminant data features for LightGBM Permutation are as
follow:

o The number of incoming bytes (denoted as 7)

o The number of outgoing bytes (denoted as 8)

o The number of outgoing packets (denoted as 6)

o The number of password packages provided by client
(denoted as 646)

o The number of incoming packets (denoted as 5).

As seen from Fig. 8, it is clear that malware traffic can be
detected by verifying the number of password packages that
have been provided by the client but also in consideration of
other discriminant data features. In Fig. 9, all data features

Feature importance

feature

H
5

Fig. 8. LightGBM Permutation-based Feature Importance

are significant and have contributed a lot to this model
performance, however, the top 5 discriminant data features for
LightGBM SHAP are as follow:

o The number of incoming bytes (denoted as 7)

o The number of password packages provided by client
(denoted as 646)

e TLS version provided by TLS client (denoted as 709)

o The number of outgoing packets (denoted as 6)

o The number of outgoing bytes (denoted as 8).

As seen from Fig. 9, we discovered one more data fea-
ture denoted as TLS version provided by TLS client which
contributed a lot to this model performance because, in our
experiment, we have found out that malware traffic uses TLS
versions very wisely to escape from being detected. It is in this
regard that we need to use different metric types to analyze
the model performance in a detailed way. In Fig. 10, the top 5
discriminant data features for LightGBM learner fold O shap
are as follow:

o The number of incoming bytes (denoted as 7)

o The number of password packages provided by client
(denoted as 646)

o TLS version provided by TLS client (denoted as 709)

« The number of outgoing packets (denoted as 6)

« The number of outgoing bytes (denoted as 8).

SHAP feature importance

feature

0 1 2 3 4 5
mean(|SHAP value|) average impact on model output magnitude

Fig. 9. LightGBM SHAP Feature Importance

In Fig. 10, we are illustrating malware families and benign
traffic distribution in feature importance to have a better
picture of which features have been able to accurately classify
more data points of given class label. From Fig. 10, we can see
that the number of elliptic curves supported in the extension
(denoted as 704) has been fully used to classify benign traffic,
together with the number of password packages provided by
the client (denoted as 646) and TLS version provided by TLS
client (denoted as 709). All data features presented in Fig. 10
are significant to our model performance, and this hints that if
one data feature is ignored then it would definitely lower the
model performance.

2) XGBoost Classifier Performance: As seen from Fig. 11,
XGBoost is doing better in making Bublik standing out (best
precision for Bublik) and it has improved the recall for Bublik
in comparison with LightGBM. In Fig. 12, we can see that
the XGBoost classifier used many iterations compared with
LightGBM to significantly drop the learning curve.

In Fig. 13, all data features are significant and have con-
tributed a lot to this model performance, however, the top 5
discriminant data features for XGBoost Permutation are as
follow:

o The number of incoming bytes (denoted as 7)

o The number of outgoing bytes (denoted as 8)

o The number of outgoing packets (denoted as 6)

o The total entropy (denoted as 12)

o The number of password packages provided by client

(denoted as 646).

As seen from Fig. 13, the total entropy and the number of
password packages provided by the client are not as significant
as other data features, however, the total entropy was not
that important (at least not in the top 5) for LightGBM, this
means that different algorithms are using features differently
to achieve maximum performance. In Fig. 14, all data features
are significant and have contributed a lot to this model
performance, however, the top 5 discriminant data features for
XGBoost SHAP are as follow:
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Fig. 11. XGBoost Classifier Performance Metric

e The number of password packages provided by client
(denoted as 646)

o The number of outgoing packets (denoted as 6)

« The number of incoming bytes (denoted as 7)

o The number of outgoing bytes (denoted as 8)

o TLS version provided by TLS client (denoted as 709).

As seen from Fig. 14, we discovered one more data fea-
ture denoted as TLS version provided by TLS client which
contributed a lot to this model performance because, in our
experiment, we have found out that malware traffic uses TLS
versions very wisely to escape from being detected. It is in this
regard that we need to use different metric types to analyze
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Fig. 12. XGBoost Classifier Learning Curve
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Fig. 13. XGBoost Permutation-based Feature Importance

the model performance in a detailed way. In Fig. 15, the top
5 discriminant data features for XGBoost learner fold O shap
are as follow:

e The number of password packages provided by client
(denoted as 646)

o The number of outgoing packets (denoted as 6)

o The number of incoming bytes (denoted as 7)

o The number of outgoing bytes (denoted as 8)

o TLS version provided by TLS client (denoted as 709).

In Fig. 15, we can see that benign traffic class denoted as 0-
purple has dominantly used the number of password packages
provided by client and TLS version provided by TLS client
features compared to other features.

3) CatBoost Classifier Performance: As seen from Fig. 16,
CatBoost improved on Zbot recall which is also known as true
positive rate compared with LightGBM and XGBoost. In Fig.
17, we can see that CatBoost used more iterations compared
to LightGBM and XGBoost.

In Fig. 18, all data features are significant and have con-
tributed a lot to this model performance, however, the top
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Fig. 14. XGBoost SHAP Feature Importance
5 discriminant data features for Catboost Permutation are as
follow:

o The number of incoming bytes (denoted as 7)
o The number of outgoing bytes (denoted as 8)

ere o The number of outgoing packets (denoted as 6)
; o The password suite selected by the server (denoted as
709 658)
- « The total entropy(denoted as 12).
w0 As seen from Fig. 18, we discovered another new discriminant
. data feature denoted as the password suite selected by the
e server which was not the case for LightGBM and XGBoost.
o This again demonstrated that different algorithms can use
o0 several data features differently to achieve a better ensemble
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The network security field presents a novel and unique
set of challenges, outstandingly, the huge volume of the
network traffic data, high demand for low false alarms, and

Fig. 16. CatBoost Classifier Performance Metric



fast processing speed. In our work, an automated machine
learning tool AutoML is employed to explore and analyze
the encrypted malware network traffic classification methods
based on ML. An effective way was proposed for the data
collection of raw encrypted network traffic with the help of the
Cisco Joy tool as well as the selection of the most discriminant
features, such as TLS metadata features directly extracted from
TLS handshake packets. These features offer a significant
degree of differentiation while detecting encrypted malware
traffic over the network. Considering the tricky dynamics of
malware traffic, the adaptability of classifier systems must
surely be enhanced, therefore, an automated machine learning
approach is greatly suitable in contributing and assisting
existing models to adapt to new dynamic scenarios especially
in real-time environments. Hybrid methods have been proven
to contribute a lot to the performance improvement of ML
classifiers, however, the main problem that many ML-based
classifiers face is hyper-parameter tuning because it requires
expensive computation resources in case of large data volume.
It is in this regard that the AutoML approach is proposed
to maximize accuracy, reduce false alarms while minimizing
the training and inferring time. Although it is found the
automated machine learning approach to be the most robust
for this specific problem domain, it is also recognized that
the choice of features had a significant impact on the overall
performance. An enhanced feature set has been built by
using an automated feature selection approach which takes
all available features that can be obtained from the raw
encrypted network traffic especially the TLS metadata features
and then statistically selected the most discriminant features
based on their contributions to the performance of all selected
classifiers to maximize the accuracy and efficiency of the
proposed approach. By not only relying on data features
that were convenient to gather and engaging with domain
experts to iterate on how the data would be best represented,
but the algorithms used in the proposed AutoML pipeline
also had significant performance improvements. Combining
the automated feature selection and the ensemble classifier
model is the key innovative contribution in our work. In
our experiments, only 7 classifiers (Decision Tree, Logistic
Regression, Random Forest, XGBoost, CatBoost, LightGBM,
and Neural Networks) are used in the AutoML pipeline but
there is still more room for exploration and improvement like
adding more classifiers as well as doing more testing on live-
network as it is the main reason of using automated approaches
to maximize the performance and minimize the false alarms.
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