Utilization-aware Allocation for Multi-Tenant
Datacenters

Yang Gao*", Yibo Xue'* and Jun Li*

*Department of Automation, Tsinghua University, Beijing, China
TResearch Institute of Information Technology, Tsinghua University, Beijing, China
jr'Tsinghua National Lab for Information Science and Technology, Beijing, China
{gaoyangl 1}@mails.tsinghua.edu.cn, {yiboxue, junl}@tsinghua.edu.cn

Abstract—Cloud datacenters need efficient resource manage-
ment that is able to orchestrate bulks of different resources. In
current public cloud datacenters, there is a mismatch between the
properties of tenant requests and resource utilization. Multiple
resource types in datacenters make the situation even more
complex. Intelligent resource allocation methods are demanded
to improve the overall utilization of multiple resources. This
paper presents Multiple Resource Utilization (MRU), a novel
resource allocation method for multi-tenant datacenters. MRU
allocates multiple types of datacenter resources according to the
diverse and dynamic requests from tenants, and simultaneously
maximize resource utilization of datacenter and guarantee the
resource availability and performance for tenants. Experiments
demonstrates that MRU significantly improves the utilization of
multiple resources and thus save the cost.

Index Terms—multiple resource, data center, allocation, uti-
lization

1. INTRODUCTION

Datacenters play an important role in Cloud Computing.
More and more companies are migrating their system and
platform into datacenters. Large enterprises often build up
their private datacenters to assure the service to be provided
under control. Small businesses or startups usually rent remote
resources from public datacenters to benefit from the low cost
and flexible performance of the resource sharing platform.

As there are numerous resources in datacenters, resource
allocation becomes a very tough job. The tenants and data-
center operators have different requirements for the resource
allocation job. For the tenants, the most important is to
ensure the allocation fairness, hence they will be able to
deploy application or service with guaranteed quality. For
datacenter operators, they are more likely to care about the
utilization of resources to save capital and operation expenses
of the facility. Fortunately, the development of virtualization
technology helps a lot for this situation. For fairness, the
parameters of VMs are easy to be set up by the virtualization
hypervisor and the basic performance that it indicates will be
ensured undoubtedly. For utilization, virtualization makes a
fine-grained use of resources. Several VMs share one server
and each VM can be allocated to tenants so that resources are
shared and the utilizations will be improved.

Though virtualization technology benefits a lot for data-
center resource sharing [1]-[3], resource allocation is still
a complex issue. In a large enterprise that owns a private

datacenter, people from various departments sharing the whole
datacenter together and the datacenters need to finish the tasks
efficiently. Because tenants here do not need to pay for the
resources they applied for, the fairness property is as important
as the utilization property. So resource allocation in private
datacenters should make a trade-off between them. And it is
also necessary to provide strategy-proofness so that tenants
cannot manipulate their resource demands to get a better
performance by cheating.

However, for public datacenters, e.g., Amazon EC2 [4],
resource allocation focuses on utilization property because
of its virtual machine rental service model. The tenants of
a public datacenter will pay for the amount of resources
that they reserve, therefore they have no interest to provide
false requests to administrators about their demands, and the
resource allocation does not need to preserve fairness property.
Datacenter operators only expect a high utilization of resources
because of less power consumption for them.

Another fact from the Amazon EC2 is that its operational
load is around 70%. This indicates that datacenters are not
always running at full load. When a datacenter is not at full
load, the allocation should occupy lesser servers to provide a
full-cycle utilization optimization, rather than spread out even-
ly across all servers. For instance, to handle 1000 requests in
200 servers, when the system accepts 500 requests, it is better
to have 100 servers occupied rather than 200 servers occupied.
The allocation method should provide a high utilization of
resources at any load so that more tenant requests are likely
to be accepted which leads to a larger business values for the
datacenters.

The difficulty of public datacenter resource allocation also
comes from the objective mismatch between tenants and
datacenter operators. As tenants, they may have different
amounts of subscription for resources because of their diverse
applications. For example, a tenant that provide personal
website may subscribe only little resources per VMs because
the tenant does not expect the website will attract heavy
network traffic. But the tenants who run public information
platforms or forums may demand much more resources or
even a load balance service to solve the possible large visiting
traffic. Also, the resource types that different applications
required are not always identical. Online game servers may ask
for more memories capacity, while searching and distributed

computing will need more CPUs. The attractions of public
datacenters for tenants are that they only need to pay for the
resources as much as they use. This brings about the result of
various request types with different resources demands. On the
other hand, datacenter commonly operates on large number of
servers with identical configuration to leverage on economy
of scale in purchasing and simplify hardware maintenance
tasks. Therefore, facing various requests that come from the
tenants, an efficient multiple resource allocation method is
highly desired to maximize overall resource utilization of each
physical server and each server cluster.

The common solution to resolve this conflict is to generate a
series of templates with several resources reservation choices.
The datacenter operators can simply provide VMs with (CPU:
2 cores, Mem: 4 GB), VMs with (CPU: 8 cores, Mem: 16 GB)
and so on. Tenants will have to choose from these templates to
satisfy their requirement. This solution benefits the datacenter
operators on resource allocation for they can divide the servers
into certain pieces. But it is not fair or desirable for tenants
because only tenants themselves know the type and capacity
of resources they need and most of tenants prefer to pay
for the amount of resources that they actually require. To
satisfy both the tenants and the datacenter operators, a dynamic
resource allocation method is expected. Tenants can generate
their requests independently under this dynamic method while
datacenter operators also benefit from it for they can achieve
a higher resource utilization to save their cost.

The request diversity also limits the developing of resource
allocation method. Sometimes the tenant’s requests do not
match the resources provided. For example, there are two
types of tenant requests. One tenant doing search requires
more CPUs but less memories than average cases (CPU-heavy)
and another tenant serving game requires more memories but
less CPUs (Memory-heavy). In a certain period, the rate of
CPU-heavy requests and Memory-heavy requests may vary
dramatically and cannot meet the resources mix provided by
datacenter. Because it has no reason to reject the tenant’s
requests on the premise of having enough resources, once the
requests are accepted, there will be a waste of resources. So
the goal of resource allocation is to achieve a self-adapting
solution for this kind of demands.

Based on the above observations in public datacenters, we
present multiple resource utilization (MRU), a novel resource
allocation method to improve the utilization of multiple re-
source types. The virtual machine rental service model in
today’s public datacenters is that tenants apply for VMs with
different resource requirements and the administrator allocates
them on the available servers. Choosing the right server to
place a typical VM in order to optimize the utilization is
the goal. With the MRU allocation method, the resource
waste is reduced and the utilization is improved. This means
VMs will be centralized so that the charge for power is
decreased. And datacenters operators can make more money
with more requests accepted. Moreover, MRU is a dynamic
and self-adapting allocation method. Tenants can generate their
requests based on their demands independently. MRU will

solve this situation by adding a new limit to the allocation
condition which can help balance the usage of different
resource types. Also, such improvement can help to self-adapt
the requests to the servers so that the high resource utilization
is achieved. This means both the tenant request variety and
the unpredictable request diversity situation can be handled
by MRU.

This paper is organized as follow. Section 2 is the exist-
ing resource allocation methods for both public and private
datacenters. Section 3 is the design and discussion of the
MRU allocation method. In Section 4, MRU is compared
with Domain Resource Fairness (DRF) and Best-Fit method
to illustrate its advantage in utilization. And Section 5 is the
conclusion of the work.

II. RELATED WORK

There are several previous works on resource allocation
problem for both private and public datacenters. Shieh et al.
[5] proposed a network bandwidth allocation scheme named
Seawall. This scheme uses a weighted additive increase,
multiplicative decrease (AIMD) based adaptation logic to
dynamically allocation the resource. Although Seawall can be
applied in both private and public datacenters, it is designed to
provide the interconnection network capacity division instead
of solving the resource allocation problem under the virtual
machine rental service model. Besides, with an AIMD-based
adaptation logic and a feedback mechanism, the scheme cannot
provide a strict performance guarantee for the tenants.

Domain Resource Fairness (DRF) [6]-[8] is a model and
also an available solution for the private datacenters, which
makes trade-offs between the fairness and utilization proper-
ties. The Domain Resource of a tenant request is identified
to be the resource type which is the maximum share that
the user has been allocated of any resource. Different from
the intuitive max-min fairness method that maximizes the
minimum allocation received by a tenant in the datacenter,
DRF considers about multiple resource types and makes
sure that tenants with different domain resources share the
datacenter resources fairly. As the fairness property is achieved
based on the volume of domain resources, the utilization of
the resources has also been improved.

Ballani et al. [9] and Xie et al. [10] proposed two different
solutions for resource allocation of public datacenters. The
former uses a greedy algorithm to select nodes that satisfy
the network bandwidth requirement on the communication
path. And the latter generates models based on the VM’s
different network bandwidth requirements in the lifecycle of
it and dynamically allocates network bandwidth. The two
existing works both improve the utilization of the servers
but only concentrating on a single resource, e.g., network
bandwidth. Gurusamy et al. [11] also focused on the same
situation. It presented a three-phase mechanism to find the set
of servers for requested VMs in order to reduce the bandwidth
on shared links so that a datacenter can host more cohabiting
tenants. Our previous work SEAL [12] is an allocation method
for single resource in multi-tenant datacenters that combines

two classical allocation algorithms, Best-Fit and Next-Fit, to
provide an agile and efficient allocation.

III. MRU AvrLocATION METHOD

In MRU design, domain resource type is used to identify
different requests, and it adapts the requests to the allocation
condition. When a request is adapted and the VMs associated
to the request is successfully started on a chosen server, this is
called an acceptance. But if all the servers are traversed and
no suitable server is found to realize the request, it will be
rejected. This is called a rejection.

A. Method Description

The virtual machine rental service model is a request/reply
model. A request consists of a series of resource subscription
including the volume of different resource types as {R;
ri,Ry : ra,...,R, : ry}. Assuming R; stands for CPUs and
R, stands for memories, a request, (CPU: 2 core, Memory:
4 GB), can be shown as {R; : 2,R, : 4}. Correspondingly,
supplied resources on the servers can be indicated as {RS :
rsi, RSy 1 rsy, ..., RS, : rs,}. The values of supplied resources
are the available capacity and will be updated every time an
allocation instance finishes.

The allocation of MRU is determined by request identifi-
cation and allocation condition. Request identification aims to
classify tenant requests into several types. Similar to DRF, we
use Domain Resource to identify the tenant request which is
used to adapt the allocation condition so that the right server
will be found out. The conception of Domain Resource of
DRF method has been declared in Section 2. Each request
will have only one domain resource and is identified with
it. With request identification, MRU can make a balance
of the usage of different resource types in one server so
to achieve the high utilization. Allocation condition is used
for the acceptance and rejection of identified requests with
servers. Allocation condition consists of adaption condition
and additional condition. Only when these two conditions are
both satisfied will the request be accepted by the server. The
adaption condition is for the performance guarantee because
one basic requirement of virtual machine rental service model
is to guarantee the tenant’s performance. This condition is
necessary for all the allocation schemes including the basic one
without any concern about utilization or other properties. The
additional condition is used for the utilization improvement.
As there may be several servers that can satisfy the adaption
condition, the allocation of requests can be finer grained. If
the requests with different domain resources can co-exist on
one server, the total utilization will be improved.

Upon the description above, the procedure of the MRU
allocation method is shown in Fig.1. In the beginning of the
procedure the domain resource of the request is identified.
Then every available server will be checked for the adaption.
If the request can satisfy both the adaption condition and the
additional condition within a server, the request is accepted
and resources on the server are allocated to the request.
Otherwise, the request is rejected. When an allocation instance

Require: n resource types & m servers
Ensure: Allocation for request »

1. Identify the domain resource of r

2. Forround / form 1 ton

3. For server j from 1 tom

4 Get the ith resource type from ;s

domain resource table

5. Compare 7’s every resource subscriptions
Rr toj’s remaining resources Rsj
6. If all Rr <= Rgj
7. If resource type 7 same to 7’s
domain resource
8. Return accept

9. Return reject

Fig. 1. The procedure of MRU allocation method

finishes, an update of supplied resources for the server is
necessary, although not shown in the procedure figure.

B. Request Identification

The tenant requests are diverse, so request identification is
needed before adapting. For example, a request with (CPU: 2
cores, Memory: 4 GB) is surely different with a request with
(CPU: 6 cores, Memory: 2 GB). If a request with subscriptions
{Ry : ri,Ry : ra2,...,R, : r,} demands resource R; more than
any other resources, its domain resource dr is identified to be
R;. The question is how to compare different resource types
to get the most demanding resource. In fact, different resource
types have their own quantization unit like CPU with cores”
or Memory with "GB”, etc. Resources need to be normalized
with a set of standard values first to make volume comparison
of different resource types.

Obviously there are various choices for the standard values.
It can be the initial resource capacity, the remaining resource
capacity after the last allocation, or even a static value that
is given by the administrators. Different choices of standard
value may give the same request different identifications,
which finally influences the allocation consequence. As a con-
sequence, the choices depend on administrator expectations.
In this paper, the initial capacity of each resource type is
selected to be the standard value. This is based on the objective
of resource utilization maximization, so whether a request
is CPU-heavy or Memory-heavy also depends on the server
configuration in datacenters.

C. Allocation Condition

Allocation Condition consists of adaption condition and
additional condition. Based on the supposition of performance
guarantee for tenants, the basic adaption condition of MRU
allocation method is described as: Given supplied resources
of a server, if the resource requirements of a request satisfy
{Ri <RS|,R, £RS,,...,R, <RS,}, the request is a feasible
request. Once a request becomes feasible, it will be accepted in
any cases. Since there may be multiple servers that are eligible,
different choices will have a different utilization performance.

The building up of additional condition is similar to re-
quest identification. Each server associates with one table that
records the domain resource list of the server. This table is
generated for the additional condition and will be updated
every time an allocation instance finishes. Every element in
the list is given by er:

er = {i € [1, min(k,,n)], s.t.max(WﬁM)}

Each time a resource type is chosen, it will be recorded
on the list and the left resources will be used for the same
calculation till no resources left. k, means the number of
resources left and STANDARD V; is the standard value used
for the value normalization of different resource types. The
expression above is to find out the resource type that has
the maximum domain resource share. Similarly, there are
numerous choices for the standard values and it can be static
or dynamic. The static standard values also can be simply set
to the initial resource capacity. But it is not a good choice
because the resource requirements of different tenants are
changing all the time and the arrival time of tenant’s requests
is unpredictable. Therefore, a set of dynamic standard values
is more suitable into this situation. Using a sliding window
of m requests, the standard values can be calculated as the
average resource subscriptions of the m requests. These values
are called the historical statistic values and can offer heuristic
information so that the allocation can be more flexible and
follow demand trend in the long run. Also the window width
”m” should ideally reflect the pattern of request sequence, and
also selected based on the scalability of datacenter to achieve
a better allocation performance.

Additional condition provides the allocation optimization.
No matter with tenant request variety or unpredictable request
diversity situation, additional condition can help to balance the
resources usage in case of leaving too many resources unused
when one resource uses up. This indicates that the additional
condition in MRU can adds the dynamically adjustability to the
tenant requests and provide self-adapting to the unpredictable
request diversity. Both these two benefits lead to the utilization
improvement.

D. Method Discussion

It has been known that the most efficient allocation method
for single objective is the Best-Fit method [13]. But this
method is not suitable in the multiple resource allocation
according to our experiments. Best-Fit searches the resource
pools in a certain order and once a satisfied pool is found the
resources will be allocated. In this multi-dimensional situation,
it means that if the adaption condition is satisfied the request
is accepted and allocated on that server. Obviously, this is
thoughtless of resource utilization because the usage of differ-
ent resource types is not considered so that the consequence
of resource usage is unpredictable. Different from Best-Fit,
MRU allocation method built up domain resource tables for
servers so that the resource usage can be balanced to improve
the utilization of overall resources. In fact, thinking about one

resource type, the tables grade servers into several groups
with priority. The adapting procedure of MRU is actually an
adapting from the highest priority servers to the lowest priority
servers and in every priority it still can be regarded as a best-
fit action. Extremely, when the remaining domain resource
type number decreases to 1, since the domain resource of
tenants and the domain resource of servers are the same, MRU
regresses to be the Best-Fit method.

When building up the allocation condition, a historical
statistic value is used to be the normalization standard value.
This is because the mismatch between the subscription of ten-
ant requests and resource provided by the datacenter operators.
In consideration of cost, it is common for public datacenter
to have large group of uniform servers. But each tenant’s
demand for multiple resources is unique and variable. The
resource subscriptions of a tenant may be vary significantly
in different time of a year, let alone the request diversity
phenomenon. The historical statistic can handle this situation
in certain degree. The so-called normalization of the server’s
resources with historical statistic standard values restricts the
ratio of the resources allocated to be around the average
ratio of resources of the request so that the server can be
used efficiently. With request identification, varieties of tenant
requests are classified into several types, e.g., CPU-heavy or
Memory-heavy. Requests with different domain resource types
co-existing on the servers help balance the resource usage.
Historical statistic values here provide the standard that how
the balance is defined. Actually, compared to the historical
statistic, when more CPUs are used on the server, a Memory-
heavy request is more likely to be accepted by the server unless
it is nowhere to be allocated.

It is known that sometimes a oversubscribed allocation is
used in the shared resources pool and with a appropriate
oversubscription value both the resources utilization and the
demands of tenants can be achieved. But in the problem
description above the problem is simplified to be a non-
oversubscription allocation problem with performance guaran-
tee property. This simplification is very helpful for the problem
modeling. Besides, the oversubscription allocation situation
can also be realized in this model by setting the server’s virtual
resources usage according to the oversubscription value and
the user’s actual resources usage. This situation is significant
for network resources and storage resources which are not the
focus of this paper.

In this paper, most of the situations or examples are about
two resource types. But MRU allocation method is designed
to solve the allocation problem of more than two resource
types. Future on MRU can introduce more resource types,
including network bandwidth, to explore its advantages in
more complicate datacenter resource allocation scenarios.

IV. EvALuATION

MRU is evaluated in four aspects. First, we set up a general
simulation and show the superiority of MRU on resource
utilization directly. Second, MRU is validated to deal with
request diversity. Then, the status of servers in the whole

,_.
=)
S

Best-Fit
DRF
= MRU with Fixed value
m MRU with Historical Statistic

)
S

Resource Utilization(%)
]

70

CPUs

Memory
Resource Types

Fig. 2. The resource utilization of Best-Fit, DRF, MRU with Fixed standard
value and MRU with Historical Statistic standard value when servers are under
full load

process of allocation is laid out to illustrate MRU’s energy-
saving property. Finally, the impact of sliding window is
analyzed. Two resource types, which are CPUs and memories,
are considered in the evaluations, and the simulation is at
the scale of 100-500 servers and 1,000-3,000 requests. Two
different requests types are employed: the CPU-heavy request
and the Memory-heavy request.

A. Utilization

In this experiment we use a random request sequence with
the two request types evenly mixed. Under the full load
of requests, we calculate the average resources usage of all
servers to show the overall utilization status. Fig.2 shows the
experiment result. Faced with a multiple resources situation,
Best-Fit cannot achieve the best utilization but performance the
worst which proves that the Best-Fit algorithm is not suitable
to the multiple resources allocation situation. In contrast,
MRU is better than the other two methods. Since the input
requests are irregular, the statistic has little effect to the
optimal allocation. Using a static value (such as the resource
limit value of the server) as the standard value is better than
historical statistic value because the average resources demand
is predicable in this condition. This experiment shows the
benefit of MRU’s dynamic property.

The high utilization that MRU achieves can result in the
saving of the cost. As for a certain number of servers, the
higher resource utilization means the larger number of requests
that can be accepted. Thus, the datacenter operators can make
more money by the extra accepted requests. Because MRU
is based on the tenant performance guarantee property, the
tenant’s benefit can be hardly hurt.

B. Request Diversity

We generated four request sequences with the two types of
requests for request diversity handling test. Sequence A has
more CPU-heavy requests and few Memory-heavy requests
and Sequence B is contrary. Sequence C takes the first half of
Sequence A and the second half of Sequence B and make up a
hybrid one. In Fig.3, the three sequences are applied and each
one has a length of about 1,000 requests. The results show

2600 - -
Best-Fit

m MRU with Fixed value

2400

2300

2200 -

2100 -

2000 e

Random Sequence A Sequence B Sequence C

Input Request Sequence Type

DRF
m MRU with Historical Statistic

N
1%

=3
S

Accepted Request Number

Fig. 3. The allocation results of Best-Fit, DRF, MRU with Fixed standard
value and MRU with Historical Statistic standard value with four types of
request sequence

v
=3
S

IS
=3
S

W
S
S

S
=3
S

~+Best-Fit
#4DRF
MRU with Fixed value
2¢MRU with Historical Statistic(HS)
—HS with parameters
0 20 40 60 80 100

Request Load (%)

,_.
1=}
=3

Occupied Server Number

Fig. 4. The occupied server number growth of Best-Fit, DRF and MRU with
various standard value choices

the benefit of historical statistic standard value and the limits
or instability of the fixed standard value. Tenant requests are
expected to have non-uniform distribution characteristics in
practice, and thus MRU with historical statistic standard value
can be self-adapting for the diverse request sequence.

C. Energy-Saving

To save energy, it is better to occupy less number of servers
for the same number of requests. In this experiment, the
occupied server number is measured at different request load.
The request sequence is Sequence C in Section /V.B. Fig.4 is
the occupied server number growth of five allocation methods.
MRU with fixed standard value has the worst performance and
it is even worse than the DRF method. The Best-Fit method
is no doubt the best performer in energy-saving but with a
high request rejection rate, which is not shown in the figure.
With historical statistic standard value, MRU can achieve a
better performance than DRF with a low request rejection rate.
In addition, when we combine the static value (the resource
limit value of the server) with the historical statistic standard
value, MRU can achieve a better performance than the original
with little reduction of accepted request number. This again
indicates that the choice of standard value determines the
performance of the allocation in many aspects.

800 -

=
O
[=N

R
=]
N

~
o
®

Accepted Request Number
®

780
8 16 32 48 64 96 128

Sliding Window Width

Fig. 5. The influence of historical statistic sliding window width on the
allocation results

D. Sliding Window

Last but not the least, the impact of sliding window for
statistic is evaluated. The experiment scale is 1,000 requests
with 100 servers, and the experiment result in Fig.5 shows
that the sliding window size only has limited impact to the
allocation result. As shown in the figure, the accepted request
number of the best choice is averaging about 1.4% more
than that of the worst choice. Although the impact of sliding
window size is small, it is still an important factor which can
influence the allocation. First, the allocation scale can be large
and varies [5]. When the scale is too large or too small, the
impact can be obvious than the normal scale. Second, there
is a calculation of historical statistic value where the sliding
window size may affect the efficiency of the method.

V. CoNcLUSION

In this paper, a novel allocation method for multiple re-
source types in datacenters is proposed. Namely MRU, the
method is designed with intention to solve the problem of the
mismatch between tenant requirements and the resource avail-
ability. It dynamically allocates resources for unpredictable
requests of multiple tenants, and still achieves high overall
utilization. Simulation shows that not only MRU can improve
the utilization of multiple resources on server, but also save
the energy at any request load. This benefits the datacenter
operators a lot for that they can save the cost and maximize
the usage of their resources provided.

Future work can progress in two directions. One is to extend
the method and evaluation to more than two resource types.
Multiple resource types may lead to a more rigid allocation
constrains and increase the cost of utilization improvemen-
t, hence further improvement of MRU may be needed to
maximize utilization. The other is to analyze the existing
request sequence and find out the pattern of the input to find
more accurate standard values, such that a more detailed and
targeted solution can be given to the particular case.

REFERENCES

[1] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” Proc. HotNets
(October 2009), 2009.

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

ference on Networked systems design and implementation.

J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“Netlord: a scalable multi-tenant network architecture for virtualized
datacenters,” SIGCOMM-Computer Communication Review, vol. 41,
no. 4, p. 62, 2011.

A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Labhiri,
D. Maltz, P. Patel, and S. Sengupta, “VI2: a scalable and flexible data
center network,” in ACM SIGCOMM Computer Communication Review,
vol. 39, no. 4. ACM, 2009, pp. 51-62.

Amazon ec2. [Online]. Available: http://aws.amazon.com/ec2/

A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proceedings of the 8th USENIX conference on
Networked systems design and implementation. USENIX Association,
2011, pp. 23-23.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and 1. Stoica, “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proceedings of the S8th USENIX con-
USENIX
Association, 2011, pp. 22-22.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. S-
toica, “Dominant resource fairness: fair allocation of multiple resource
types,” in USENIX NSDI, 2011.

A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” in Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures, and pro-
tocols for computer communication. ACM, 2012, pp. 1-12.

H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” Technical Report MSR-TR-2011-72,
Microsoft Research, Tech. Rep., 2011.

D. Xie, N. Ding, Y. Hu, and R. Kompella, “The only constant is change:
incorporating time-varying network reservations in data centers,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 199—
210, 2012.

M. Gurusamy, T. N. Le, and D. M. Divakaran, “An integrated resource
allocation scheme for multi-tenant data-center,” in Local Computer
Networks (LCN), 2012 IEEE 37th Conference on. 1EEE, 2012, pp.
496-504.

Y. Gao, L. Li, J. Jiang, B. Yang, Y. Xue, and J. Li, “Seal: Hybrid resource
distribution for multi-tenant data centers.”

P. Wilson, M. Johnstone, M. Neely, and D. Boles, “Dynamic storage
allocation: A survey and critical review,” Memory Management, pp. 1—
116, 1995.

