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Abstract – Packet classification on multiple header fields is one 
of the basic techniques used in network devices such as routers 
and firewalls, and usually the most computation intensive task 
among others. To determine what action needs to be taken to a 
packet, a network device responsible for packet classification 
must identify the packet’s property, such as associated packet 
flow, based on multiple fields of its header. Fast packet 
classification on multiple fields is known to be difficult 
mathematically and expensive practically. In this paper, we 
describe and discuss a fast packet classification algorithm 
using a multiple stage reduction scheme similar to the 
previously well-know algorithm RFC. This hierarchical space 
mapping (HSM) algorithm requires much less memory usage 
than RFC while keeps average search time on the same order. 
HSM has been proved to be very effective with commercial 
products in real networks. 
 
Index terms—packet classification, access control, security 
policy, packet filtering, range segmentation, space mapping. 

I. INTRODUCTION 
There are many network services that require header based 
packet classification, especially in policy enforcement by 
packet filtering. Layer 3 routers make their routing decision 
as where to forward an arriving packet by checking its 
destination address in its header against a set of forwarding 
rules. The rules classify network traffic into flows and 
predefine the next hops for packets matching the rules. 
Firewalls take actions to a received packet by searching 
almost all fields of its header against security policies (also 
called ACL or access control list in edge routers). Services 
such as bandwidth management, traffic provisioning, and 
utilization profiling also depend on packet classification. 
Action taken to a packet is usually based on the result of 
classification that is in turn based on a set of filters. In this 
paper, we use the term “policy” and “action” to describe 
filters or rules and their associated directives.  We also call 
the collection of policies and policy search as “policy table” 
and “policy table lookup” rather than the terminology of 
classifier, and rule search or filter matching. 
 
Multiple field packet classification has two distinct 
characteristics that make it a classification problem hard to 
be solved efficiently: the policy table cannot be sorted or 
cached since the policies in the table are ordered and may 
have overlapped field values. When a packet arrives to the 
interface of a network device, there could be multiple 
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policies that match the specified packet header fields, and 
only the action associated to the policy with the top priority 
is taken. Policy priority can be calculated based on a 
defined cost function. In this paper, we assume the priority 
of each policy is the order it resides in the policy table, a 
multiple dimension lookup table. Therefore, the first policy 
in the policy table has the highest priority.  
 
Network environment is very dynamic. Network 
configuration varies as employee assignments, organization 
structure, and business relationship changes constantly. 
Interaction between network services or functional blocks, 
and intelligence built-in network devices also bring 
dynamic updates into packet classification consideration. 
For example, during product and service price information 
update of a sales database, system administrator may want 
to set a temporary policy to block all access from business 
partners to the related database servers. The policy to deny 
access to the servers will be added on the top of the policy 
table, as usually table lookup is done top down and for 
security reason there is always a default policy at the 
bottom to deny all traffic. Obviously, the table cannot be 
sorted. For example, it we sort the policy table by 
destination addresses, individual policies that allow each 
server to be accessible may get on top of the temporary 
policy and the blocking will then fail in this case. 
 
The policies can have overlaps in one or more fields, and 
thus the relationship among the classification tasks can be a 
graph with cycle, not necessarily a tree. Therefore, the 
execution order of the classification tasks strictly 
determines the actions to be taken to the packet. This is why 
the tasks, and in turn the policies, cannot be cached. For 
example, all employees working in engineering group E are 
allowed to access a source code server C, excluding 
hardware contractor A. However, the access should have 
lower priority than VoIP traffic and overall traffic load 
should not exceed a certain bandwidth limit, except release 
engineer R who has highest priority and best available 
bandwidth to C. In terms of security policy, the requirement 
described above can be presented as the following: 

a) A’s access to C should be denied; 
b) R’s access to C should be allowed with highest 
priority and maximum available bandwidth; 
c) E’s access to C should be allowed with 
bandwidth limitation. 

If c) is cached, a packet stream for A to access C can be 
passed as it satisfies c), although it will be denied by a) if c) 
is not cached. The same applies to b) in this example. 
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For IPv4, its packet header syntax that is related to 
classification can be specified as up to 8 fields: 32-bit 
source and destination network layer (layer 3 or L3) IP 
addresses, 16-bit source and destination transport layer 
(layer 4 or L4) TCP or UDP port numbers, 8-bit type-of-
service (TOS) field, 8-bit L3 IP protocol field, and 8-bit L4 
TCP or UDP protocol flags. If we consider tunneling 
protocols, there could be more fields such as VLAN tag, etc. 
In IPv6, its header has similar structure with larger IP 
address range (128-bit source and destination IP addresses). 
  
Mathematically, the multiple field classification is a point 
location problem in multi-dimensional space. In 
computational geometry, this means finding the object that 
contains of a query point, given a set of geometric objects. 
It has been claimed that if the objects are none-overlapping 
(also called non-intersecting or disjoint) fat objects, the best 
known the computational complexity bounds for n objects 
(policies in our case) and k dimensions (fields in our case) 
measures, for k > 2, are O(logn) in time with O(nk) in space, 
or O(logk-1n) in time with O(n) in space [1]. This is 
impractical as many papers pointed out. For the case of 
1,000 firewall packet filtering policies that inspect 4 header 
fields (source and destination addresses and ports), thus 
n=1,000 and k = 4, nk means 12TB for IPv4, while logk-1n 
means almost 1,000 times memory accesses. 
 
Multiple field classification problems have attracted great 
attention in recent years due to increased demand of high-
end packet forwarding and filtering network devices. The 
most significant applications are Gbps and faster firewalls. 
It requires packet filtering capability better than 4 million 
packets per seconds each direction in full duplex mode. 
Consider commercial network services should guarantee 
minimum bandwidth provided to customers rather than 
promising an average bandwidth that could be choky at 
times, all discussion in this paper considers the worst case 
as well as average case. The goal of the study is to find an 
algorithm that classifies packet at high packet rate with 
modest storage requirement. 

II. PREVIOUS WORK 
The design of packet classification algorithms is 
encumbered by worst-case bounds on search time and 
memory requirements that are so onerous as to make brutal 
force algorithms unusable [3]. Therefore, it will be 
infructuous to attempt to find an algorithm performing well 
under all circumstances. Research work is mainly oriented 
to exhuming inherent structures or characteristics of certain 
classification problems that can make heuristic algorithms 
that compute “fast enough” and occupy “not too much” 
memory. 
 
Historically, most packet filtering firewalls use linear 
search algorithms when performing policy lookup.  These 
algorithms are very time consuming and without upper 
bound of searching time—the searching time increase 
linearly as the policy table size grow.  
 

Many research results have been published in recent years 
to improve the efficiency of firewall policy lookup, 
essentially solving the problem of multiple field packet 
classification. 
 
V. Srinivasan, et al, proposed Grid-of-tries and Cross-
producting [3]. Grid-of-tire uses a trie-based data structure, 
like Hierarchical tries and Set-pruning tries [4], but the 
adoption of switch pointers to avoid the time-consuming 
back tracking search makes Grid-of-tries superior to other 
trie-based algorithms. Cross-producting divides the search 
space according to the rule segmentations along each 
dimension. Each segment refers to a sub-region in one of 
the F dimensions, and the cross-product of the F sub-
regions makes up of a sub-space. Search can be done 
quickly by parallel lookups on each dimension and indexing 
into the cross-product table but this algorithm bear large 
space complexity (memory requirement). Several papers 
followed this direction and proposed improvement or 
extensions to the Grid-of-tries algorithms [7, 10]. 
 
P. Gupta and N. McKeown proposed two algorithms RFC 
[5] and HiCuts [6]. RFC can be seen as a form of Cross-
producting but is improved by significantly compressing 
the cross-product table. RFC simplifies packet classification 
scheme by reducing structure redundancy in the 
classification process and does not obtain the classification 
result through one table lookup. The main idea of RFC is to 
place the smaller cross-products into equivalence classes 
before combing them to form larger cross-products. This 
equivalence of partial cross-products considerably reduces 
memory requirements, because several original cross-
product items map into the same equivalence class. HiCuts 
is an optimized algorithm based on a decision tree structure. 
At each tree node, the current search space is equally 
divided along a chosen dimension. The dimension to be cut 
and the number of cuttings depend on the characteristics of 
the rules belong to the node. Experimental results show that 
HiCuts performs well with non-overlap rules but consumes 
much time and space with overlapped classifiers. HiCuts is 
not stable at time and space while RFC performs stably at 
lookup time. HyperCuts [11] was proposed to divide along 
two dimensions at the same time. 
 
In another direction of packet classification algorithm 
research, not only effort has been made to exploit structural 
characteristics, but also introduce of additional heuristic 
information based on statistical characteristics such as 
traffic flow [8, 9]. They improved the average case 
performance and time/space tradeoff of the algorithms 
described earlier, but the worst case stays unchanged. 
 
Generally, performance of different algorithms can be 
evaluated with two aspects: theoretical analysis of worst-
case complexity and experimental comparison of mostly 
average cases. Table.1 is a list of worst-case analysis of 
aforementioned algorithms, from which we cannot easily 
conclude which algorithm is superior to the others. But 
when concentrating on time complexity, we will find that 
RFC and HiCuts are superior to the other algorithms, while 
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theoretical analysis and experimental results tell us RFC is 
more stable in lookup time than HiCuts (RFC needs only 9 
memory accesses during one lookup process no matter how 
the rules distribute). 
 
This paper introduced a new algorithm called HSM. Similar 
to RFC, HSM used hierarchical space mappings. However, 
HSM consumes much less memory space while its average 
lookup time is on the same order as RFC. Experimental 
results will be given afterwards in the paper and HSM has 
been proved to be very effective in real networks by 
commercial products of ServGate Technologies, Inc. 
 

Algorithm Worst time Worst space
Linear Search O(N) O(N) 
Grid-of-tries O(WF-1) O(N) 
Cross-producting O(FW) O(NF) 
RFC O(F) O(NF) 
HiCuts O(F) O(NF) 

 
Table.1 Worst-case complexity comparison of algorithms. 
In this table N is the number of rules, W is bit-width of a 
certain dimension (e.g. for IPv4 IP address, W=32), F is 
dimensionality of the search space. 

III. HIERARCHICAL SPACE MAPPING ALGORITHM 
Many previous works assume that some or even all fields in 
a policy are presented as prefix. In contrast, most inspected 
fields or matching templates in a policy are represented as 
numbers or ranges naturally, except networks (subnets). 
Even network addresses such as addresses of a group of 
servers are easier to be represented as ranges sometimes. As 
range-to-prefix conversion can generate a large number of 
policies and thus increase computational workload of policy 
lookup, ranges are used in this paper rather than prefixes. 
When needed, the one time prefix-to-range conversion does 
not add more policies and therefore has no impact on packet 
classification. 
 
The algorithm proposed in this paper can be applied in 
general cases of multiple field classification problems 
where sorting and caching do not help. However, the 
discussion in this paper focuses on IP network application, 
using a four-tuple firewall security policy lookup as 
example. The four-tuples considered in the firewall policy 
lookup example are destination address (DA), source 
address (SA), destination port (DP), and source port (SP). 
Normally, packet filtering inspects at least five-tuples. Here 
it is assumed properties other than the four tuples will be 
handled before or after policy lookup, such as TCP and 
UDP will have two separate policy tables or checked 
separately after the four-tuple search. 
 
The basic idea of the HSM algorithm proposed in this paper 
is to reduce the searching fields by mapping the lookup 
domains two-to-one, step by step and hierarchically.  
First, it maps the 2 IP address spaces (DA, SA) and the 2 
port number spaces (DP, SP) into non-overlapped segments 
precisely according the network address ranges and port 

number ranges used in the policy table, and reduces the 
original four-dimension space to a two-dimension space by 
looking up the following two tables: 

AMT — source/destination IP address mapping table 
PMT — source/destination port number mapping table 

 
Second, the two-dimension space resulted from the 
previous step is transformed to the one-dimension policy 
space.  This is done by looking up the third table: 

PLT — policy lookup table 
 

Figure.1 gives us an overview of the packet flow in HSM 
algorithm. We will elaborate the whole process step by step 
afterwards. 

 
 

Figure.1 Packet flow in HSM 
 

IP Address Fragmentation 
 
IP address fragmentation is done for both SA space and DA 
space respectively but in the same way.  For each address 
range (including address or subnet) appeared in the policy 
table, its two boundary IP addresses are marked down in the 
corresponding SA or DA IP space. When this is finished for 
each and every policies in the policy table, for each 
segment that has at least one policy falls in it, an address 
sequence number (ASN) is assigned in the ascend order 
along the increasing IP address, starting from 0. Figure.2 is 
an example that illustrated the IP address segmentation. 
 
 
 
 
ASN:                  0                 1           2        3          

 
s: starting address of an address range; t: ending address of an address range. 

 

Figure.2 IP address segmentation 
 
There are many ways to map a given IP address (i.e. the 
source or destination IP address of a received packet) to a 
segment. In HSM, this is achieved by maintaining a 
balanced binary tree. 
 
Port Number Fragmentation 
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The principle of port number fragmentation to get port 
sequence number (PSN) is quite similar to that of IP 
address fragmentation.  
For the port number mapping, a direct table (216 or 65536 in 
size) lookup is feasible when there is enough memory that 
can be allocated for it and usually more efficient.  
 
Lookup Table Structure 
 
The AMT table is a two-dimension table with the source 
address sequence number (SASN) and the destination 
address sequence number (DASN) as the indexes, and filled 
with address group numbers (AGN). The PMT table is 
similar to AMT except using the source port sequence 
number (SPSN) and the destination port sequence number 
(DPSN) as the indexes of the two dimensions, and filled 
with port group numbers (PGN). The PLT is a two-
dimension table with the AGN and PGN as the indexes, and 
filled with policy order numbers representing priority of the 
policies.  
 
Lookup Table Setup 
 
AMT 
When putting IP address segmentation, we assign a bitmap 
(BM) for each ASN indicating which policies in the policy 
table contain this ASN. This bitmap has one bit for each 
policy in the policy table. For example, if the policy table 
contains 8 policies and SA#1 is covered by policy#1, 
policy#2 and policy#6, then a BM of 01000110 will be set 
to SA#1.  
 
Each entry of AMT is given an address group number 
(AGN) according to the order of its appearance, along with 
a BM tagged to it. The BM is formed by an OR operation of 
the two BMs of SA and DA. We can use Table.2 as an 
example. Assume that SA#1 has bitmap 01000110 and 
DA#0 has bitmap 00100110, then the combination of the 
two comes to bitmap 00000110. So we put 1,2 in the entry 
corresponding to SA#1 and DA#0. Different AGN has 
different BM. If the result of combination is the same as 
previous AGN, then the AGN and associated BM for the 
entry will stay unchanged.  
 
PMT 
The process of PMT is almost like AMT. We also combine 
the BM of each PSN indicating the policies contain it. Each 
entry of PMT is given a port group number (PGN) 
according to the order of its appearance, and has a BM 
tagged to it. The BM is formed by an OR operation of the 
two BMs form SP and DP. Table.3 provides a reference 
and the foundation process is just like Table.2. 
 
Note that the BMs are not physically stored in lookup table; 
they are only used in the setup of lookup tables and will be 
released after PLT established.  
 
PLT 
Table.4 shows an example of PLT, which is generated from 
Table.2 and Table.3. The table is 5 by 7 in size because 

Table.2 engages 5 different AGN with BM indicating 
policy sets: {1,2}, {1}, {0}, {0,1,2}, {2} and Table.3 
engages 7 different PGN with BM indicating policy sets: 
{1}, {0}, {0,1},{0,1,2}, {0,2}, {1,2}, {2}.  
 
Each entry of PLT is filled with a policy number. We 
combine the BMs of AGN and PGN, and then pick out the 
policy number of the highest priority. For example, AGN#0 
has a BM indicating policy sets {1,2} while PGN#2 has a 
BM indicating policy sets {0,1,2}, then the result of the 
combination will be rule sets {1,2}. We fill the entry 
corresponding to AGN#0 and PGN#2 with policy 1 because 
of its higher priority.  
 

AMT SA#0 SA#1 SA#2 SA#3 
DA#0  1,2 1,2 1 
DA#1 0 0,1,2 1,2 1 
DA#2  2 2  

 
Policy 0 falls into SA segments 0 through 1, and DA segment 1; policy 1 falls into 
SA segments 1 through 3, and DA segments 0 through 1; policy 2 falls into SA 
segment 1 through 2, and DA segments 0 through 2. 

Table.2 AMT structure and setup 
 

PMT SP#0 SP#1 SP#2 SP#3 
DP#0  1 1  
DP#1 0 0,1 0,1,2 0,2 
DP#2  1 1,2 2 

 
Policy 0 falls into all SP segments, and DP segment 1; policy 1 falls into SP segment 
1, and all DA segments; policy 2 falls into SP segments 1 through 2, and DP 
segments 1 through 2. 

Table.3 PMT structure and setup 
 

PLT AGN#0 AGN#1 AGN#2 AGN#3 AGN#4
PGN#0 1 1   1  
PGN#1   0 0  
PGN#2 1 1 0 0(1)  
PGN#3 1(2) 1 0 0(1,2) 2 
PGN#4 2  0 0(2) 2 
PGN#5 1(2) 1  1(2) 2 
PGN#6 2   2 2 

Table.4 PLT structure and setup 
 
Policy Lookup for Packet Classification 
 

1. Parse the header of a received packet to get DA, 
SA, DP, and SP; 

2. Travel corresponding balanced binary trees to get 
the DASN and SASN according to DA and SA, 
respectively; 

3. Travel corresponding balanced binary trees or 
lookup corresponding tables to get the DPSN and 
SPSN according to DP and SP, respectively; 

4. Lookup AMT to get AGN by using the (DASN, 
SASN) pair as indexes; 

5. Lookup PMT to get PGN by using (DPSN, SPSN) 
pair as indexes; 

6. Lookup PLT to ultimately find the policy number 
by using (AGN, PGN) pair as indexes. 
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A Simple Example of HSM 
We present a simple example of a HSM that showing the 
complete HSM operation including preprocessing to set up 
the tables based on a given policy table and to perform 
policy lookup to determine the actions to the packet under 
inspection. The example is shown in Figure.6 in the 
Appendix, which is based on a four-tuples searching case of 
Table.7, also in the Appendix. 

IV. EXPERIMENTAL RESULTS 
Theoretical Analysis 
Assume we have N policies, the height of balanced binary 
tree used to hold all the boundary information of IP 
segments is log(2N+1). A policy lookup in F fields will 
only need to travel through at most F balanced binary trees 
for compare and branch, then lookup log(F-1) tables. 
Therefore, the worst case computational complexity of 
policy lookup is O(logN) in time. In general, a F-tuple 
HSM search with N policies will have time complexity of 
O(Flog(2N+1)+log(F-1)), or O(logN) when 2<F<<N.  
 
Using the four-tuple search described earlier as an example. 
Assuming we have a case of 1024 policies. The SASN and 
DASN trees are of maximum height 11. To travel these two 
trees, we need maximum 22 times compare and branch. If 
we use the direct table lookup to determine the port 
segment, only 2 times memory access is needed. To index 
through AMT, PMT and PLT, three times of table lookup 
are needed, which means 3 times of memory access. Totally, 
we need maximum 22 compare and branch plus 5 table 
lookups to locate the right policy by HSM.  
 
When there are N policies, the maximum size of PLT is 
O(N4), and the worst case size of AMT and PMT are both 
(2N+1)*(2N+1), as there could be at most 2N+1 IP address 
or port number segments for N entries in a policy table. 
 
However, with real-life policy tables, there is structural 
redundancy among policies as observed by Gupta [5, 6]. In 
the example shown in the Appendix where N=3, the size of 
AMT and PMT are both 4 by 3, rather than (2N+1)*(2N+1) 
or 7 by 7, and the size of PLT is 5 by 7, rather than in the 
order of N2 *N2 or 49 by 49. Therefore, due to the 
elimination of overlapping, memory requirement in practice 
(average cases) are far less than theoretical worst cases. 
 
Experimental Results 
Experimental results are shown in Figure.3 and Figure.4, 
which provide comparisons of RFC and HSM on average 
lookup time and memory occupied. The testing policy table 
is a real-life ACL from Tsinghua University, Beijing, China.  
 
From Figure.3, we can see that lookup time of HSM is 
slower than RFC, and the time has little change when the 
number of rules grows. This result is consistent with 
theoretical analysis. We know that RFC needs 9 memory 
accesses during one lookup process [5] regardless of 
number of policies, while HSM needs 4*log (N) + 3 
memory accesses for N policies. When N is on the order of 

1,000, HSM average lookup time is determined by 15~19 
memory accesses. 
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Total lookup time of 122,936 packets. 

Figure.3 Comparison of average lookup time 
 

From Figure.4 we can see that HSM is superior to RFC in 
space complexity. With the number of policies grows to 
above 2 kB, HSM can save more than 3 MB fast memory 
space compared to RFC. 
 

 Number of 
rules 

Memory 
use of 
RFC(k) 

Memory 
use of 
HSM(k) 

FW1 69 797 41 
FW2 341 910 262 
CR1 1001 1,666 923 
CR2 2180 13,840 10,062 

Table.5 Comparisons of memory occupied  
 

For more test to evaluate performance of HSM algorithm, 
we managed to obtain 4 real-life policy tables from 
enterprise networks and major ISPs. The two firewall 
policy tables are named FW1, FW2, the two router access 
control lists are called CR1, CR2. Table.5 shows us a 
comparison between HSM and RFC on memory occupied.  
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Figure.4 Comparison of memory requirement 

 
We can explain the efficiency in space requirement on the 
structure level. Figure.1 has shown us the packet flow in 
HSM, while the following Figure.5 will give us the logical 
chart of RFC. 
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Figure.5 Packet flow in RFC 

In Figure.5, HSA indicates the high 16 bits of Source 
Address and LSA stands for the low 16 bits of Source 
Address. The same formula can be extended to HDA and 
LDA. We consider the same rule sets in comparison 
between RFC and HSM. Assume that in RFC, HSA has R1 
segments, and that LSA has R2 segments, and HDA R3 
segments, LDA R4 segments, SP R5 segments, DP R6 
segments. Meantime, we suppose that in HSM, SA has H1 
segments, DA H2 segments, SP H3 segments, DP H4 
segments.  
 
Obviously, R5 is equal to H3 and R6 is equal to H4. And it 
can be concluded that R1+R2 >= H1 and R3+R4 >= H2. 
We have R1*R2 > R1+R2 and R3*R4 > R3+R4 when R1, 
R2, R3, R4 > 2. So we get the inequations R1*R2 > H1 and 
R3*R4 > H2, from which it results to R1*R2*R5 > H1*H3 
and R3*R4*R6 > H2*H4. Thus we get the point that HSM 
requires less memory than RFC in phase1. And we have 
described before that HSM used trees in phase0 rather than 
chunks, it only stores the start and end IP addresses of 
fragments. So it needs much less memories than RFC. The 
two decreases in memory determine that HSM is superior to 
RFC in space consuming, for the memories occupied in 
phase2 are just the same, that is because the segments of the 
two chunks of phase1 must be the same. 
 
Comparison with Other Packet Classification Schemes 
 
Table.6 shows a qualitative comparison of some of the 
schemes for packet classification. 
 
 
Schemes Advantages Disadvantages 
Grid-of-trie Good storage 

requirements and fast 
lookup rates for two 
fields. Suitable for 
large policy tables. 

Not easily extendible to 
more than two fields. 
Not suit-able for non-
contiguous masks. 

Corss-
producting 

Fast accesses. 
Suitable for multiple 
fields. Can be adapted 
to non-contiguous 
masks. 

Large memory 
requirements. Suitable 
without caching for 
small policy tables. 

RFC Suitable for multiple 
fields. Works for non-
contiguous masks. 
Fast lookup rate. 

Large preprocessing 
time and memory 
requirements for large 
policy tables.  

HiCuts Suitable for multiple 
fields. Performs well 
for non-overlapped 
rules. Good tradeoff 
between time and 
space. 

Large preprocessing 
time and memory 
requirements for large 
policy tables. Not 
stable for different 
policy lookups. 

HSM Suitable for multiple 
fields. Fast lookup 
rate. Reasonable 
memory requirements 
for real-life policy 
lookup. 

Large preprocessing 
time and not small 
memory requirements 
for large policy tables. 

 
Table.6 Comparison of popular algorithms 

 
 
Perspective on IPv6 
The development of NGI and the proposition of IPv6 set 
new challenges to packet classification algorithms. The 
present tree-based algorithms like Grid-of-trie and HiCuts 
will encounter big problems. The increasing of tree depth 
would result in the boom in storage requirements and make 
the policy lookup time-consuming. Cross-producting and 
RFC might not be effective any more because of oppressive 
space needed. But the proposed algorithm in the paper will 
perform well under IPv6 structure, for it is the fragments of 
SA, DA, SP, and DP that determines the storage 
requirements. The space needed increases when the 
numbers of fragments increase, but would not change a lot 
when the IP address bit length increases. It just needs more 
memory to store the longer IP addresses in phase0.  
 
The HSM algorithm was successfully implemented in wire-
speed giga-bit security gateway products commercialized 
by ServGate Technologies, Inc. The system was built based 
on two Intel IXP1200 network processors each handling 
inbound and outbound network traffic, respectively. Test 
was carried out with line-rate packet flows generated by 
Spirent SmartBit to pass through the system, with the 
percentage of denied traffic (packets dropped by the action 
of the last policy which denies all packets not explicitly 
permitted by any other policies) increasing from 0% to 
100% cross all different packet sizes and various policy 
table sizes. It was shown that the packets allowed by the 
explicitly defined policies, which permit the respective 
packet flows, passed the system almost unaffected, meaning 
the policy lookup is not the bottleneck. Note that session 
lookup or stateful inspection was implemented in the 
system so that allowed traffic flows had almost no load on 
policy lookup, except the first packet of each flows. In 
cases where policy lookup is the bottleneck, as denied 
traffic becomes heavy, processing power of the systems 
would be drew too much to perform policy lookup for 
denied traffic as each packet rather than flow need to go 
through packet lookup individually, and therefore packets 
are dropped randomly, causing throughput degraded faster 
than linear.  
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V. CONCLUSION 
Due to the characteristics of ordered and overlapping 
policies, packet classification on multiple fields cannot be 
expedited by policy sorting prior to policy lookup or policy 
cache during policy lookup. To achieve high-performance 
policy lookup, special hardware and associated algorithms 
can be applied but they introduce additional cost. Those 
hardware solutions are usually neither flexible nor scalable. 
The HSM algorithm proposed in this paper provided a 
novel generic solution that can be implemented either in 
software or hardware, with reasonably balanced time and 
space computational complexity.  
 
Future work can be conducted in optimization of date 
structure to further improve lookup and update efficiency 
by leveraging on modern network processor architecture.  
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VIII. APPENDIX 
Rule SA Range DA Range SP Range DP Range Action 
(0) 0.0.0.0~64.0.0.0 32.0.0.0~64.0.0.0 0~65535 128~256 deny 
(1) 32.0.0.0~255.255.255.25 0.0.0.0~64.0.0.0 64~256 0~65535 permit 
(2) 32.0.0.0~128.0.0.0 0.0.0.0~255.255.255.255 128~65535 128~65535 deny 

Table.7 Policy table used for example 
 

 
 

Figure. 6 This figure shows the contents of HSM tables for the example of Table.7.  
The sequences of accesses made by the example packet have been shown in grayed blanks. 


