
Towards High-Performance Network Intrusion Prevention System
on Multi-core Network Services Processor

Xiang Wang1, Yaxuan Qi2, Baohua Yang2, Yibo Xue3,4 and Jun Li3,4
1School of Software Engineering, University of Science and Technology of China, Hefei, China

2Dept. Automation, Tsinghua University, Beijing, China
3Research Institute of Information Technology, Tsinghua University, Beijing, China

4Tsinghua National Lab for Information Science and Technology, Beijing, China
kojiroh@mail.ustc.edu.cn, ybh07@mails.tsinghua.edu.cn, {yaxuan, yiboxue, junl}@tsinghua.edu.cn

Abstract

Network intrusion prevention system (NIPS) becomes
more complex due to the rapid growth of network
bandwidth and requirement of network security. However
existing solutions, either hardware-based or software-
based cannot obtain a good tradeoff between
performance and flexibility. In this paper, we propose a
parallel NIPS architecture using emerging network
services processor. To resolve the problems and
bottlenecks of high-speed processing, we investigate the
main design aspects which have dramatic impacts on
most parallel network security system implementations:
efficient and flexible pipeline and parallel processing,
flow-level packet-order preserving, and latency hiding of
deep packet inspection. To these key points, we address
several optimizations and modifications with an
architecture-aware design principle to guarantee high
performance and flexibility of the NIPS on a network
services processor implementation. Performance
evaluation shows that, our prototype NIPS on Cavium
OCTEON3860 processor can reach line-rate stateful
inspection and multi-Gbps deep inspection performance.

1. Introduction

Facing the rapid growth of Internet bandwidth and
continual emergence of new network applications,
network systems require high-performance packet
processing, which drives critical functions in network
processing, such as policy processing and data flow
control, to be merged into the data-plane [1]. And the
functions in data-plane are becoming rich along with this
trend. Take security territory for example, in order to
perform finer-accuracy and higher-granularity processing,
deep packet inspection (DPI) becomes the necessary
module of security systems, such as NIPS and Anti-Virus

Gateway. As all these new changes arise, it is a big
challenge to the network system design and
implementation. In general, network systems must match
the following requirements: 1) network systems must
have high performance adapted to the high-speed network;
2) network systems should be able to implement the ever-
increasing applications; 3) network systems should be
more extensible to be easily updated.

According to system requirements, device
manufacturers have proposed different solutions. For
high-end products, application specific integrated circuit
(ASIC) / field programmable gate array (FPGA) based
solution is commonly used [4][5]. This solution can
achieve higher speed, but the disadvantages are also
obvious: high risk, high cost and low flexibility. At low-
end, the solution is based on X86 series generic
processors and is able to meet the flexibility with low cost.
However, this solution cannot be adapted to high-speed
networks due to the limit of processor architecture. Thus,
many chip manufacturers, such as Intel and Freescale
[6][7], bring the concept of network processor (NP) with
optimized architecture and dedicated instruction set to
suffice line-rate packet processing. With the recent
advance in technology, the industry extends the NP
concept and proposes a newly designed multi-core
network processor with security and application hardware
acceleration engines, Network Services Processor (NSP)
[3]. It not only reserves the traditional NP’s advantages,
but also provides high performance, high flexibility, low
cost, and low power.

Deploying the NIPS, such a complicated network
system, over NSP platform is also a challenge. The NIPS
has complex data flow and different computing intensity
tasks. It is required to balance the system’s performance
and flexibility. In this paper, we propose a parallel NIPS
architecture based on Cavium OCTEON3860. Main
contributions of this paper are:

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.109

220

 System Design: We present an effective parallel
NIPS architecture to meet both performance and
flexibility. It also provides the facility of
extending the system’s functions. We describe all
modules’ functions in detail, and analyze the
issues and bottlenecks. As a summary,
architecture-aware NIPS design principles are
proposed.

 System Optimization: To optimize the
performance of NIPS on NSP platform, we use
different coprocessors of NSP to break the
following system bottlenecks: i) inflexibility of
parallel and pipeline processing mode; ii) flow-
level packet-order preserving over multi-cores; iii)
slow pattern matching for deep packet inspection.

 System Deployment: The proposed NIPS is
implemented as a prototype system on Cavium
OCTEON3860 NSP. And experimental results
show that the NIPS obtains line-rate stateful
inspection throughput, and 2Gbps deep inspection
performance.

The rest of this paper is organized as follows. Section
2 introduces the background of both NIPS and NSP.
Section 3 presents the parallel NIPS architecture and
discusses the challenges of implementation. Section 4
introduces the solutions to the bottlenecks in detail along
with the guidance of network system design on multi-core
NSP. Section 5 presents the experimental results and
performance evaluation. Finally, section 6 concludes and
discusses our work.

2. Background

Many research and industrial entities have proposed
various solutions for high-performance NIPS. Most of
them are implemented by adding stateful firewall and
policy modules to the intrusion detection system (IDS) to
make IDS obtain the ability of blocking attacking flow
initiatively.

In general, there are hardware-based and software-
based solutions. Among hardware-based implementations,
A. Mitra, W. Najjar and L. Bhuyan compile the Perl
compatible regular expressions (PCRE) library to FPGA
to accelerate the intrusion detection of Snort [8], the most
popular IDS which performs intrusion detection by
comparing every incoming and outgoing packet against a
rule set [11]. It achieves a significant speed up compared
with the implementation on Intel architecture (IA), using
a set of very limited rules. Sourdis and Pnevmatikatos
implement independent comparison pipelines on FPGA to
perform fast and large-scale pattern matching at a speed
of multiple characters per clock cycle [9]. J. M. Gonzalez,
V. Paxson, and N. Weaver propose a newly designed
packet processing model – Shunting and implement it on
FPGA to improve IPS performance [10]. They also adapt

the Bro IDS to work with Shunting. The performance of
these systems is well improved; however, it is obvious
that all solutions based on hardware have high cost and
low flexibility.

Among software-based implementations, most of the
researches are around the optimization of Snort. Figure 1
shows the processing loop of Snort. Intel has proposed
two kinds of Snort parallelism on IA [12], but only
performing packets processing by multi-process of Snort
or simply implementing a naive scheduler without the
optimization for shared resources. These solutions cannot
reach even 1Gbps throughput. Aiming at these unresolved
issues, D.L. Schuff, Y. R. Choe and V. S. Pai research on
data sharing between multi-thread in both packet-level
and flow-level parallelization and achieve an average
1.09Gbps throughput [13]. Because this work is still
based on the IA platform and just tested with local-stored
traffic traces, the real performance on the advanced NSP
platform is still unveiled.

As the solutions discussed above, the software-based
IDS/IPS using IA platform can hardly meet the
performance requirement of high-speed network, while
hardware-based solutions are less flexible and often mean
higher R&D costs. Therefore, it is necessary to search for
other solutions to balance both sides.

The newly designed multi-core network processor with
security and application hardware acceleration engines
simplifies the network system design and implementation
under current application background. It can be used in
various networking equipments, including unified threat
management appliances, content-aware switches,
application-aware gateways, and storage networking
equipments [2]. Its emergence provides us an appropriate
approach to deploy the NIPS efficiently and flexibly.

Figure 2 shows the architecture of OCTEON3860 NSP.
The processor has 16 MIPS cores and several
coprocessors, including DFA hardware engine. The
Packet Input Processing/Input Packet Data (PIP/IPD) unit
receives packets from the wire, and then the Packet Order
/ Work (POW) unit schedules packets to different
processing engines for packet processing. Finally packets
are sent out from Packet Output Processing (PKO) unit.
More details about OCTEON processor 3860 can be
found in [14].

Sniffer

Decode

Preprocess

Detect

Alert/Log

Figure 1. The packet processing loop of Snort

221

3. Parallel NIPS architecture

3.1. Design

The NIPS scans every incoming packet according to
preset security policies. Once attacks in the traffic are
detected, the NIPS takes prevention actions immediately.
Due to different requirements, we divide the system into
two different granularity inspections: stateful inspection
and deep inspection. Stateful inspection tracks and
validates connection-level packet information stored in
packet headers, while deep inspection scans the overall
packet payload for attack signatures. In consideration of
both extensibility and flexibility, our NIPS architecture is
proposed in figure 3:

Packet Receiving Module: It receives packets from
wire, and performs packet analysis based on Layer 2 to
Layer 4 headers. Then it passes the analysis results and
packets to the scheduler module.

Scheduler Module: Based on the preprocessed results,
this module schedules packets to different processing
engines. It also provides packet-order preserving function
and critical area protection for the traffic.

Stateful Inspection Module: It performs session
management and stateful inspection. After the security
policy is processed, it decides whether to pass packets to
deep inspection module or only to send packets out.

Packet Transmitting Module: According to the
priority, this module submits packets of different flows to
different output queues, and then transmits packets to the
wire.

The above four modules compose the fast-path to
guarantee the rapid packet forwarding.

On the basis of the fast-path, the system is able to
schedule packets to different upper processing engines by
scheduler module. And the engine of upper processing
can be extended according to the system requirement. For
example, the anti-virus module can be easily added. In
our prototype system, the upper processing module is
only the intrusion detection module.

Intrusion Detection Module: This module is
responsible for deep inspection – intrusion detection by
matching the payload of packets to the preset rule sets.

And it is separated into four submodules: Decoder,
Preprocessor, Detection and Alert. Decoder performs
protocol analysis from Layer 2 to Layer 4 for the
following process. Preprocessor performs necessary
examination and manipulation before packets are handed
to the detection, including IP fragment and flow
reassembly. Detection checks packets against various rule
sets by examining the aspect or field of packets. Alert
generates alert messages when attacks are detected.

3.2. Challenges

Processing Model: The NIPS has complex processing
modules and different compute intensities of various
granularity detections, therefore we map the inspections,
stateful inspection and deep inspection, into two different
data paths to guarantee the system’s high forwarding
efficiency. This not only avoids the compute-intensive
function’s long occupancy of computing resources, but
also provides the flexibility of different combinations of
pipeline processing in accordance with system
requirements. Moreover, in order to improve the
performance of each processing stage, we assign
parallelizable tasks to different cores to make parallel
processing. As a result, it is necessary to perform both
pipeline processing and parallel processing in NIPS.

Packet-order Preserving: Being a network system,
the NIPS need to send the packets in same flow by their
incoming order. This is the principle of network system
design and also is the requirement of high-layer protocols.
Take transfer control protocol (TCP) for example, if the
network system doesn’t maintain the sequence, disorder
will happen and be amplified during the transmitting. As a
result, the receiver will get poor TCP performance.
Besides, packets in the same flow must be kept in order
when accessing the critical areas of processing loop,
otherwise relative functions, such as stateful inspection
will get error. Therefore, packet-order preserving scheme
should also be carefully considered.

DPI Acceleration: DPI is the processing bottleneck,
which is recognized by both academia and industry.
Software-based algorithms are hardly adapted to high-
speed traffic processing because: Firstly, during the DFA

Packet Receiving

Scheduler
schedule, ordering,
serialized access

Stateful Inspection

Session Policy

Packet Transmitting

Deep Inspection
Other Module

Deep Inspection
Other Module

Deep Inspection
Intrusion Detection Module

Decode

Preprocess

Detect
non-content Multi-pattern

Alert

Figure 3. The parallel NIPS architecture

POW

cnMIPS
Cores

16

DDR2
Memory

I/O Bridge

IPD

PIP
PKO

RLDRAM

Rx/Tx Port

I/O Bus

DFA

Figure 2. Cavium OCTEON main block diagram

222

graph walking, each node access of a DFA graph depends
on the previous node and the next input character, and the
performance is limited by the node access time. However,
in software-based algorithm, DFA graphs are usually
stored in memory whose access latency is large. Besides,
DFA graph walking is character dependent and hence
cannot get benefit from general CPU caching scheme.
Also, large and/or multiple DFA graphs result in
excessive capacity/conflict misses and unnecessary cache
trashing [15]. So we need an optimized DFA processing
engine and low latency memory used for storing the DFA
walk graph.

Based on the discussion above, the problems are:
 How to build the NIPS architecture with efficient

and flexible pipeline and parallel processing.
 How to guarantee the packet order at flow level

with full use of system resources and low costs.
 How to accelerate detection processing in

intrusion detection module.

4. Implementation of parallel NIPS on NSP

OCTEON processor includes a large variety of
application specific offload and acceleration engines, such
as compression/decompression, encryption/decryption,
DFA and checksum engines. These engines help us to
offload compute-intensive tasks of simple control logic
and improve the system’s performance.

4.1. All-in-one scheduler

As Section 3.2 shows, the system should perform
efficient and flexible pipeline processing and parallel
processing, and the scheduler module plays a great
important role in the system. Since the generic processor
is hardly competent for this task, the scheduler must be
implemented in an efficient and specific coprocessor. In
OCTEON processor, POW hardware unit is responsible
for this function. This unit has the following important
features [14]:

 Maintaining eight hardware queues for all
incoming packets to provide different service
levels. And the input work queues can be
infinitely large if necessary.

 Scheduling and descheduling packets to different
processing groups, which avoid consuming one
core for this function. And the hardware supports
a maximum of 16 groups

 Ordering and synchronization of packets. This
unit associates a tag value/type tuple to each
packet to support this feature.

In pipeline processing mode, the whole packet
processing is separated into several stages, and each core
handles one or more processing stages. Packets are passed
from one stage to the next until the processing is

completed. In OCTEON processor, we utilize the group
scheme: each processing stage is mapped into one group;
packets from different groups are processed by different
processing engines. Besides this advantage, one
processing engine can be set to receive packets from
different groups, and call relative functions to process.
The whole processing based on group scheme can be
described as follows: when the processing of the task with
group X is completed, the current processing engine
changes the group number from X to Y, then deschedules
the task and sends it back to POW. The POW picks the
processing engine which is responsible for packets of
group Y processing, and reschedules the task to it. Figure
4 shows the group-based pipeline process mapping:

During each pipeline stage, we parallelize the
processing to improve the performance. According to the
packet’s group and the status of the group-related cores,
POW can choose the idle core to process the packet
automatically.

In the implementation of our system, we set four
groups for system processing: ORIG_GRP, TO_DO_ID
_GRP, DFA_RESULT_GRP, and ID_RESULT_GRP
which is separately used for representing the original
packets, the packets which need intrusion detection after
stateful inspection, the results of DFA processing, and the
packets after intrusion detection. Six cores are selected for
stateful inspection, and configured for processing packets
from ORIG_GRP and ID_RESULT _GRP. The other ten
cores are for intrusion detection along with the DFA
hardware engine, and configured with TO_DO_ID_GRP
and DFA_RESULT_GRP.

4.2. Flow-level packet-order preserving

As shown in Section 3.2, flow-level packet order must
be guaranteed by every network system. From the
network system’s point of view, the packet-order
preserving solution is typically software-based ordered
thread execution [16], but it demands signal
communication between every processing engine which is
complicated for software design. POW’s ORDERED tag
type keeps the packets in inbound order, and simplifies
the programming.

From the critical area’s point of view, in multi-core
environment, we can lock the critical area to make sure
that only one packet in the same flow can access the
critical area in a certain time. It is obvious that

Scheduler Group 5

PIP/IPD PKOPOW

corecorecore corecorecoreDFADFA

G
roup 2

G
roup 3

G
roup 4

Group 1

1 6
5432

Figure 4. The group-based pipeline mapping

223

lock/unlock is a waste of system resources. POW’s
ATOMIC tag type guarantees that the packets from the
same flow, which means they have the same tag value, are
serially processed in inbound order. So when accessing
the critical areas, we need not to lock them, avoiding the
consuming of the system resources. Figure 5 compares
the ORDERED tag type packet processing with the
ATOMIC tag type packet processing.

The tag scheme’s advantage is not only keeping
packets in order at different levels, but also switching
flexibly between ORDERED and ATOMIC. When
accessing the non-critical area, we can set the packets’ tag
value to ORDERED to parallelize the processing of the
packets in the same flow; when accessing the critical area,
we only perform a tag switch to ATOMIC, and the
packets will be serially processed in ingress order
automatically.

In the implementation of our prototype system, the
session management and the TCP states transition in the
stateful inspection module need the serial access, as well
as the reassembly preprocess and the detection in the deep
inspection module. So only before entering these critical
areas, we perform a tag switch from ORDERED type to
ATOMIC type. Thus, the other parts can be parallelized
to make full use of the system resources.

4.3. DPI acceleration

In the intrusion detection module, the detection
submodule occupies the most processing time, while the
multi-pattern matching is the highest time-consuming part
with an average of 48 percentage of the whole module
processing [13]. Nowadays the software-based algorithm
running on general CPU isn’t suit for high-speed traffic
processing, so we accelerate the multi-pattern matching
by using DFA hardware engine. This acceleration unit has
16 DFA thread engines, the low-latency DRAM controller,
and the instruction-input logic. In order to make further
improvement, several optimizations have been done as
follows:

Firstly, depending on the asynchronous mode of the
DFA hardware engine, the generic processor performs
necessary preprocess, including IP fragment and flow
reassembly, then submits the packets to the DFA
hardware engine for multi-pattern matching, and

continues the other preprocesses and detections. The
packets are shared between the generic processor and the
DFA hardware engine. Once the DFA hardware engine
completes the DFA walk, it passes the multi-pattern
matching result to the POW. Then the generic processor
gets the multi-pattern matching result from the POW and
submits the final intrusion detection result to the stateful
inspection module, including the results of other
detections. In this way, we hide the latency of multi-
pattern matching by parallelizing the multi-pattern match
processing and other detections.

Secondly, as Section 3.2 discusses, during the DFA
graph walk, each status transition is one memory access.
The access latency of the SRAM which is the main
memory of this system is above 40ns, so the memory
access latency has great impact on system’s performance.
In the system implementation, we store the DFA walking
graph in reduced latency DRAM (RLDRAM) whose
access latency is about 15~20ns, and can be accessed
through two dedicated low latency memory (LLM)
channels.

4.4. System Deployment

Based on the discussion above, we finally implement
the prototype system which is described as below:

The PIP/IPD unit performs preprocessing and
checksum on every incoming packet and all packets here
are labeled with ORIG_GRP and ORDERED tag type.
According to the group type, the POW unit submits
packets to the stateful inspection module. During the
stateful inspection, a tag switch from ORDERED to
ATOMIC will be executed after packets decapping, then
the module will call session functions. After the stateful
inspection, the traffic which needs deep inspection is
labeled with TO_DO_ID_GRP and submitted back to
POW unit. Then the POW assigns packets to the intrusion
detection module. And in this module, multi-pattern
matching will be offloaded to the DFA hardware engines,
while the other detections will performed by generic
processors. After the DFA walking results is received, the
intrusion detection module will hand in these results
accompanied with the other detection results to the
stateful inspection module. The stateful inspection judges
from the detection results to decide the action it will take.

In figure 6, we can state that all optimizations shown
below speed up and flexiblize the system processing.

1) The efficient and specific coprocessor is used for
scheduler, which guarantees the efficiency of scheduling.
We can map different processing stages into different
groups, which helps us to perform flexible pipeline and
parallel processing.

2) Tag-based flow-level packet-order preserving
scheme simplifies the programming, and its flexible tag
switch helps us to perform both packet-level and flow-

2 1 2 1 2 1 POW

core 0

core 1

core 2

2 1 2 POW

core 0

core 1

core 2

PKO

1

2

1

PKO

2

1

POW

core 0

core 1
core 2

PKO2 2

POW

core 0

core 1
core 2

PKO 212

11

2 1 2 1 2 1 POW

core 0

core 1

core 2

2 2 POW

core 0

core 1

core 2

PKO

1

PKO

2

POW

core 0

core 1
core 2

PKO2

2

POW

core 0

core 1

core 2
PKO 2

2 1

1

111

22
Figure 5. ORDERED tag type processing and

ATOMIC tag type processing

224

level parallel process during the whole packet processing
with the full use of system’s computing resources.

3) Hardware-based DPI processing improves the
system performance. We modify the detection flow to
parallelize the multi-pattern matching by DFA hardware
engines and the other detections by generic processor, so
we hide the latency of multi-pattern matching to a large
extent. Besides this, RLDRAM with two LLM channels
also reduce the memory access latency.

Based on the NIPS design and implementation, we
provide several guidelines for building an efficient
network system on NSP platform.

 Use group-based pipeline processing when
necessary. Map different processing stages to
different groups and call related functions. It is
recommended to use different binary to do
pipeline processing, if the performance must be
guaranteed.

 Maximize the packet-level parallelism during
each processing stage. Only switch to flow-level
parallelism by tag switch when stateful function
is called.

 It is recommended to use DFA hardware engine
asynchronous mode to parallelize the generic
processing and the DFA processing.

5. Experiments and performance analysis

In this section, the proposed parallel NIPS architecture
is evaluated. First we will describe the development
platform and test environments, then we show the
comparing test results to illustrate our solution’s
advantage, and finally we present the prototype system’s
performance.

5.1. Development platform and test environments

The prototype system is running on Lanner MR950
series evaluation board. It includes one Cavium
OCTEON3860 processor of 16 MIPS64 cores, eight
RGMII interfaces connected to eight Gigabit ports which
ensures maximum throughput and performance, two built-

in DDR2 DIMM sockets with 2GB DDR2 400MHz main
memory and 128MB RLDRAM onboard connected to
two dedicated low latency memory channels to satisfy the
requirements of the DPI applications. More detailed
information can be found in [17].

The target system is based on Snort 2.4.3 which has
around 5500 rules. We replace the multi-pattern matching
algorithm with the DFA hardware walking to offload the
compute intensive tasks, and several preprocessing
sequence are modified for improving the performance.
The Cavium Software Development Kit’s version is 1.5.0
build 195.

There’re two types of testing flow. One is the traffic
generated by SmartBit 600, which is UDP flows of
different packet size, and the other one is the traffic
generated by two test machines which communicate with
each other by multiple sessions using hyper text transfer
protocol (HTTP) protocol.

5.2. Scheduler efficiency

Figure 7 shows the throughput of POW scheduler and
generic MIPS64 core scheduler. The POW scheduler
works under ATOMIC tag type, and the generic MIPS64
core scheduler only submits packets to the other 15
MIPS64 cores averagely without load balance and packet-
order preserving functions. In order to investigate the
tasks impacting on efficiency, we compare the pure
scheduling and scheduling with jhash which is commonly
used in Linux kernel network stack. We can see that
regardless of the packet size, the POW scheduler can
adapt to line-rate processing. On the contrary, the generic
MIPS64 core scheduler is competent for only scheduling
the packets of 256 Bytes or above to the other processing
engines. And adding only the hash function significantly
slows down the throughput. Therefore, it is wasteful of
using one generic MIPS64 core to perform simple
scheduling, and it is also susceptible to the amount of
tasks. The scheduler should be implemented in a
dedicated coprocessor.

5.3. Packet-order preserving

In classic NP, like Intel IXP28XX, the ordered thread
execution is used for packet order preserving. An ordered
critical section is used for reading the packets off the
scratch ring form the previous stage. Then the engines
process the packets, which may cause out of order during
this stage. At the end of the dispatch loop, another ordered
critical section is used for correcting the order. And inter-
thread signaling is also used for the implementation [16].
From the discussion, we can see that the transmitting
order should match the reading off order, and the first-in
and last-out packet will cause the other processing

DFA walking
instructionsSchedule according to

tag tuple and group value

Flow-level parallel
for stateful
inspection &
Packet-level

parallel for other
processing

Multi-pattern
matching
offloaded

IDS functions,
including decode,

preprocess, detection
without multi-pattern
matching, and alert

Hardware
preprocess and

checksum

Incoming
packets

Rx Port

PIP/IPD

POW

PKO

Tx Port

Core 0 ~ Core x

Packets with preprocessed
tag tuple & group value

Send different-flow
packets to different

output queues

Packets from
TO_DO_ID_GRP

descheduled

DFA result from
DFA_RESULT_GRP

rescheduled

DFA result from
DFA_RESULT_GRP

descheduled

RLDRAM
Packets from

TO_DO_ID_GRP
rescheduled

Packets from
ID_RESULT_GRP

descheduled
1

2

3

4

5

6

ORIG_GRP

TO_DO_ID_GRP

ID_RESULT_GRP

DFA_RESULT_GRP

Core x+1 ~ Core 16 DFA

Figure 6. The NIPS packet processing flow

225

engines waiting for order preserving. The ORDERED tag
scheme ensures processing engines not idling away after
processing packets, avoiding inter-thread signaling and
leaving the order preserving to the POW scheduler.
Therefore, it highly improves the system’s performance
and also is convenient for performing flexible pipeline
and parallel processing discussed next.
5.4. Parallelization at different level

Figure 8 shows the comparison between pure
ATOMIC tag type processing and ORDERED, ATOMIC
tag types mixed processing. The throughput is tested on
four MIPS64 cores. By Amdahl’s Law, we can achieve
higher speedup, if sequential parts of the program are
fewer and the extra cost of parallelization is lower. In the
case of fewer flows or high percentage of long lifetime
flows, the pure ATOMIC tag type processing doesn’t
make full use of computing resources for its whole
serialized processing. Therefore, we separate the whole
processing into packet-level parallelization and flow-level
parallelization using a tiny-cost tag switch between them.
We can see that there is a slight slowdown of the
throughput when mixed processing is used for multiple
flows. While used for the real Internet traffic streams
where the tortoises, defined as flows which have long
lifetimes, and carries a large portion of the total bytes on
links [18], the performance illustrated in figure 8 can be
improved to a certain extent.

5.5. DFA walking accelerating

Table 1 shows the comparison of throughput between
software DFA and hardware DFA using RLDRAM. The
test is based on subset of Snort rules. We built HardDFA
using DFA tools provided by Cavium, and built SoftDFA
using AC [19] algorithms. The HardDFA is stored in
RLDRAM, and the SoftDFA is stored in DDR2 DRAM.
We can see that under the memory size limitation and
whatever the DFA size is, the performance of hardware
DFA is almost unchanged. On the contrary, the software
DFA’s performance goes down along with the increase of
the DFA’s size.

5.6. Stateful inspection performance

Figure 9 shows the performance of stateful inspection
on different processing cores. When tested with the
minimum Ethernet packets (64Bytes), stateful inspection
with six cores can nearly reach the linear processing rate.
Figure 10 shows the performance of stateful inspection on
different packets size. When using one MIPS64 core,
stateful inspection processing the 512-Byte packet can
reach the linear processing rate.

5.7. Deep inspection performance

Table 2 shows the performance of deep inspection on
different processing cores and different packet sizes. We

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90

%
Th

ro
ug

hp
ut

 (1
00

%
 =

 8
G

bp
s)

Stateful Inspection Performance on Different Percentage of Tortoises

ORDERED ATOMIC tag types mixed Pure ATOMIC tag type

Figure 8. The stateful inspection performance
on different percentage of tortoises

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 1518
%

Th
ro

ug
hp

ut
 (1

00
%

 =
 8

G
bp

s)

Stateful Inspection Performance on Different Packet Size

Figure 10. The stateful inspection performance
on different packet size

0

20

40

60

80

100

64 128 256 512 1024 1518

%
Th

ro
ug

hp
ut

 (1
00

%
 =

 8
G

bp
s)

Scheduler Efficiency on Different Packet Size

MIPS64 core scheduler with jhash MIPS64 core scheduler POW scheduler

Figure 7. The scheduler efficiency
on different packet size

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6

%
Th

ro
ug

hp
ut

 (1
00

%
 =

 8
G

bp
s)

Stateful Inspection Performance on Different Core Number

Figure 9. The stateful inspection performance
on different core number

226

can see that deep inspection using ten MIPS64 cores can
reach 2.18Gbps throughput of normal Ethernet packets
(MTU is set to 1500), which is limited by DFA hardware
engine’s bandwidth.

6. Conclusions and future works

In this paper, we present a parallel NIPS architecture
and also implement the prototype system on NSP
platform which is newly designed multi-core network
processing platform. To resolve the problems and
bottlenecks of high-speed processing, we make full use of
the application specific offload and acceleration engines
in the NSP. Experimental results show that, our prototype
system can reach line-rate stateful inspection and multi-
Gbps deep inspection performance.

Our proposed architecture shows high flexibility, and
we can easily add more processing modules on this
prototype system to enrich the system functions. Besides,
our performance analysis indicates that the performance
of deep inspection is limited by the DFA hardware
engine’s bandwidth. We can adjust the proportion of
multi-pattern matching using DFA hardware engine to
improve the system performance further. We will do more
research on these two directions.

Acknowledgements

This work has been supported by the National High-
Tech R&D Program (863 Program) of China under grant
No.2007AA01Z468.

References

[1] Bob Wiest, “Evolution and requirements for DPI in
network security infrastructure”, in the Asia-Pacific
Advanced Network 25th Metting, Jan. 2008.
[2] Cavium Networks Inc, “OCTEONTM MIPS64
Processors Architecture Advantages”, Technical Report,
June, 2007.

[3] Cavium Networks Inc, http://www.caviumnetworks.co
m/newsevents_octeon_montavista.html
[4] Juniper Networks Inc. “Juniper Networks ISG Series”,
Datasheet, 2004.
[5] Fortinet Inc. “Fortigate 5000 Series”, Datasheet, 2006.
[6] Inetl Inc. “Intel Internet Exchange Architecture
Network Processors: Flexible, Wire-Speed Processing
from the Customer Premises to the Network Core White
Paper”, White Paper, 2002.
[7] Freescale Semiconductor Inc, “C-Port Network
Processors”, http://www.freescale.com/webapp/sps/
site/homepage.jsp?nodeId=02VS0lDFTQ3126
[8] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling
PCRE to FPGA for Accelerating SNORT IDS”, in
Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications systems,
Dec, 2007.
[9] I. Sourdis and D. Pnevmatikatos, “Fast, Large-Scale
String Match for a 10Gbps FPGA-based Network
Intrusion Detection System”, in Proceedings of the 13th
International Conference on Field Programmable Logic
and Applications, Sept, 2003.
[10] J. M. Gonzalez, V. Paxson, and N. Weaver,
“Shunting: A Hardware/Software Architecture for
Flexible, High-Performance Network Intrusion
Prevention”, in Proceedings of the 14th ACM conference
on Computer and communications security, Oct, 2007.
[11] M.Roesch, “Snort Lightweight Intrusion
Detection for Networks”, in Proceedings of the 13th
USENIX Conference on System Administration, 1999.
[12] Intel Inc, “Supra-linear Packet Processing
Performance with Intel Multi-core Processors”, White
Paper, 2006.
[13] D.L. Schuff, Y. R. Choe, and V. S. Pai,
“Conservative vs. Optimistic Parallelization of Stateful
Network Intrusion Detection”, in Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2007.
[14] Cavium Networks Inc, “Cavium Networks OCTEON
CN38XX Hardware Reference Manual”, White Paper,
Sept, 2008.
[15] Cavium Networks Inc, “OCTEON Content
Processing”, White Paper, Aug, 2005.
[16] U. R. Naik, and P. R. Chandra, Designing High-
Performance Networking Applications, INTEL PRESS,
Nov, 2004.
[17] Lanner Electronics Inc, “MR-950 User Manual”,
White Paper, 2007.
[18] Nevil Brownlee, and KC Claffy, “Understanding
Internet Traffic Streams: Dragonflies and Tortoises”,
IEEE Communications Magazine, Oct, 2002.
[19] A. V. Aho and M. J. Corasick, Efficient string
matching: an aid to bibliographic search. Commun. ACM,
18(6):333-340, 1975.

Table 1. The DFA performance
on different DFA size

The Throughput (Gbps) of HardDFA and SoftDFA
 320KB 855KB 3086KB 5675KB 9055KB
HardDFA 2.15 2.15 2.15 2.192 2.2
SoftDFA 1.12 1.12 0.87 0.524 0.426

Table 2. The deep inspection performance
The Deep Inspection performance: Throughput (Mbps)

MTU 1 core 2 cores 4 cores 8 cores 10 cores
300 70 152 246 358 364
512 124 268 429 590 660

1024 245 543 852 1241 1548
1500 375 947 1539 2179 2185

227

