
Packet Classification and
Pattern Matching Algorithms
for High Performance
Network Security Gateway

Jun Li, Yaxuan Qi, Bo Xu, and Zongwei Zhou

2007.10.11

Outline

Introduction

Packet Classification Algorithms

Pattern Matching Algorithms

Integrated Framework

Network Processor Implementation

Summary

Outline

Introduction

Packet Classification Algorithms

Pattern Matching Algorithms

Integrated Framework

Network Processor Implementation

Summary

New Security Gateway: UTMs
Network security has become one of the
most critical issues
Standalone security products are not
effective
Multiple security features need to be
integrated
Holistic protection results in Unified
Threat Management (UTM)

The Value of UTMs
Cost-effectiveness

Reducing the number of appliances
lower deployment, management and
support costs

Easy-to-use
Simplifying the management of complex
resources and platforms

Application-level gateway
Blocking network threats before they enter
the internal network

Our Research for UTMs
Packet Classification

Heart of packet filtering firewall
Base of stateful inspection firewall

Pattern Matching
Core of deep inspection firewall
Key in intrusion detection/prevention, and anti-
virus

Integrated Framework
Flow identification
Order preservation
Defragment and Reassembly

Outline

Introduction

Packet Classification Algorithms

Pattern Matching Algorithms

Integrated Framework

Network Processor Implementation

Summary

Packet Classification: Example

Definition
Given N rules, find the action associated with the highest
priority rule matching an incoming packet

Example
A packet P(192.168.3.32, 166.163.171.71, …, TCP) would have
action A2 applied to it

Field 1 Field 2 … Field F Action
Rule 1 192.163.190.69/21 166.163.80.11/32 … UDP A1
Rule 2 192.168.3.0/24 166.163.0.0/16 … TCP A2
… … … … … …
Rule N 0.0.0.0/0 0.0.0.0/0 … ANY An

Packet Classification: Complexity
Computational Geometry

Point Location among N non-overlapping regions in F
dimensions
Takes either O(log N) time with O(NF) space or O(N) space
with O(logF-1N) time
E.g. N=1000，F=4：1000G space, or 1000 accesses

De-overlapping
N overlapping regions need up to (2N-1)F non-overlapping
region to represent

Range-to-Prefix
N rules in range [0, 2W-1] need up to N(2W-1) prefixes

Packet Classification: Observations

It is not possible to arrive at a practical worst
case solution

No application reaches the worst case bound
Real-life rule sets have some inherent data-
structures

No single algorithm performs well in all cases
Different applications require different packet
classification schemes
Hybrid algorithms might be able to combine the
advantages of several different approaches

Packet Classification Algorithms

Field-Independent
Search Algorithms

Field-Dependent
Search Algorithms

Trie-Based
Algorithms

Table-Based
Algorithms

Trie-Based
Algorithms

Decision-Tree
Algorithms

BV

ABV

AFB
V

Bit-Map
Aggregation

Folded
Bit-Map
Aggregation

CP

RFC

B-RFC

Bit-Map to
store rules

HSM

Prefix
Match

Equivalent
Match

Index
Search

Binary
Search

Bit-Map
Aggregation

H-
Trie

SP-
Trie

GoT

EGT

No Back
Tracking
No Back
Tracking

No Rule
Duplication

Extend to
Multiple Fields

Bit-Test Range-Test

Modula
r

Single-Field Multi-Field

HiCuts

ExpCuts

HyperCut
sBit-Map

Aggregation

DCuts

Traffic-
aware

Related Work: HiCuts

Field-dependent cuttings

Variable number of cuttings

Linear Search required

Rules HiCuts Tree

Related Work: Summary
Decision Tree Algorithms

Pros
Modest memory usage
Good average search speed
Ruleset adaptive

Cons
Non-deterministic worst-case search time
Excessive memory usage for large rulesets
Long preprocessing

Non-deterministic
worst-case search time

Long pre-processing
time

Variable
stride

Constant
stride

Not rule-adaptive
No t/s tradeoff

To build
the decision

tree
Stride
#cuts

ExpCuts: Novel Ideas
Guarantee the Worst-case Search Time

Constant stride: Fixed number of cuttings

E.g. for 5-tuple packet classification, let stride=8, then tree-
depthworst=(32+32+16+16+8)/8=13

Reduce the Pointer Array Size
Using bit-string to aggregate contiguous sub-spaces

Further Space Compression
Aggregate non-contiguous sub-spaces

Each point in the array points to a unique sub-space

ExpCuts : Optimization
Compressed Pointer Array (CPA)

Observation: pointer arrays are
sparse
Compress a sequence of
consecutively identical pointers as
one element in CPA

Aggregation Bit String (ABS)
Use ABS to track the appearance
of unique elements in the pointer
array
Use population count instruction

Hierarchical ABS (HABS)
Observation: ABS is still too large
Trade memory for speed using
one bit for multiple pointers

Parameters and Data-structure
Stride w: stride is set to 8

256 cuttings per level, totally 13 levels
Size of HABS: the size of HABS is set to be 16

HABS can be is stored together with the cutting information within
a single 32-bit long-word
Each bit represent 256/16=16 consecutive pointers

ExpCuts Space Aggregation

Space aggregation
Reduce up to 85% memory usage

Without space aggregation
CR02~04 cannot be implement in the 8MB*3 SRAM chips

With space aggregation
All rule sets can be implemented

ExpCuts Throughput

Vs. HiCuts (no linear search): 3 times faster than HiCuts
Vs. HSM: Stable worst-case performance

Outline

Introduction

Packet Classification Algorithms

Pattern Matching Algorithms

Integrated Framework

Network Processor Implementation

Summary

Given an alphabet set S, a pattern P of length m
and a text T of length n, find if P is in T or the
position (s) P matches a substring of T, where
usually m<<n

Considering the pattern P
String

exact string matching
String with errors

approximate string matching
Regular expression

regular expression matching

Definition

Prefix Based Algorithms

Matching forward in the search window

All the characters are read

Suffix Based Algorithms

Matching backward along the search window
Not all the characters are read due to “shift”
(“skip”, “leap”), which leads to sublinear average-
case algorithms

Factor Based Algorithms

Matching backwards along the search window
Not all the characters are read, but requires to recognize
the set of factors (sub pattern) of the pattern (s)

Categorization

RSI

MDH

Wu-Manber Algorithm

A hash table SHIFT to store the shift values of character
blocks and link the patterns has the same last character block
A hash table PREFIX to discriminate patterns link with the
HASH entry
SHIFT and HASH share the same hash function

SHIFT
a

c

o

t

x

z

0

0

2

1

0

2

PREFIX
g

i

n

t

y

4

2

3

1

5

ta 1 na 3 ia 2

gc 4

tx 1 yx 5

HASH
a

c

x

a t o t z o

Patterns

String
t x h a l t s - a t e t

t a

n a

i a

g c

t x

y x

Wu-Manber Algorithm

Pros: Excellent average time performance
Hash function

Avoid unnecessary character comparison

Cons:
Bad worse case performance

Ex: {baa, caa, daa} against a string of “a”

Shift distance is limited by length of shortest
pattern

Pattern Matching Challenges
Large-scale pattern sets: e.g. Clam AntiVirus

Increasing network edge bandwidth: 10Gbps UTM

Performance=E(Shift)/ E(Comparison)

Motivation and Observations
Shifts are needed when designing high speed
multi-pattern string matching algorithms for
large scale pattern sets
Table based algorithms are faster as direct
table lookup is faster than automaton and trie
traversing
WM can be improved for large pattern sets as
two/three character heuristic is not strong
enough to generate shifts and diminish hash
collisions

RSI: Recursive Shit Indexing
More heuristic to generate long leaps when
there is no match

Block Leap Tables (BLT)
Further Leap Table (FLT)

Keep track of the potential matching patterns
to avoid naïve comparisons with all the
patterns

Potential Match Table (PMT)

Consider both time and space efficiency

BLT#1

1

2

0

0

……

……

BLT#2

2

0

0

0

……

……

Phase1

Bitmaps

10000001

……

01010000

Bitmaps

10001000

01010001

01001000

……

FLT

0

0

0

2

4

0

Phase2

Bitmaps

10000000

01000000

00000001

……

……

01010000

……

PMT

N

1

1

1

2

Pattern

8

1

7

5,7

Phase3
Create BLT#1 according to
the first block of all the
patterns
Create BLT#2 according to
the second block of all the
patterns
Corresponding to zero values
of BLT#1 and BLT#2, create
FLT according to the
combined block of 4
characters
Corresponding to zero values
of FLT, create PMT to record
the potential match patterns

RSI: Complete Table Structure

RSI: Performance

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

4

4.5

5

Pattern Number

T
ot

al
 S

ea
rc

hi
ng

 T
im

e
(s

)

AC
AC-BM
WM
SBMH
RSI

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Pattern Number

M
em

or
y

O
cc

up
at

io
n

(k
B

)

AC
AC-BM
WM
SBMH
RSI

Time with fixed pattern length 8
and varying pattern number from
10~1000

Space with fixed pattern length 8
and varying pattern number from
10~1000

MDH: Multi-phase Dynamic Hash

Two important improvement on WM
Multi-phase Hash

Dynamic-cut Heuristics

High throughput and low memory
requirement under large-scale pattern set

High Speed Multi-phase Dynamic Hash String
Matching Algorithm for Large-scale Pattern set

MDH: Multi-phase Hash

Use big block size (E.g. 4)
SHIFT table

Compressed hash function h1
Reduce table size from 2^32 to 2^a (a<32, e.g.
a=20)

PMT table
Compressed hash function h2
Handle with all the character blocks has zero shift
value
Table size is 2^b (b<a<32, e.g. b=17)

MDH: Multi-phase Hash

Reduce zero value entry in SHIFT table

Cut down memory requirement
WM: 2^32+2^32 MDH: 2^a+2^b

Pattern
set size

WM(B=2) WM(B=3) MDH

ZR
(%)

MEM
(MB)

ZR
(%)

MEM
(MB)

ZR
(%)

MEM
(MB)

10k 14.2 0.95 0.059 80.64 0.85 2.42
25k 31.7 1.91 0.149 81.59 1.91 2.98

50k 53.3 3.5 0.297 83.19 3.46 3.93

75k 68.0 5.09 0.446 84.78 4.32 4.87

100k 78.3 6.69 0.594 86.38 6.25 5.81

MDH: Dynamic-cut Heuristics

WM MDH

optimum m window

p a t t e r n

l e f t

na l i g

l e n g t h

p a t t e r n

l e f t

na l i g

l e n g t h

MDH: Performance

Real-life pattern set from ClamAV

Algorithm

20k 40k 60k 77k

Thr
(Mbps)

Mem
(MB)

Thr
(Mbps)

Mem
(MB)

Thr
(Mbps)

Mem
(MB)

Thr
(Mbps)

Mem
(MB)

MDH 250.56 3.82 203.28 5.2 174.24 8.08 150.16 10.41

WM 329.52 3.33 126 5.2 66.88 8.53 43.36 11.27

SBOM 69.68 81.87 56.16 162.5 43.76 244.7 36.48 316.84

Lower ZR and APM
Reasonable preprocessing overhead
Improved searching throughput

MDH: Performance

0 2 4 6 8 10

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

pattern number (K)

se
ar

ch
in

g
tim

e
(m

s)

AC
AC_BM
WM
SBMH
SBOM
MDH

Searching time

MDH: Performance
Memory requirement

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

pattern number (K)

m
em

or
y

(M
B

)

AC
AC_BM
WM
SBMH
SBOM
MDH

Outline

Introduction

Packet Classification Algorithms

Pattern Matching Algorithms

Integrated Framework

Network Processor Implementation

Summary

Problems

Redundant protocol processing
Security applications are commonly
deployed in different modules
Each packet header is loaded multiple
times from the main memory and then
processed by different modules

Unnecessary deep inspection
Deep inspection is very time-consuming
and often the bottleneck of a UTM device
Only malicious or dubious traffic needs to
be processed using deep inspection

Contribution

Algorithm: Integrated protocol
processing (IPP)

Unnecessary deep inspection can be
significantly reduced by protocol analysis
Protocol processing can be effectively
integrated in a single module

Implementation: Network processor
NPs are optimized for network processing
IPP algorithm is implemented and
evaluated on the Intel IXP2850 NP

Protocol Processing

Generally, protocol processing
Refer to all network security applications
responsible for the manipulations of
networking protocols
Involve packet classification, session
setup/teardown, and statistics gathering...

In our research, protocol processing
Focus on multidimensional packet
classification operation
Because it is the key operation to the
system-level optimization

HSM
HSM performs multi-phase searches

In the first phase, the original search space are segmented
In subsequent phases, spaces are recursively aggregated
In the final phase, the table lookup yields the action

PACKET

HEADER

SA

DA

SP

DP

AMT

PMT

PLTx

0 5 7 15ACL rule#0

ACL rule#1

ACL0 ACL1ACL0,1

SA#0 SA#1 SA#2

0 9 15
ACL rule#0

ACL rule#1

ACL1ACL0,1

DA#0 DA#1

AMT SA#0 SA#1 SA#2

DA#0 1 (ACL0) 2(ACL1) 3(ACL1)

DA#1 0(N/A) 3(ACL1) 3(ACL1)

S
egm

entation
A

ggregation

IPP
IPP handles two independent rule sets by

Integrated space segmentation
Independent space aggregation

S
egm

entation

IDS
rule#1

ACL0 ACL0 ACL0,1 ACL1 ACL1 ACL1 ACL1
IDS0 IDS0 IDS0 IDS1

0 3 5 97 11 13 15

ACL rule#0
ACL rule#1

IDS rule#0

SA#0x
SA#0y

SA#0x
SA#1y

SA#1x
SA#1y

SA#2x
SA#1y

SA#2x
SA#0y

SA#2x
SA#2y

SA#2x
SA#0y

ACL0,1 ACL0,1 ACL0,1 ACL1 ACL1 ACL1
IDS0 IDS0,1 IDS0,1 IDS0

0 3 1197 13 15

ACL rule#0
ACL rule#1

IDS rule#1

IDS rule#0

DA#0x
DA#0y

DA#0x
DA#1y

DA#0x
DA#2y

DA#1x
DA#2y

DA#1x
DA#1y

DA#1x
DA#0y

PACKET

HEADER

SA

DA

SP

DP

AMTx

PMTx

AMTy

PMYy

PLTx

PLTy

Temporal Performance

Memory Access (Unit: 32bit-word)

RULESET #RULE FW+IDS IPP
ACL01 68 30 20
ACL02 136 31 22
ACL03 340 34 24
ACL04 500 34 24
ACL05 1,000 36 26
ACL06 1,530 36 26
ACL07 1,945 36 26

Spatial Performance

Memory Usage (Unit: Byte)

RULESET #RULE FW+IDS IPP
ACL01 68 563,350 563,484

ACL02 136 584,680 584,944

ACL03 340 672,922 673,492

ACL04 500 609,880 610,664

ACL05 1,000 1,002,096 1,003,690

ACL06 1,530 898,422 899,902

ACL07 1,945 937,998 939,586

Hardware Performance

Throughput (Unit: Gigabits/Second)

RULESET #RULE FW+IDS IPP
ACL01 68 3.72 4.64
ACL02 136 3.55 4.48
ACL03 340 3.37 4.46
ACL04 500 3.28 4.37
ACL05 1,000 3.10 4.03
ACL06 1,530 3.19 4.04
ACL07 1,945 3.16 3.97

Outline

Introduction

Packet Classification Algorithms

Pattern Matching Algorithms

Integrated Framework

Network Processor Implementation

Summary

Hardware: Architecture Limitation
TCAM

Board area
Power
Range matching

ASIC/FPGA
R&D cost
Update

General Purpose CPU
Lack of integrated
networking processing
power

Network Processor (NP)
Highly integrated
processing units
Date plane & control plane
Handle rarely associative
network traffics

Intel IXP2850 NP

Intel XScale core
1 general purpose 32-bit RISC processor

Multithreaded microengines:
16 MEs working in parallel at 1.4 GHz clock frequency

Memory hierarchy
4 channels of QDR SRAM running at 233 MHz
3 channels of RDRAM running at 127.3 MHz

Build-in media interfaces
2 configurable 32-bit media switch interfaces

Hash
Unit

Me dia Switch
Fabric

SRAM
Controlle rs

Crypto
Units

XScale
Core

PCI
Interface

Microengines

DRAM
Controllers

SRAM
Controllers

Programming Challenges
Achieving a deterministic bound on packet processing operation

Due to the line rate constraint, the number of clock cycles to
process the packet on each NP cannot exceed an upper bound
Use the right kind of data structures, and limiting the total number
of memory accesses

Hiding memory access latency through multi-threading
Memory access latency is typically much higher than the amount of
processing budget
Utilize the multiple hardware threads to hide memory latency
effectively

Preserve packet order in spite of parallel processing
Preserve packet order is extremely critical for applications like
security gateways and traffic management
Packet ordering can be guaranteed using tags and/or strict thread
ordering

Why Not Existing Algorithms?
For example, HiCuts algorithm for packet classification

Admittedly
HiCuts has good time/space tradeoffs and works well for real-life rule sets

However
HiCuts has non-deterministic worst-case search time

Because the number of cuttings varies at different tree nodes, the decision-tree
may have inexplicit worst-case depth

HiCuts also requires linear search
Experimental results show that linear search is very time-consuming

With HiCuts default
setting, only 3Gbps

throughput

So We Design New Algorithms
For example, ExpCuts

Fix the number of cuttings at internal-nodes
If the number of cuttings is fixed to 2w, the worst-case bound of
tree depth is then O(W/w)

Eliminate linear search at leaf-nodes
Linear search can be eliminated if we “keep cutting” until every
sub-space is full-covered by a certain set of rules

Performance estimation
The common 5-tuple packet classification problem (32-bit
source/destination IP addresses, 16-bit source/destination port
numbers and 8-bit protocol field)
If w is fixed to be 8, then a (32+32+16+16+8)/8=13 worst-case
search time is guaranteed, and no linear search is required

Hardware Mapping (General)
Pure pipeline model does not work well; Parallelism is a must in
next-generation network processor design

Parallel Processing
engine Cluster

(PPC)

Hardware Mapping (Specific)
Context-pipelining

Rx, Processing, Scheduling, Tx
Advantages: separate driver/processing codes

Multi-processing
Packet processing
Advantages: scalability and per-packet data cache

Task Receive Processing Scheduling Queue Transmit

Num. of MEs 2 1~9 3 2

Parallel Processing (General)
How can a network processor maximize the
utilization of its Paralleled Processing engines
Cluster (PPC)?

Load-balancing: the processing task should be uniformly
distributed across the processing engines

Our Solution: Flow-based Load-Balancing via Static/Dynamic
Hashing (SQF-C)

Intra-flow packet ordering: the packets in the same flow
should leave in their arrival order

Our Solution: Per-flow ordering without per-flow information

Memory contention: efficient memory subsystem should be
developed to catch up with line rate processing

Our Solution: Distributed Memory Hierarchy

Parallel Processing (Specific)

Multi-channel memory allocation
Distribute different level of the decision-tree on different SRAM
channels according to the bandwidth headroom of each channel

Flow-level Packet Ordering
External Packet Ordering (EPO) by ordered-thread-execution
Internal Packet Ordering (IPO) by SRAM QArray

Load Balancing
CRC hardware supported hashing
Flow-level fragment load balancing

Instruction Selection
POP_COUNT can count the number of ‘1’s in a 32-bit bit-string
within only 3 system cycles
10 times faster than other RISC implementations

Data-set and Development-Kits
Set #Rules Length of Prefix

FW1 68
University gateway

firewall rulesFW2 136

FW3 340

CR1 500

Large ISP core
router ACLs

CR2 1,000

CR3 1,530

CR4 1,945

Rule Set Selection
Synthetic rule sets

Used by existing work
Algorithm-dependent performance

Real-life rule sets
More complex
Objective performance

Development-Kits
Microengine C and IXP C

Compiler-dependent
Poor performance

Microcode assembly
High performance: MUTEX, Debug…

Evaluation
Software evaluation

Cycle-accurate workbench
Hardware evaluation

Smartbit 600

ExpCuts Performance

#SRAM Channel Throughput

1 4963Mbps

2 5357Mbps

3 6483Mbps

4 7261Mbps

Multi-thread Microengine impact

Multi-channel SRAM impact

Outline

Introduction

Packet Classification Algorithms

Pattern Matching Algorithms

Integrated Framework

Network Processor Implementation

Summary

Summary (I)
Packet Classification

“Fast enough”?
Worst-case bounded: Fixed stride decision tree

“Use not too much memory”?
Contiguous space aggregation: Bit-string compression

Non-contiguous space aggregation

Y. Qi and J Li, “Towards Effective Packet Classification”,
CNIS，2006.

B. Xu, D. Jiang, and J. Li, “HSM: A Fast Packet Classification
Algorithm,” AINA, 2005.

Y. Qi and J. Li, “Dynamic Cuttings: Packet Classification with
Network Traffic Statistics,” TIW, 2004.

Summary (II)
Pattern Matching

Automata-based algorithms
Set-wise AC algorithm: exploit real-life police structures

Trade speed for space: NFA with Bitmap compression

Hash-based algorithms
More effective/intelligent shift: RSI, MDH

Avoid very short patterns: hybrid algorithms with cache

Z. Zhou,Y. Xue, J. Liu, W. Zhang, and J. Li, “MDH: A High
Speed Multi-Phase Dynamic Hash String Matching
Algorithm for Large-Scale Pattern Set,” ICICS, 2007.

B. Xu, X. Zhou and J. Li, “Recursive Shift Indexing: A Fast
Multi-Pattern String Matching Algorithm,” ACNS, 2006.

Summary (III)
Integrated Framework

High-performance UTMs should be optimized at system-level
rather than simply stringed together a number of security
applications

Algorithmic Solution
The IPP algorithm avoids Redundant Packet Classification and
Unnecessary Deep Inspection

Hardware Evaluation
NP evaluation shows that our scheme outperforms existing
algorithms with about 30% increase of throughput

Y. Qi, B. Xu, F. He, B. Yang, J. Yu and J. Li, “Towards High-
performance Flow-level Packet Processing on Multi-core
Network Processors,” ANCS, 2007 (to appear) .

Y. Qi, B. Yang, B. Xu and J. Li, “Towards System-level
Optimization for High Performance Unified Threat
Management,” ICNS, 2007.

Summary (IV)
Hardware-aware Implementation

New algorithms
Set-aware algorithms

Traffic-aware algorithms

New hardware
Multi- MIPS core network processors (large L2 cache)

FPGA or ASIC implementation

Y. Qi, B. Xu, F. He, X. Zhou, J. Yu, and J. Li, “Towards Optimized
Packet Classification Algorithms for Multi-Core Network Processors,”
ICPP, 2007.

L. Shi, Y. Zhang, J. Yu, B. Xu, B. Liu, and J. Li, “On the Extreme
Parallelism Inside Next-Generation Network Processors,” INFOCOM,
2007.

Thanks!
Questions?

	Packet Classification and Pattern Matching Algorithms for High Performance Network Security Gateway
	Outline
	Outline
	New Security Gateway: UTMs
	The Value of UTMs
	Our Research for UTMs
	Outline
	Packet Classification: Example
	Packet Classification: Complexity
	Packet Classification: Observations
	Slide Number 11
	Related Work: HiCuts
	Related Work: Summary
	ExpCuts: Novel Ideas
	ExpCuts : Optimization
	Parameters and Data-structure
	ExpCuts Space Aggregation
	ExpCuts Throughput
	Outline
	Slide Number 20
	Prefix Based Algorithms
	Suffix Based Algorithms
	Factor Based Algorithms
	Categorization
	Wu-Manber Algorithm
	Wu-Manber Algorithm
	Pattern Matching Challenges
	Motivation and Observations
	RSI: Recursive Shit Indexing
	RSI: Complete Table Structure
	RSI: Performance
	MDH: Multi-phase Dynamic Hash
	MDH: Multi-phase Hash
	MDH: Multi-phase Hash
	MDH: Dynamic-cut Heuristics
	MDH: Performance
	MDH: Performance
	MDH: Performance
	Outline
	Problems
	Contribution
	Protocol Processing
	HSM
	IPP
	Temporal Performance
	Spatial Performance
	Hardware Performance
	Outline
	Hardware: Architecture Limitation
	Intel IXP2850 NP
	Programming Challenges
	Why Not Existing Algorithms?
	So We Design New Algorithms
	Hardware Mapping (General)
	Hardware Mapping (Specific)
	Parallel Processing (General)
	Parallel Processing (Specific)
	Data-set and Development-Kits
	ExpCuts Performance
	Outline
	Summary (I)
	Summary (II)
	Summary (III)
	Summary (IV)
	Thanks!�Questions?

