®

Check for
updates

Performance Evaluation of Hyperledger
Fabric with Malicious Behavior

Shuo Wang®)

Tsinghua University, Beijing, China
wangs160@mails.tsinghua.edu.cn

Abstract. Hyperledger Fabric is a widely-used permissioned blockchain
platform for enterprise consortium applications. It adopts Practical
Byzantine Fault Tolerance (PBFT) algorithm as the consensus proto-
col in its version 0.6. Faulty replicas could intentionally delay messages,
be not responsive and send inconsistent messages to different replicas.
Faulty clients and replicas could also launch denial-of-service attack to
make resources unavailable. The malicious behavior significantly under-
mines the system. However, the existing performance evaluation for Fab-
ric is accomplished in a fault-free environment without malicious behav-
iors. In this paper, we analyze the impact of malicious behavior, design
malicious behavior patterns and test the blockchain performance on
Hyperledger Fabric.

Keywords: Hyperledger Fabric - PBFT - Consensus *
Permissioned blockchain

1 Introduction

Blockchain is an open, distributed ledger that can record transactions between
parties in a trustable and immutable way. The key contribution of blockchain
is achieving consensus in a decentralized environment among replicas from dif-
ferent parties who cannot fully trust each other. With this advanced property,
blockchain has been widely used as the underlying data structure and consensus
mechanism of bitcoin [1], alternative cryptocurrencies (altcoins) and decentral-
ized application platforms such as Ethereum [2] and Hyperledger [3].

Hyperledger Fabric is an enterprise-grade permissioned blockchain platform
for distributed applications among company consortiums. As its latest version
has not adopted a fault-tolerant consensus protocol, we now focus on its ver-
sion 0.6 [4], which adopts PBFT [5] as the consensus protocol. There are some
works on performance evaluation benchmark for Hyperledger Fabric. However,
they evaluate in a non-faulty environment. For permissionless blockchains such
as bitcoin and Ethereum, malicious behaviors and attacks happen frequently
because their crytocurrencies and applications has great value in the real world.
Attacks will also be targeted when more and more business applications are run
in permissioned blockchain platforms.

© Springer Nature Switzerland AG 2019
J. Joshi et al. (Eds.): ICBC 2019, LNCS 11521, pp. 211-219, 2019.
https://doi.org/10.1007/978-3-030-23404-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23404-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-23404-1_15

212 S. Wang

The attacks could come from malicious clients, which send faulty transactions
and try to undermine the blockchain system. Peers could also conduct internal
malicious behavior during the consensus process to diverge or break down the
blockchain system. The complete analysis and experiments of the system perfor-
mance with malicious behaviors are needed. In summary, we mainly have three
contributions:

— We thoroughly analyze the impact of malicious behavior on the PBFT con-
sensus mechanism.

— We design the malicious behavior patterns of the faulty replica and clients
and test the performance on Hyperledger Fabric.

— Based on the analysis and experiments, we provide some sights on how to
improve the system performance under attacks.

2 Related Work

2.1 Practical Byzantine Fault Tolerance

PBFT is a classic form of BFT state machine replication algorithm. The algo-
rithm is designed to tolerate no more than f faulty replicas in an asynchronous
network where N = 3f + 1 is the total number of replicas. It guarantees its
safety by a three-phase consensus protocol: (1) pre-prepare phase: the pri-
mary receives request messages from clients and broadcasts pre-prepare mes-
sages. (2) prepare phase: when a backup replica receives and accepts the pre-
prepare message, it then broadcasts the prepare message to other backups and
also receives prepare messages from them. (3) commit phase: Once a replica
collects 2f + 1 prepare messages corresponding to its pre-prepare messages, it
marks as prepared and multicasts commit messages. When it receives 2f + 1
commit messages, it can conclude that all non-faulty replicas agree on the order
of the requests across views. During each phase, if a replica does not receive
enough messages to proceed to the next step before the timeout, it multicasts
a view-change message. When the potential primary in the new view received
2f + 1 view-change messages, it will multicast a new-view message to start a
new view.

2.2 Hyperledger Fabric Architecture and Performance Evaluation

Hyperledger Fabric could run chaincode and support many programming lan-
guages. Fabric version 0.6 follows the traditional state-machine replication design
and adopts the classic and native Practical Byzantine Fault Tolerance as consen-
sus. Fabric then introduces a novel execute-order-validate paradigm in its version
1 [6]. The architecture and workflow of Fabric have some fundamental changes
and Fabric version 1 introduces some new roles, such as endorsers, orderers and
committers. Endorsers simulate transaction execution and provide writeset and
readset. Orderers uses consensus to establish a total order of transactions and
deliver blocks in sequence to committers, which update the world state.

Performance Evaluation of Hyperledger Fabric with Malicious Behavior 213

There are some previous work on Hyperledger Fabric blockchain performance
evaluation and benchmark frameworks. Blockbench [7] design different types of
workloads to measure and understand performance at different layers on Fab-
ric v0.6. Hyperledger Project also has an official benchmark tool Caliper [§],
which provides metrics such as latency, throughput, and resource consumption
on multiple Hyperledger blockchain frameworks including Fabric version 1, Saw-
tooth, Iroha and Burrow. Harish Sukhwani uses a Stochastic Petri Nets mod-
eling formalism to model the workflow of Fabric and find critical steps which
could be potential bottleneck for performance [9]. However, they did not con-
sider the malicious behaviors and the consequences on blockchain performance.
There are some other blockchain platforms with performance evaluation with
malicious behavior. For example, in the Algorand blockchain [10], a particular
attack strategy is proposed that the block proposer with the highest priority
sends one kind of block to half of the replicas and another different block to the
rest of replicas and evaluate the performance. Blockchains are designed to toler-
ate faults and there will be attacks targeted to them when they are practically
used and involve real-world business.

3 Analysis of PBFT with Malicious Behaviors

Faulty replicas may intentionally delay messages, be not responsive, or multicast
inconsistent messages to different groups of replicas. These behaviors undermine
the system, especially when the faulty replica function as the primary, though
view-change mechanism can restrict the malicious behaviors to some extent.
Here, we analyze how the faulty replicas could undermine the network at their
best efforts during each phase of PBFT consensus process and how their mali-
cious behaviors could affect the performance.

When the primary is a non-faulty replica, since it only sends a unique type
of request messages m, all the pre-prepare, prepare, and commit messages will
correspond to this request. In this case, if faulty replicas send messages incon-
sistent with m, non-faulty replicas will simply ignore them. The faulty replicas
can also delay messages or simply not reply them. The first pattern of malicious
behavior is not to cooperate with the non-faulty primary and backups during
the consensus process.

When the primary is a faulty replica, it can create different messages in each
phase and send them arbitrarily. Each replica will receive particular messages
specially designated by the primary. Other faulty replicas also know how these
different messages are distributed and collude with the primary to send different
messages to different groups of replicas.

As the faulty replicas want to keep the faulty primary’s position to have a
long-term impact on the system efficiency, the faulty replicas have to guarantee
that no more than f replicas will send view-change message. Therefore, in the
pre-prepare phase, the primary still has to send consistent pre-prepare messages
to at least f + 1 non-faulty replicas. Likewise, at least f + 1 non-faulty replicas
should be prepared and committed. In summary, in all phases, faulty replicas

214 S. Wang

can decide which non-faulty replicas receive consistent messages (the number of
those replicas is denoted as k).

Based on the analysis above, k cannot be less than f + 1 in any phase. In
other word, f +1 < k < 2f + 1. We denote the set of non-faulty replicas who
receive enough consistent messages as set N, N, N, in pre-prepare, prepare,
and commit phase respectively.

N, CN, TNy CN (1)

The second pattern of malicious behavior is to keep some non-faulty replicas
out of the normal consensus process.

When the primary is faulty, faulty replicas can delay the messages and make
non-faulty replicas receive messages just before the timeout and it is called delay
attack. Non-faulty backups rely on pre-prepare messages to trigger consensus
process and have to wait for faulty replicas’ messages to achieve a quorum. The
third pattern of malicious behavior is to delay pre-prepare messages to trigger
the consensus process late or delay prepare and commit messages to achieve a
quorum late.

In the Fabric v0.6 implementation, the primary works in batch mode which
means the primary creates a block with requests of batch size (500 by default)
and multicasts pre-prepare message with the batch. Here, delaying pre-prepare
messages means creating batches and sending pre-prepare messages at a low
rate.

4 Denial-of-Service Attack

4.1 High-Rate Spam Transactions

In Fabric, malicious clients could flood the network with high-rate spam trans-
actions by keep sending transactions to all peers. As malicious users may control
many clients, they could also launch a distributed denial-of-service attack to
exceed the capacity of blockchain.

When clients keep sending extremely high-rate transactions, message chan-
nels of peers are full of transaction messages and peers could not even receive
critical consensus message. As a consequence, all peers are in frequent view-
changes and could move forward.

4.2 Transactions with Infinite Loop

Clients could include an infinite loop in chaincode and send transactions to
invoke the function with the infinite loop. When peers execute this kind of trans-
actions, the execution will consume high usage of CPU. As a consequence, other
normal transactions have limited CPU time to execute and the performance will
severely degrade.

In Fabric version 1.0, the execute-order paradigm helps solve this problem.
When the simulated execution time takes too much time, the endorsers stop

Performance Evaluation of Hyperledger Fabric with Malicious Behavior 215

execution and reply errors to clients. In this case, malicious clients cannot collect
enough valid replies from endorsers and hence the malicious transactions will not
undermine committers.

5 Performance Evaluation

5.1 Overall Experimental Setting

The experiments were performed on a cluster and each server has two 2.3GHz
CPU, 4GB RAM, 100GB SSD and 1Gb/s Ethernet connections with Ubuntu
16.04. We employed the modules of sending requests and checking the block
status from blockbench benchmark framework. To evaluate the consensus layer,
we uses DoNothing workload in blockbench. The chaincode does nothing and
simply returns so it would reflect more about the influence of malicious behav-
ior in the consensus layer. For transactions with an infinite loop, we design a
specific chaincode to execute infinitely with high CPU consumption. For non-
faulty peers, we used the original code of Hyperledger Fabric. For faulty primary
and backup peers, we modified the code to implement each mode of malicious
behaviors.

5.2 Malicious Behavior in Consensus Layer

Design of Malicious Behavior Patterns. Here, we discussed multiple mali-
cious behavior patterns. The quick dictionary for all conditions is summarized
in Table 1. Case N is used to represent baseline comparison when there are no
malicious behaviors.

A. We set the primary as a non-faulty replica. A1. The faulty backups do not
reply to any message in any phases. A2. The faulty backups send arbitrary
messages in the three phases.

B. We set the primary as a faulty replica but the faulty primary do not delay
messages. We set N, = N, = N, where |[N;| = f + 1. It means a set of
f -+ 1 non-faulty replicas can receive consistent messages in all phases, while
the rest of replicas will receive inconsistent messages from at least one phase.
C. We set the primary as a faulty replica and the faulty replicas conduct delay
attacks. The primary and other faulty replicas could delay pre-prepare, prepare
and commit messages before timeout. As we discussed in Sect. 4, the impact of
delay attack is different when the faulty primary sends to part of the replicas
and all of them.

C1. Faulty primary sends enough consistent messages to all replicas. In other
words, N, = N, = Np, where |[N,| =2f + 1. Delay attack has two modes.
C1l-a. Faulty replicas delay messages in all three phases. After receiving the
first prepare message from non-faulty replicas, faulty replicas wait for some time
and then multicast prepare messages. After receiving the first commit messages,
faulty replicas wait for some time and then multicast commit messages. After
multicasting commit messages, the primary will wait for some time and then

216 S. Wang

create a batch and send pre-prepare message with it. The waiting time at each
phase should be no more than timeout minus round-trip time so that non-
faulty replicas could receive required messages in time. In all the experiments,
the waiting time is set as 1 second which is the half of the view-change timeout.
C1-b. Faulty replicas delay prepare and commit messages as they do in C1-a.
But the faulty primary creates batches and sends prepare messages normally.
In other words, whenever the number of outstanding requests reaches the batch
size or the batch timer reaches 0, the primary creates a batch for it. If clients
send requests fast enough, the replicas may work on the consensus process for
multiple blocks concurrently.

C2. Faulty primary sends enough consistent messages to part of the replicas.
We set N, = N, = N, where [N.| = f + 1. For simplicity, faulty replicas do
not send messages to the rest of non-faulty replicas. Delay attack also has two
modes like C1.

C2-a. Faulty replicas delay messages in all three phases like C1-a.

C2-b. Faulty replicas delay only prepare and commit messages like C1-b.

Table 1. Malicious behavior patterns.

No faulty behavior N
Non-faulty primary |Not reply Al
Arbitrary messages A2
Faulty primary No delay attack Ne=2f+1 |Ne=f+1
N/A B
Delay attack | All phases Cl-a C2-a
Prepare & C1l-b C2-b
commit phase

Performance. The comparisons of throughput and latency metrics are shown in
Figs. 1 and 2. Comparing with the baseline condition when there is no malicious
behavior, the system achieved similar results on Al, A2, and B, because in all
the four cases, there exist 2f 4 1 replicas working at their best efforts to achieve
consensus. For Cl-b, there are 2f 4+ 1 non-faulty replicas working and there is
no delay for pre-prepare message. When the 2f + 1 non-faulty replicas receive
pre-prepare messages, they could work well without depending on the help of
faulty replicas. Thus, the system can work properly with no obvious change
in throughput and latency. For Cl-a, there are also 2f + 1 non-faulty replicas
working. But the pre-prepare messages are delayed and are sent at a low fixed
rate. In this case, the throughput is bounded by the rate of blocks and latency
increases by the delay period of pre-prepare phase. Similarly, for C2-a and C2-b,
the system delayed for each phase as there are only f + 1 non-faulty replicas
working and they have to wait for faulty replicas’ messages to achieve each step
of consensus process, which leads to increased latency by the delay periods of all

Performance Evaluation of Hyperledger Fabric with Malicious Behavior 217

2000 aN

(%)

2 1500 mAl

P

3

2 1000 mA2

£

3 500 B

=

=] 5 I [I o I m mCl-a
4 7 10 mCl-b

number of nodes mC2-a

Fig. 1. Evaluation of throughput under multiple malicious behavior patterns.

5
EN
4
« mAl
g3 A2
]
g2
i) B
1
mCl-a
0
4 7 10 uCl-b
number of nodes m(C2-a

Fig. 2. Evaluation of latency under multiple malicious behavior patterns.

phases. For C2-b, as the system could work concurrently on consensus process
of many blocks, the system efficiency can be guaranteed, although the time of
committed the block will be delayed.

5.3 Attack of High-Rate Spam Transactions

For attacks of high-rate spam transactions in Fabric version 0.6, there are 10
peers and all of them are non-faulty. There are 5 clients and they try their
best to utilize CPU and network bandwidth to send transactions to peers. The
Fig. 3 shows the transactions committed per second with regard to time. During
the first 58 s, the throughput is among 1200 transactions per second, which is
much lower than the normal throughput, 1700 txs, shown in Fig. 1. At the 58th
second, the throughput drops directly to zero. After checking the system log, the
message channel of peers are full and peers reject any more message from each
other, which causes all the peers to repeatedly send view-change.

5.4 Transactions with Infinite Loop

For attacks of Transactions with an infinite loop, specific chaincodes are written
in go for both Fabric version 0.6 and version 1. The chaincodes for two versions
are almost the same except some minor syntax. For both versions, there are 4
peers and all of them are non-faulty. The experiment result shows that in Fabric
version 0.6 only two transactions could occupy all the CPU time. The normal
transactions sent by clients are never executed or committed. In contrast, Fabric

218 S. Wang

1600

g

1200

1000

800

600

400

Transaction committed per second

200

0 10 20 30 40 50 60 70 80 90
Time (s)

Fig. 3. Transaction committed per second under high-rate spam transactions.

version 1 performs well and are immune to these kinds of transactions because
endorsers simply reject the transaction after seconds.

6 Conclusion

In this paper, we theoretically analyze the malicious behaviors in Hyperledger
Fabric. We measure the blockchain performance under the designed faulty pat-
terns. The results suggest that delay attack along with keeping some replicas
out have a notable impact on the system performance. The malicious behav-
iors undermine the system most when the primary delay in all three phases and
only sends enough consistent pre-prepare messages to f 4+ 1 non-faulty replicas.
For two kinds of denial-of-service attacks, Hyperledger Fabric version 0.6 fails
in both cases and could not be available for normal clients. For Fabric version
1, the execute-order-validate paradigm helps resist attacks of transactions with
an infinite loop. The result demonstrates the significance of performance analy-
sis and evaluation under malicious behaviors. Future work would include other
blockchain frameworks with different architectures and consensus protocols.

Acknowledgement. The work described in this paper was supported by the National
Key Research and Development Program (2016YFB1000101).

References

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

Ethereum blockchain app platform. https://www.ethereum.org/

Hyperledger Fabric. https://www.hyperledger.org/projects/fabric/

Fabric version 0.6 source code. https://github.com/hyperledger/fabric/tree/v0.6
Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation, pp. 173-186.
USENIX Association (1999)

6. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for
permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference
(2018)

ANl

https://www.ethereum.org/
https://www.hyperledger.org/projects/fabric/
https://github.com/hyperledger/fabric/tree/v0.6

10.

Performance Evaluation of Hyperledger Fabric with Malicious Behavior 219

Dinh, T., et al.: BLOCKBENCH: a framework for analyzing private blockchains.
In: Proceedings of ACM International Conference on Management of Data, pp.
1085-1100. ACM (2017)

Hyperledger Caliper. https://www.hyperledger.org/projects/caliper

Sukhwani, H.: Performance modeling and analysis of Hyperledger Fabric (permis-
sioned blockchain network)(2018)

Gilad, Y., et al.: Algorand: scaling byzantine agreements for cryptocurrencies. In:
26th Proceedings on Operating Systems Principles, pp. 51-68. ACM (2017)

https://www.hyperledger.org/projects/caliper

	Performance Evaluation of Hyperledger Fabric with Malicious Behavior
	1 Introduction
	2 Related Work
	2.1 Practical Byzantine Fault Tolerance
	2.2 Hyperledger Fabric Architecture and Performance Evaluation

	3 Analysis of PBFT with Malicious Behaviors
	4 Denial-of-Service Attack
	4.1 High-Rate Spam Transactions
	4.2 Transactions with Infinite Loop

	5 Performance Evaluation
	5.1 Overall Experimental Setting
	5.2 Malicious Behavior in Consensus Layer
	5.3 Attack of High-Rate Spam Transactions
	5.4 Transactions with Infinite Loop

	6 Conclusion
	Acknowledgement

	References

