
Data Structure Optimization of AS_PATH in BGP

Weirong Jiang

Research Institute of Information Technology, Tsinghua University, Beijing, 100084,
P.R.China

jwr2000@mails.tsinghua.edu.cn

Abstract. With the fast growing size and complexity of core network, the hash
based data structure of current AS_PATH implementation in BGP is facing
challenges in performance, mainly caused by the static attribute of the simple
hash. This paper proposed a splay tree based data structure and an optimal in-
dex generation algorithm specifically designed for AS_PATH. Exploiting the
innate characteristics of AS_PATH, the proposed algorithm shows superior per-
formance.

1 Introduction

The Border Gateway Protocol (BGP) is an inter-Autonomous System (AS) routing
protocol. One of the most important attributes in BGP is AS_PATH [1]. AS_PATH
serves as a powerful and versatile mechanism for policy-based routing [2]. With the
rapid development of Internet and wide deployment of BGP [10], storage and com-
parison of AS_PATH entries become a potential performance issue to be addressed.

This paper is a forward-looking exploration on optimizing the data structure of
AS_PATH. The rest of the paper is organized as follows: In Section 2, we will pre-
sent the inherent problems of hash data structure of AS_PATH and propose the pos-
sible solutions briefly. In Section 3, we discuss the optimization of the AS_PATH
data structure by comparative study. In Section 4, we provide results of our simula-
tion experiments. In Section 5, we put forward our conclusion and our expectations
for future work.

2 Background and Challenges

The global Internet has experienced tremendous growth over the last decade. Figure 1
shows the BGP statistics [5] from Route-Views Data with trend curves added. As
shown in Figure 1 (c), the number of unique AS_PATHs is growing at nearly an
exponential speed, which motivates research in optimized algorithms to provide
higher performance.

In typical BGP implementations [8, 9], hash table is preferred since in early days,
when number of AS_PATH is small, it is the most simple and efficient way. To deal
with the collision, different AS_PATH entries with same hash value will be stored in

a linked list and be distinguished through linear search by comparing the whole
AS_PATH. In theory [6, 7], the time complexity to insert, lookup or delete an entry
in hash table is O(1), which obviously is perfect in AS_PATH attribute update and
retrieval. To reach high efficiency, nearly half the hash table should be empty, and
accordingly the hash table size should double the size of the existing unique
AS_PATH entries, and thus the space complexity is O(2n) where n is the number of
AS_PATH entries. For instance, in [8], the table size is 32,767, almost twice as the
number of unique AS_PATH entries in the global routing table.

(a) (b)

(c) (d)

Fig. 1. BGP Statistics: (a) Active BGP entries (FIB); (b) Unique ASes; (c) Unique AS Paths
used in FIB; (d) Average AS Path Length

These hash based implementations perform well nowadays in most of cases, but are
expected to face severe challenges as follows.

Hash is a static data structure and the main disadvantage is the constant hash table
size. The efficiency of hash will decline quickly since the hash table size will not
catch up with the increasing number of AS_PATH entries. In addition, it is difficult
to get it right for all situations. For example, the software including BGP routing
needs to work on both a low end router with small memory and small number of
routes and a high end router with large amount of memory and large number of routes.
But there is no way to set a universal value for hash table size for both high and low

ends. Obviously, to resolve this challenge, dynamic data structures such as binary
trees could be good substitutes for hash.

The AS_PATH attribute is of various lengths and hardly can be used directly as an
index. An index of constant length for each AS_PATH entry can be generated by
encoding the AS_PATH attribute. Nevertheless, possible collision needs to be taken
into consideration when two different AS_PATH entries are encoded into the same
index. To reduce the probability of collision, folding is an easy and popular method
to generate index. That is, split an AS_PATH into several equally sized sections and
add all sections together. However, both splitting and adding up consume time. Since
the AS_PATH is getting longer due to the rapid growth of AS number, the cost of
folding is getting much more expensive. Thus there is need to find an algorithm more
efficient to generate indexes.

Linking different entries with identical index is a simple solution for collision.
However, increasing entries incline to cause more collisions and longer links. Then
the efficiency of linked list operations (i.e. insert, lookup and delete) will also decline
since entry comparison is usually expensive. One way to relieve this challenge is to
construct different entries with the same index to be a secondary tree, rather than a
linked list.

3 Optimizations by Exploiting the Characteristics of AS_PATH

3.1 Characteristic Observations

Table 1 shows a sample output of a BGP routing table from our test set which from
real life includes more than 100,000 AS_PATH entries with 17,520 unique entries.
Using this example, the following characteristics can be observed.

Characteristic 1. Many routes share one AS_PATH entry but few entries share one
origin AS. In Table 1, there are at most three different AS_PATH entries originating
from the same origin AS 1889. In our test set, over 80% AS_PATH entries monopo-
lize one origin AS. Hence in most of cases a path could be specified by its distal AS
indicating the origin AS of the entry.

Characteristic 2. Scanning the AS_PATH field in Table 1 from left hand side, we
find that, nearer to the origin AS, two AS_PATH entries are more likely to be differ-
ent. On the other hand, the nearest AS numbers, which indicate the ASes closer to
local AS, are mostly the same. This can be explained that local AS usually has very
few neighbors and hence left parts of most AS_PATH entries are similar.

Characteristic 3. Considering the update process, the efficiency of the data struc-
ture/algorithm is very important when it faces a burst of route updating, which might
happen when one AS's state alters and all the AS_PATHs originating from it have to

be updated. It requires the entry operated most frequently to be visited most promptly.
This characteristic is coincident with a type of dynamic binary trees: splay tree [7].

Table 1. A sample output of a BGP routing table.

3.2 Constructing Splay Trees

Similar to the means done in hash, as for a splay tree, each AS_PATH entry is stored
as a whole, with an index whose value is calculated by the functions discussed in next
section. The entries with identical index value are linked off the same node. Figure 2
shows the data structure of the tree node and an example process to construct a splay
tree from left side to right.

Fig. 2. Construct a Splay Tree for AS_PATH

 Network Next Hop Metric LocPrf Weight AS_PATH

12.42.72.190/32 10.1.1.235 0 100 100 14207 3944 7777 i

12.43.128.0/20 10.1.1.235 0 100 100 14207 3944 2914 7018 16711 16711 16711 i

12.43.144.0/20 10.1.1.235 0 100 100 14207 3944 2914 7018 16711 i

12.65.240.0/20 10.1.1.235 0 100 100 14207 3944 2914 7018 17231 i

12.66.0.0/19 10.1.1.235 0 100 100 14207 3944 2914 7018 17231 i

12.66.32.0/20 10.1.1.235 0 100 100 14207 3944 2914 7018 17231 i

12.79.224.0/19 10.1.1.235 0 100 100 14207 3944 2914 7018 5074 i

13.13.0.0/17 10.1.1.235 0 100 100 14207 3944 2914 7018 22390 i

13.13.128.0/17 10.1.1.235 0 100 100 14207 3944 2914 4323 22390 i

13.16.0.0/16 10.1.1.235 0 100 100 14207 3944 2914 5511 5388 i

15.0.0.0/8 10.1.1.235 0 100 100 14207 3944 2914 209 71 i

15.130.192.0/20 10.1.1.235 0 100 100 14207 3944 2914 5400 1889 i

15.142.48.0/20 10.1.1.235 0 100 100 14207 3944 2914 3561 5551 1889 i

15.166.0.0/16 10.1.1.235 0 100 100 14207 3944 2914 209 71 i

15.195.176.0/20 10.1.1.235 0 100 100 14207 3944 2914 3561 1273 1889 i

Index

AS_PATH

62
16 9 37

62
16 9 37

98
63 8 27

98
63 8 27

62
3 32 27

62
33 29

98
77 21
98
77 21

55
18 37
55
18 37

3.3 Optimizing Index Generation

Define the k-step Golden AS in an AS_PATH Entry. We assume the golden sec-
tion ratio is 0.618β ≈ and the length of an AS_PATH entry is m . The function

Position(AS) indicates the position of an AS in the entry and its value range is

{1,2,…, m }. Herein, Position(origin AS) = m . Then we use kP to denote Posi-

tion(k-step golden AS).

Definition 1. The 1-step golden AS is the one on the golden section point of the en-

try, that is, 1P mβ= ⎡ ⎤⎢ ⎥ .

Definition 2. The k-step golden AS is the one on the golden section point of the

short section after last golden section, that is,

1 1()k k kP P m Pβ− −= + −⎡ ⎤⎢ ⎥ , 1,2, ,kP m= L . (1)

We impose the condition 1k kP P −≠ , and consequently k has an upper boundary

for each certain m . For our test set, 3m ≥ , 1,2k = .

Compare Different Index Generation Functions. As we have discussed, folding is
expensive. According to characteristic 1, we employ the origin AS number as the
index of an entry. Moreover, according to characteristic 2, we design other index
generation functions whose time-consuming is on the same level. All the functions
are presented as follows.

1. Folding. Split an AS_PATH entry into 16-bit sections and add all sections to-
gether to a 32-bit integer.

2. Origin AS. Directly get the rightmost AS number.
3. Sum of rightmost two ASes. Add the rightmost two AS numbers together.
4. Sum of rightmost three ASes. Add the rightmost three AS numbers together.
5. Golden section. Get the 1-step golden AS and add it to the origin AS.
6. Golden section2. Get the 2-step golden AS and add it to the origin AS.
7. Golden section3. Add the 1-step golden AS, the 2-step golden AS and the origin

AS together.

We construct splay trees using our test set and regard the number of tree nodes and

links, average length of all the tree nodes, average and maximum length of links and
the time cost as the main judge of efficiency of index generation functions. Larger
amount of tree nodes, less links, shorter length, and cheaper time cost, indicate the
higher efficiency. The results are presented in Table 2.

According to the results, regardless of the time cost, folding seems most efficient,
since it utilizes more information in an entry than any other function. However, the
time cost of index generation influences much the efficiency of operations to insert,
lookup and delete entries, especially when AS_PATH is getting longer. The other six

types of index generation functions perform almost equal in efficiency. Hence using
the origin AS as index is preferred for its simplicity.

Table 2. Efficiency of different Index Generation Functions.

Index
Genera-
tion

Number
Of
Tree Nodes

Total
Average
Length

Number
of
Links

Average
Link
Length

Max
Link
Length

Time
Cost

Folding 16287 1.075705 1152 1.070313 3 O(N)∗
Origin AS 13436 1.303960 2639 1.547556 12 O(1)
Sum 2 13492 1.298547 3133 1.285669 6 O(1)×2
Sum 3 14358 1.220226 2652 1.192308 5 O(1)×3
Golden 1 13077 1.339757 3366 1.319964 7 O(1)×2
Golden 2 13619 1.286438 3141 1.241961 6 O(1)×2
Golden 3 13921 1.258530 3014 1.194094 5 O(1)×3

3.4 Further Improvement

As we have discussed, when links get longer, the efficiency will decline badly for its
linear data structure [6, 7]. This problem may come true soon owing to the astonish-
ing increase of ASes and AS_PATH entries. If the link is replaced by a splay tree, our
splay tree with links then alters to be a splay tree with a secondary tree, which might
be called double-splay tree. We use the origin AS as index of the primary splay tree
while we could use the 2-step golden AS or the second rightmost AS as index of
secondary splay tree. Two different entries owning the same two indexes still have to
be linked but the length of the link will be much shorter and hence the efficiency will
be improved. Figure 3 shows an example process to construct a double-splay tree.

Fig. 3. Construct a Double-Splay Tree for AS_PATH

Limited by the size of test set, this improvement is not remarkable in our experi-
ments since over 80% links are as short as just one node. We temporarily do not pre-
sent the meaningless results in this paper. Nonetheless, we believe this improvement
will be verified when AS_PATH entries in real life is getting much increased.

∗ N indicates the number of sections after splitting.

37
6 9 37
37

6 9 37
37
55 37
37
55 37

27
5 32 27

27
5 32 27

27
6 8 27
27

6 8 27

21
55 21
21
55 21

29
55 29
29
55 29

37
5 26 37

37
5 26 37

37
5 91 37

37
5 91 37

37
6 91 37

37
6 91 37

4 Simulation Experiments

4.1 Experiment Environment

For all the experiments we use a computer with a Pentium M processor running at
1.4GHz and 256 Mbytes of main memory. The host operating system is Windows XP
professional with SP2. We develop and compile our program with the Microsoft
Visual C++6.0 with default settings. In our program, each AS number is treated as a
four-byte integer [4].

4.2 Splay Tree vs. Hash

To simulate the fact that hash is static while the number of AS_PATH entries is in-
creasing explosively, yet limited by the condition that the number of existing
AS_PATH entries is certain, we have to set the hash table size a small value (e.g. 37).
We augment the size of test set from 100 to 100,000 entries, and observe the time
cost to insert, lookup and delete entries. Results are shown in Figure 4(a ~ c).

Furthermore, to verify that static hash table size is not universal for both high and
low end routers, we set the hash table size an appropriate value (e.g. 32,767) and
experiment with small size of entries (e.g. 1,000 route entries). Figure 4 (d) reveals
the memory waste for low end routers.

These results firmly demonstrate that, hash is not suitable as the data structure of
AS_PATH because of its static feature. AS_PATH should be encoded into dynamic
structures such as splay trees.

5 Conclusions and Future Work

According to our above discussions and experiments, hash is no longer fit for the data
structure of AS_PATH for its fatal defects under the background of the explosive
development of Internet. Instead, splay trees are more suitable for their dynamic at-
tribute. To reduce collisions, we studied several functions to generate index after
exploiting inherent characteristics of AS_PATH. And we suggest using the origin AS
as the index. Furthermore, a novel binary tree named double-splay tree, is proposed
and waiting for future’s verifications.

Based on what we have done, we try to build a test bed in future to experiment
with more dynamic data structures to seek more efficient data structure for
AS_PATH.

(a) (b)

(c) (d)

Fig. 4. Hash vs. Splay Tree using Origin AS as index

6 Acknowledgements

The author would like to thank Dr. Enke Chen at Cisco Networks for pointing out
this research topic and providing much information and advice. He also would like to
thank his supervisor Dr. Jun Li for his earnest enlightenment and comprehensive help.
At last but not least, he would thank the Zebra community for the source code.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
Time to Insert

Number of AS path entries

S
ec

on
ds

Hash
Splay Tree

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6
Time to Lookup

Number of AS path entries
S

ec
on

ds

Hash
Splay Tree

Memory Occupied

132484

2360

Hash Splay Tree

Space(bytes)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Time to Delete

Number of AS path entries

S
ec

on
ds

Hash
Splay Tree

References

1. Rekhter, Y., and Li, T.: A Border Gateway Protocol 4 (BGP-4). IETF RFC 1771. (1995)
2. Traina, P.: BGP-4 Protocol Analysis. IETF RFC 1774. (1995)
3. Chen, E., and Yuan, J.: AS-wide Unique BGP Identifier for BGP-4. IETF draft-ietf-idr-bgp-

identifier-04. (2004)
4. Vohra, Q., and Chen, E.: BGP support for four-octet AS number space. IETF draft-ietf-idr-

as4bytes-08. (2004)
5. BGP Statistics from Route-Views Data. http://bgp.potaroo.net/rv-index.html. (2005)
6. Sahni, S.: Data structures, algorithms, and applications in C++. China Machine Press. (1999)
7. Shaffer, C.A.: Practical Introduction to Data Structure and Algorithm Analysis (C++ Edi-

tion). China Publishing House of Electronics Industry. (2002)
8. Zebra-0.94. http://www.zebra.org.
9. MRT-2.2.0. http://www.mrtd.net.
10. Meng, X., Xu, Z., Zhang, B., Huston, G., Lu, S., Zhang, L.: IPv4 Address Allocation and

the BGP Routing Table Evolution. ACM SIGCOMM Computer Communications Review.
35(1): 71-80. (2005)

