Preserving Privacy at IXPs

Xiaohe Hu' Arpit Gupta® Nick Feamster ¢ Aurojit Panda* Scott Shenker*
T Tsinghua ¢ Princeton ¥ NYU/Nefeli * UC Berkeley/ICSI

ABSTRACT

Autonomous systems (ASes) on the Internet increasingly rely
on Internet Exchange Points (IXPs) for peering. A single IXP
may interconnect several 100s or 1000s of participants (ASes)
all of which might peer with each other through BGP sessions.
IXPs have addressed this scaling challenge through the use of
route servers. However, route servers require participants to
trust the IXP and reveal their policies, a drastic change from
the accepted norm where all policies are kept private. In this
paper we look at techniques to build route servers which pro-
vide the same functionality as existing route servers without
requiring participants to reveal their policies thus preserving
the status quo and enabling wider adoption of IXPs. Prior
work has looked at secure multi-party computation (SMPC)
as a means of implementing such route servers however this
affects performance and reduces policy flexibility. In this pa-
per we take a different tack and build on trusted execution
environments (TEEs) such as Intel SGX to keep policies pri-
vate and flexible. We present results from an initial route
server implementation that runs under Intel SGX and show
that our approach has 20x better performance than SMPC
based approaches. Furthermore, we demonstrate that the ad-
ditional privacy provided by our approach comes at minimal
cost and our implementation is at worse 2.1Xx slower than a
current route server implementation (and in some situations
up to 2x faster).

CCS CONCEPTS

* Networks — Network architectures; Network design prin-
ciples; Network privacy and anonymity;

KEYWORDS
BGP, IXP, Policy, Privacy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APNet ’18, August 2-3, 2018, Beijing, China

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6395-2/18/08. .. $15.00
https://doi.org/10.1145/3232565.3232575

43

ACM Reference Format:

Xiaohe Hu' Arpit Gupta® Nick Feamster ® Aurojit Panda* Scott
Shenker* T Tsinghua ¢ Princeton ¥ NYU/Nefeli * UC Berkeley/ICSI
. 2018. Preserving Privacy at IXPs. In APNet ’18: Asia-Pacific Work-
shop on Networking, August 23, 2018, Beijing, China. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3232565.3232575

1 INTRODUCTION

Since its commercialization in the early 1990s, the Internet
has comprised of a set of independent autonomous systems
(ASes), each of which owns a portion of the Internet infras-
tructure and is responsible for building and maintaining this
infrastructure. Two ASes can connect to each other whenever
they are physically connected (e.g., through a link or a L2
fabric), and policies on what traffic they are willing to carry
on each other’s behalf. Routing decisions between ASes are
commonly implemented using the Border Gateway Protocol
(BGP). BGP policies have generally afforded a great deal of
flexibility to ASes, allowing them to specify policies for how
paths are used to route traffic, what paths are advertised to
other connected ASes, etc.

Increasingly ASes interconnect at Internet eXchange Points
(IXPs) such as the ones run by AMS-IX [1], IX.br [18], etc.
An IXP has one or multiple physical locations (e.g., datacen-
ters, colocation centers) where multiple ASes are intercon-
nected through an IXP provided fabric. We refer to each AS
connected to the IXP fabric as a participant'. Large IXPs
interconnect several 100 participants, e.g., 816 ASes partici-
pate in AMS-IX’s Amsterdam location [2] while IX.br in Sao
Paulo interconnects 1577 participants [19]. IXPs centralize
physical infrastructure required for ASes to interconnect, thus
reducing the cost of peering between ASes.

While IXPs reduce the cost of physical interconnectivity
between ASes, they pose a scalability challenge for BGP
implementations. BGP requires the use of long-lived BGP
sessions between any pair of connected ASes. Traditionally,
ASes participated in several exchange points, each of which
contained at most of 10s of participants. As a result BGP im-
plementations are designed to support a small number of BGP
sessions and cannot scale to the 100s or 1000s of sessions
required when an AS participates in an IXP.

INote, a participant can either physically place equipment at an IXP facility
or connect remotely through the use of remote peering [8].

https://doi.org/10.1145/3232565.3232575
https://doi.org/10.1145/3232565.3232575

APNet '18, August 2-3, 2018, Beijing, China

Many IXPs rely on route servers [23] to address this scal-
ability challenge. Intuitively a route server acts as a single
AS which peers with each participant at an IXP. The route
server is responsible for aggregating and distributing route
updates from all participants in an IXP. IXP participants are
also required to outsource a part of their policy computation
to reduce the number of announcements sent by the route
server to any participant. Beyond enabling scalability, router
servers also provide a convenient location for adding new
interdomain functionality. For example, recent work on soft-
ware defined internet exchanges [15, 16] has looked at using
route servers to reconfigure the IXP fabric (in addition to mak-
ing BGP announcements) as a way of providing additional
functionality such as load balancing (between interdomain
paths), etc. As a result route servers have both enabled IXPs to
scale to large number of customers, and to provide additional
services that differentiate them from competitors.

However, route servers also change the existing Internet
trust model by requiring that participants trust the IXP with
their policies. A recent survey of network operators [9] found
that concerns about policy privacy are an impediment to the
widespread adoption of route servers. As a result enabling
policy privacy for route servers is essential to enabling IXP
adoption.

Can one construct route servers which are scalable (al-
lowing increasing numbers of participants at an IXP) and
flexible (supporting functionality extension) while keeping
participant policy private? Prior approaches, including SIX-
PACK [9], have proposed using secure multi-party computa-
tion (SMPC) [13] to construct such route servers. SMPC is a
cryptographic primitive where computation is securely split
across multiple servers. SMPC mechanisms guarantee that
in the absence of collusion servers learn neither the inputs
nor outputs of a computation. While SMPC based mecha-
nisms are sufficient for implementing route servers which
ensure that policies remain private, as we show later the use
of SMPC leads to a significant increase in a route server’s
runtime (§5). Furthermore, existing SMPC mechanisms re-
quire programs to be specified either as arithmetic circuits
(e.g., BGW schemes [4]) or as boolean circuits (e.g., GMW
schemes [11]), and some of the circuit elements (e.g., products
or logical conjunction) require several rounds of communi-
cation. As a result the use of SMPC also makes it harder to
extend route server functionality, and hence restricts the IXPs
ability to add new features.

In this paper we propose an alternate approach based on
the use of trusted execution environments (TEEs) such as
Intel SGX or ARM TrustZone to implement route servers that
preserve policy privacy. Prior work [10, 20] tried to use TEE
in IXPs, while they stayed in simulation stage and PrIXP [10]
chose not to centralize BGP policy in route servers, adding
overhead on functionality development. We consolidate route

44

Xiaohe Hu et al.

server computation in real TEE platform and carefully de-
couple the untrusted and trusted parts to reduce computation
overhead. Our approach leverages hardware features to al-
low participants to verify that the IXP is running a trusted
route server and to ensure that the IXP cannot use operat-
ing system or hypervisor exploits to read router server state.
This allows us to ensure that the route server provides policy
privacy, while placing little or no restriction on route server
functionality?. This allows IXPs to easily extend route server
functionality and allows greater generality when compared
to SMPC based approaches. We more completely describe
our approach in §3 and §4. We implemented our approach
as an extension to SDX [15, 16], and evaluated its perfor-
mance using realistic traces. Our evaluation shows that the
use of TEEs allows us to achieve up to a 20X improvement
in performance when compared to SIXPACK’s SMPC based
approach. Furthermore, our approach induces minimum per-
formance penalty over a router server that does not provide
policy privacy: our implementation is at most 2x slower than
the original SDX implementation, and in some cases is up to
2x faster.

2 IXPS AND PRIVACY MODEL

We begin by providing some background on IXP route servers,
and then provide a brief overview of the threat model consid-
ered in this work.

2.1 IXP Route Server

IXP route servers, e.g., BIRD [7], implement mechanisms for
filtering and ranking BGP route announcements [23]. Similar
to BGP routers, route servers store any announcements that
they receive from participants in a set of tables referred to
as the routing information base (RIB). As opposed to BGP
routers which use a single RIB, most existing route server
deployments rely on a global RIB (containing routes that
the route server can propagate to participants) and a set of
per-participant RIBs (containing routes that are known to
the participant). Participants connect to the route server by
establishing a BGP session. They configure a route server by
providing it with an export policy (which limits the routes a
participant makes available to other participants), an import
policy (which determines the set of routes considered by the
participant’s routing algorithm) and a ranking policy (which
determines the best route the participant chooses for one
path). See [23] for a detailed description of how route server’s
function. Note that current route server deployments do not
support the use of complex ranking policies, and instead rank
routes based on path length and other standard BGP policies.
Furthermore, many IXPs allow for hybrid deployments where

2Similar to restrictions imposed by Haven [5] and SCONE [3] we require
some limits on how syscalls are used.

Preserving Privacy at IXPs

a participant can both directly establish BGP sessions with
some peers, while using the route server for others.

In this work we focus on general route servers that can
be easily extended to implement more complex inter-domain
policies, including those that make use of additional fields
in BGP announcements. Recent work from Google [33] and
Facebook [25] have demonstrated the value of richer interdo-
main policies, but are not widely available outside of these
companies. In the absence of IXPs, widespread adoption of
these mechanisms would have required router vendors to im-
plement these changes and ASes to install new routers. How-
ever, SDX [15, 16] has shown that IXP route servers provide
a convenient insertion point for new interdomain mechanisms.
As a result we believe that it is important to ensure that route
server implementations can be easily extended to implement
additional features where required.

2.2 Threat Model and Privacy

Threat Model. In this work we focus on ensuring that each
IXP participant policies (i.e., AS policies) are kept private
from both the IXP and other participants. As is standard we
assume that standard isolation mechanisms are used to en-
sure that each participant is limited to modifying its own
policy and receiving BGP updates. We assume IXPs are hon-
est but curious, i.e., they may attempt to eavesdrop or read
data stored in devices they control, but will not engage active
attacks against participants. Finally, we assume that all partic-
ipants and the IXP trust the hardware vendor who supplies the
trusted execution environment, i.e., Intel, or any of the man-
ufacturers licensing ARM’s TrustZone technology, and that
the TEE implementation is correct® Through the rest of this
paper we report on a prototype implementation that makes
use of Intel SGX as a TEE, and therefore in the rest of this
paper we explain our system in terms of features provided by
SGX.

Policy Privacy. Table 1 lists policy and intermediate state in
current BGP implementations. Observe that some informa-
tion including the route chosen by an AS and its dataplane
behavior are always observable by observing how packets
are routed, the set of announcements made by the AS, and
through the use of tools such as looking glass servers [27].
However, when route servers are used ASes must reveal ad-
ditional information including filtering and ranking policies,
and intermediate RIBs to the route server (and by extension
the IXP). In this work we aim to provide ASes using route
servers with the same level of privacy as is availabe when
route servers are not used. Specifically we aim to ensure that

3Recent work [28] has shown that some current TEE implementations (specif-
ically ARM TrustZone) are susceptible to leaking information, however this
is due to a bug in the implementation and not a fundamental limitation of
such environments. We do not address such bugs in this work, and assume
that the TEE implementation is used is correct and does not leak information.

45

APNet '18, August 2-3, 2018, Beijing, China

Information Pu.b.l icly RS Visible
Visible
Route announcements yes yes
Possible routes (RIB) no configuration
dependent
Best route yes yes
Filtering policy no yes
. . configuration
Ranking policy no dependent
Aucxiliary state (e.g. configuration
. L no
intradomain link property) dependent
Dataplane behavior yes yes

Table 1: Summary of information in a BGP implementation: State is publicly visi-
ble when it can be deduced on the Internet, and RS visible when it can be deduced
by the route server.

IXPs do not have access to an AS’s policies or intermediate
state (e.g., RIBs). Ensuring IXP scalability is the main chal-
lenge in providing such a guarantee since route server’s rely
on this information to both reduce the number of active BGP
sessions and the number of messages sent as a part of each
session.

3 PRESERVING PRIVACY

Next we provide an overview of two techniques that can
be used to implement route servers that do not leak policy
information: (a) SMPC [13] which has been used by prior
efforts for both centralizing BGP computation [17] and for
building privacy preserving route servers; and (b) TEE based
approaches which we describe in this paper. We delay a de-
tailed comparison between these techniques to §5.

3.1 Secure Multi-Party Computation

SMPC is a cryptographic technique [13, 14, 31, 32] that al-
lows a user’s computation to be split across multiple players
(e.g., different cloud providers) while ensuring that (a) the
players can cooperatively perform the computation and (b)
in the absence of collusion players discover neither inputs to
the computation, nor its output. Two protocols, BGW [6] and
GMW [14], have been applied to ensuring policy privacy in
BGP deployments. Both protocols function similarly: first,
the computation is converted into an arithmetic (BGW) or
boolean (GMW) circuit that is provided to all players; next
the user calls on a secret sharing scheme to produce a share
for each player; next players use protocol specific algorithms
to compute the result of applying the circuit to their share and
send the results back to the user; finally the user combines
the outputs received from each player to determine the result
of the computation. Secret sharing mechanisms used in these
techniques are reversible (by collecting all or a majority of
shares) and thus these techniques must assume no (or limited)
collusion between players for privacy.

APNet '18, August 2-3, 2018, Beijing, China

SIXPACK [9] is a route server that uses SMPC (specifically
GMW) to provide policy privacy without requiring special
hardware. The use of SMPC however imposes a few limi-
tations: first, it increases the cost of running a route server
by requiring that a portion of the computation be outsourced
to one or more third-party providers to ensure there is no
collusion; second, current SMPC implementations impose
significant computational overheads and thus systems that
rely on them (including SIXPACK) need to minimize compu-
tation performed using SMPC protocols, making it harder to
add new functionality thus hampering flexibility; finally, as
we show in §5, despite efforts to minimize the use of SMPC
protocols, SIXPACK is over an order-of-magnitude slower at
processing BGP anouncements when compared to an insecure
alternative, thus hampering IXP scalability.

3.2 TEE-Based Route Server

Trusted execution environments [29] (TEEs) such as Intel
SGX and ARM TrustZone provide alternative mechanisms
that can be used to implement route servers which preserve
policy privacy. In current implementations applications mak-
ing use of TEEs run within a trusted enclave. Each enclave
implements two mechanisms (a) remote attestation which
can be used by remote clients to verify the identity of the
code executed within an enclave; and (b) memory protection
mechanisms which allow applications to protect parts of their
memory region so that external applications — including those
running on another processor or device — cannot access the
contents of this memory region. Both of these mechanisms are
implemented using standard cryptographic primitives: remote
attestation relies on signature schemes, while memory pro-
tection is implemented by encrypting data written to memory
and decrypting data when it is fetched into cache. A variety
of recent work including Haven [5], SCONE [3], etc. have de-
signed systems that can be used to execute largely unmodified
applications in trusted execution environments. Applications
running within TEEs must be modified to address two chal-
lenges: first, system calls from an enclave are more expensive
than from applications (requiring OCalls); second, existing
trusted execution environments limit the amount of protected
memory that is accessible (i.e., resident in the enclave’s page
cache) by an enclave , and requires page swapping when this
limit is exceeded. As a result applications running within
TEEs must be designed so that they avoid syscalls when pos-
sible, and have small working sets that can fit within limited
enclave memory so as to minimize swapping overheads.

In this paper we design a route server that uses Intel SGX to
provide policy privacy. Our route server builds on the remote
attestation, memory protection, and standard mechanisms
(which similar to TLS rely on Diffie-Hellman key exchange)
to establish secure channels between the route server and

46

Xiaohe Hu et al.

SGRS

=
Computation Route
\ Server
Routing Policy
Handler

e —

‘ Attestation, Authentication, and De/Encryption Module ‘

* Session Handler
- Control
-BGP

SGX Untrusted
Run-Time System

* SGX Driver
* System Call Handler

e
OCALLs

Sanity Check

Message Parsing

Untrusted
Trusted

‘ SGX Trusted Run-Time System and Basic Library Support ‘

Figure 1: The architecture of SGRS

participants. Our implementation assumes that IXP partici-
pants trust the processor*, that SGX is correctly implemented,
and that IXPs do not use side-channel attacks [30] to violate
privacy guarantees. Side-channel attacks are a known con-
cern for current TEE implementations, and we can adopt any
current or future approaches to addressing these problems,
such as Oblivious RAM [21]. Finally, we also assume that
the route server code is available to IXP participants who can
examine it (or have a third party examine it) to ensure that the
route server does not expose policies to the IXP.

Given these assumptions, our basic approach is to execute
the route server within an enclave and using memory protec-
tion to protect participant policies and all RIBs. Next each
participant is provided with the route server’s address and
uses remote attestation to ensure that the route server is exe-
cuting an expected version of the code, thus establishing that
it trusts the route server implementation. Next the participant
establishes a secure channel with the route server. The client
can then use this route server as before, by sending messages
over the secure channel. In this model participants ensure
policy privacy by first analyzing code (using formal methods,
or through manual examination) to find a trusted route server
implementation’, then using remote attestation to ensure that
the route server instance they use is executing this trusted
implementation and running within an enclave, and finally
relying on SGX’s memory protection mechanism to ensure
that the IXP cannot access policy or intermediate state used
by the route server. Next, we describe our implementation in
greater detail.

4 IMPLEMENTATION

We implemented the design described in §3.2 in a route server
named SGRS. We also extended iSDX [15] to use SGRS,
producing a system named SGDX that both implements a
privacy preserving route server and a reconfigurable fabric.
The main challenge in implementing SGRS and SGDX lay in

4Recent cache probing attacks [22] by speculative execution could reveal
potential data. However, this vulnerability is from from processors instead
of the TEE mechanism, and industry is working on corresponding patches.
This attack is out of our protection scope.

5In practice we expect this will be done by third-party vendors who audit
code and guarantee its ability to preserve policy privacy.

Preserving Privacy at IXPs

Central Services Participant Controller

BGP State and SDN
Policy Handler

e —
* SDN Policies
- BGP States

SDN Policy Updates

———————————

* Session Handler
* VNH Assignment

Extended RS Core

1
1

1

| L

M * Reachability Handler « Virtual Next-hops
1 + Augmented
1 Reachability
1

!

* Route Computation

Tag Requests Tagging Rel
agging Relay Update and Tagging

Handler

l Fabric Controller

1

e -(IXP Programmable Fabric ‘

Figure 2: The architecture of SGDX

designing the code so as to minimize the number of system
calls (thereby avoiding OCalls and ECalls). Our approach for
doing this is to partition the route server into trusted code
that accesses private data and hence needs to run inside the
enclave, and into untrusted code that we run outside of the
enclave. While this is similar to the mechanism employed by
SCONE [3], we place a larger fraction of our functionality
outside the enclave.

In SGX protected memory regions are refered to as Enclave
Pages and cached in the Enclave Page Cache (EPC). These
pages are decrypted (or encrypted) by the CPU’s memory
encryption engine (MEE) when they are fetched (or evicted)
from memory. SGX relies on standard process isolation mech-
anisms to ensure pages cannot be accessed by external entities.
In our implementation we place the entire route server in a
single enclave and store the RIBs and policy state in Enclave
Pages as described below.

Figure 1 shows the system overview of SGRS. SGRS is
composed of untrusted application code, in the unprotected
memory, to initialize enclave and handle incoming sessions
and trusted enclave code, in the SGX-shielded memory, to
perform cryptography actions and compute routes. The ap-
plication and enclave code communicate with each other by
ECalls and OCalls checked on parameter address and length.
Enclave functionality is developed using SGX Linux SDK
(version 1.9) [26], and we use ExaBGP [12] as the BGP ses-
sion handler. At participant edge, each participant runs an
SGRS proxy to accomplish the remote attestation procedure
and set up a secure control session. BGP session processing
is unmodified, still through participant border routers.

To extend SGRS to SGDX, we first identify the private
information which should be protected. iISDX control plane
integrates a route server and an SDN controller. The newly
introduced information is SDN policies. SDN policies which
are sent to iSDX will be enforced to the data plane and take
effect immediately after control plane computation. Hence,
SDN policies are publicly visible. However, SDN outbound
policies should be augmented with BGP reachability (RIBs)
to forward traffic along BGP-advertised paths. Therefore,

47

APNet '18, August 2-3, 2018, Beijing, China

except for private information and functionality in SGRS,
the augmentation function which accesses the private RIBs
should also be protected in the enclave.

Figure 2 shows the SGDX system architecture. iSDX parti-
tions control plane across participants and remains the fabric
controller and message relay as central services. We consol-
idate the route and reachability computation functions and
private states from individual participant controllers into the
central route server enclave the same way as SGRS implemen-
tation. We also move the virtual next-hop (VHN) assignment
function to the route server untrusted application to put all
routing related logic in central services, reducing communi-
cation between central services and participant controllers.

In general privacy-preserving mechanisms including SMPC
and TEE require making a trade-off between performance
and privacy. SGX performance overhead comes from three
aspects: (i) enclave transition cost when the enclave interacts
with untrusted software, (ii) enclave access cost when cache
missing, 2 X —3x slower than untrusted memory access (iii)
page swapping cost when enclave access missing, with a sig-
nificant performance penalty, around two orders of magnitude
times slower than enclave access [3]. Route computation is a
memory intensive task, while current version SGX has limited
EPC size (128MB). We evaluate the effect of these limitations
and analyze SGRS and SGDX performance overhead with
large-scale datasets in next section.

S EVALUATION

We analyze and evaluate our implementation of SGRS and
SGDX to illustrate (i) the flexibility on developing routing
functionality using SGX, (ii) the performance overhead that
SGX introduces, (iii) the performance comparison of SGRS
and SMPC-based approach SIXPACK, and (iv) the scalability
of SGDX compared to original iSDX.

Experiment setup. We run our performance tests on a server
with a 4-core SGX-enabled processor Intel Xeon CPU E3-
1280 v5 3.7GHz and 64 GB of DRAM. We derive the data sets
from RIPE RIS data [24] which is collected by route collec-
tors, consists of public BGP updates and RIB dumps (histori-
cal BGP updates) but no routing policies, and has a maximum
participant number 90. To generate large-scale data sets, we
extend the participant number and assign each participant a
uniform fraction of peerings. The participant’s export/import
policy for another participant is set to true (send/accept) if
they are peering, and we use random local preferences as
participant ranking policies. Then, we propagate the collector
RIB to each participant according to the generated policies.
Finally, we have a large number of participants with synthetic
routing policies and RIBs, and the corresponding real world
BGP update traces.

APNet '18, August 2-3, 2018, Beijing, China

Xiaohe Hu et al.

10
2000 o1 T 10 50 100
RIB Entry Number (milion)

Figure 3: BGP update compute time of
SIXPACK, SGRS, and Baseline on in-

creasing participant number

SIXPACK, SGRS, and Baseline on in-
creasing RIB size

We load the routing policies to the system under test and
replay the BGP update traces to evaluate the runtime BGP
update compute time. To compare SGRS and SGDX with
previous works in the same condition, we modify SIXPACK
to use IRRdb based filtering policies instead of BGP Commu-
nity based filtering policies and replace iSDX RIB backend
MongoDB which has limited QPS (around 500-1000) with
in-memory hash tables.

Flexibility analysis. We implement SGRS and SGDX trusted
routing part in C using SGX SDK. During the implementa-
tion, after finishing the private state identification and code
path redesign, most functions are written in identical way as
general C programs. SGX related logic includes the com-
mon functions which can be reused in SGX applications
such as enclave_init() and remote_attestation(), the enclave
definition language described ECall and OCall interfaces,
and the application-specific ECall and OCall functions. The
application-specific transition functions of SGRS consist of
207 lines of C code, while SGRS functions except for BGP
session handler implemented by ExaBGP have 2241 lines.
For SGDX, the transition functions consist of 277 lines of
C code, while the central service functions extended from
SGRS have 2807 lines. Both SGRS and SGDX have less than
10% code which belongs to the SGX-introduced development
overhead.

SGRS performance. We evaluate the BGP update processing
time of SGRS, SIXPACK, and Baseline (without protection)
with four experiments. First, we test the scalability with the
increase of participant number. We set the maximum partici-
pant number up to 2000 which exceeds the size of all current
IXPs, generate 80 million peering routes, assign each partici-
pant a uniform 20% of peerings, and choose random subsets
of participants with corresponding routes and peerings for
smaller IXPs. Figure 3 shows the result. SGRS is 20x-70x
faster than SIX-PACK.

To understand how the RIB size affects the update com-
putation, we then evaluate the processing time on varying
the route number ranging from 0.1 million to 100 million.
We use 500 participants (the same setting as iSDX) and each
participant with a uniform 20% of peerings for all tests. Fig-
ure 4 shows the result. Besides, we vary the number of BGP

Figure 4: BGP update compute time of Figure 5: BGP update compute time of
SIXPACK and SGRS on increasing sus-
tained update rate

48

. Eweq N - 3 T T S
BNP A et =
et

== -) | ; | ; /
SRR /
B

Figure 6: BGP update compute time of
iSDX, SGDX, and SGDX* on increas-
ing peering density

updates per second and send the updates at constant rates to
quantitatively analyze how the systems react to bursts. We
use the same setting as the varying-RIB experiment and set
the RIB size to 10 million. Figure 5 shows the result.

SGDX performance. We evaluate the BGP update process-
ing time of SGDX, iSDX, and SGDX* (disabling SGX) using
the same setting in iISDX[15] shown in Figure 6. We vary the
fraction of peerings of each participant. The performance of
SGDX is comparable to iSDX ranging from 0.5X-2.1X the
processing time of iSDX. The reason SGDX is faster than
iSDX while increasing the fraction of peerings is that SGDX
reduces the data communication load between the route server
and participant controllers.

6 CONCLUSION

IXPs have become a crucial part of the internet infrastructure
and are increasingly used by ASes for peering. Route servers
have been essential to enabling IXP scalability, however they
allow IXPs to learn AS-specific policies and intermediate
data, and thus require ASes to trust IXPs. This additional trust
requirement is an impediment to wider IXP adoption, and as
a result it is important to develop privacy preserving route
servers. Prior work [9] has addressed this need through the
use of SMPC, however this comes at a large performance
penalty — resulting in a performance degradation of up to 20X
—and also makes it harder to add new features to a route server.
In this paper we proposed an alternate design based on the use
of hardware trusted execution environment such as Intel SGX,
and implemented a route server based on our design. Our
privacy preserving route server imposes modest overheads of
at most 2X, is easily extended to add support for additional
policies, and is readily deployable on existing hardware. Our
future work includes further performance investigation when
expanding the threat model to mitigate side-channel attacks
and further application extensions on centralized privacy-
preserving IXPs.

7 ACKNOWLEDGMENT

We thank APNet reviewers for their helpful feedback. This
work was funded in part by NSF-1420064, NSF-1704941,
and Intel corporation.

Preserving Privacy at IXPs

REFERENCES

[1] Amsterdam Internet Exchange (AMS-IX). https://ams-ix.net.

[2] Amsterdam Internet Exchange: Members. https://ams-ix.net/
connected_parties retrieved 04/20/2018.

[3] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer. SCONE: Secure
Linux Containers with Intel SGX. In OSDI, 2016.

[4] G. Asharov and Y. Lindell. A full proof of the bgw protocol for perfectly
secure multiparty computation. Journal of Cryptology, 30:58-151,
2011.

[5] A.Baumann, M. Peinado, and G. C. Hunt. Shielding Applications from
an Untrusted Cloud with Haven. In OSDI, 2014.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In STOC, 1988.

[7] The BIRD Internet Routing Daemon. http://bird.network.cz.

[8] I Castro, J. C. Cardona, S. Gorinsky, and P. FranAgois. Remote peering:
More peering without internet flattening. In CoNEXT, 2014.

[9] M. Chiesa, D. Demmler, M. Canini, M. Schapira, and T. Schneider. SIX-
PACK: Securing Internet eXchange Points Against Curious onlooKers.
In CoNEXT, 2017.

[10] M. Chiesa, R. di Lallo, G. Lospoto, H. Mostafaei, M. Rimondini, and
G. D. Battista. Prixp: Preserving the privacy of routing policies at
internet exchange points. 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pages 435-441, 2017.

[11] S.G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure
multi-party computation of boolean circuits with applications to privacy
in on-line marketplaces. In JACR Cryptology ePrint Archive, 2011.

[12] ExaBGP overview. https://github.com/Exa- Networks/exabgp/wiki.

[13] O. Goldreich, B. Chor, S. Goldwasser, and L. A. Levin. Secure multi-
party computation. 1998.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In
STOC, 1987.

[15] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rex-
ford, and L. Vanbever. An Industrial-Scale Software Defined Internet
Exchange Point. In NSDI, 2016.

[16] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. J. Clark, and E. Katz-Bassett.
SDX: a software defined internet exchange. In SIGCOMM, 2014.

[17] D. Gupta, A. Segal, A. Panda, G. Segev, M. Schapira, J. Feigenbaum,
J. Rexford, and S. Shenker. A new approach to interdomain routing
based on secure multi-party computation. In HotNets, 2012.

[18] IX.br. http://ix.br.

[19] IX.br Members. http://ix.br/particip/sp retrieved 04/20/2018.

[20] S. M. Kim, Y. Shin, J. Ha, T. Kim, and D. Han. A first step towards
leveraging commodity trusted execution environments for network
applications. In HotNets, 2015.

[21] C. S. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari, and E. Shi.
GhostRider: A Hardware-Software System for Memory Trace Oblivi-
ous Computation. In ASPLOS, 2015.

[22] Meltdown and Spectre. https://meltdownattack.com.

[23] P. Richter, G. Smaragdakis, A. Feldmann, N. Chatzis, J. Bottger, and
W. Willinger. Peering at Peerings: On the Role of IXP Route Servers.
In IMC, 2014.

[24] RIS Raw Data. https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/ris-raw-data.

[25] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, Is.
Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng. Engineering
egress with edge fabric: Steering oceans of content to the world. In
SIGCOMM, 2017.

49

APNet '18, August 2-3, 2018, Beijing, China

[26] Intel(R) Software Guard Extensions for Linux* OS. https://github.com/
Olorg/linux-sgx.

[27] G. Siganos and M. Faloutsos. Analyzing bgp policies: Methodology
and tool. In INFOCOM, 2004.

[28] A. Tang, S. Sethumadhavan, and S. J. Stolfo. Clkscrew: Exposing the
perils of security-oblivious energy management. In USENIX Security
Symposium, 2017.

[29] GlobalPlatform made simple guide: Trusted Execution Environment
(TEE) Guide. https://www.globalplatform.org/mediaguidetee.asp.

[30] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems. 2015 IEEE
Symposium on Security and Privacy, pages 640-656, 2015.

[31] A.C.-C. Yao. Protocols for secure computations. 23rd Annual Sympo-

sium on Foundations of Computer Science (sfcs 1982), pages 160—164,

1982.

A. C.-C. Yao. How to generate and exchange secrets. 27th Annual

Symposium on Foundations of Computer Science (sfcs 1986), pages

162-167, 1986.

K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. J. Holliman, G. Baldus,

M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan,

A. Singh, B. Tanaka, M. Verma, P. Sood, M. M. B. Tariq, M. Tier-

ney, D. Trumic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and

A. Vahdat. Taking the edge off with espresso: Scale, reliability and

programmability for global internet peering. In SIGCOMM, 2017.

[32]

(33]

https://ams-ix.net
https://ams-ix.net/connected_parties
https://ams-ix.net/connected_parties
http://bird.network.cz
https://github.com/Exa-Networks/exabgp/wiki
http://ix.br
http://ix.br/particip/sp
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://www.globalplatform.org/mediaguidetee.asp

	Abstract
	1 Introduction
	2 IXPs and Privacy Model
	2.1 IXP Route Server
	2.2 Threat Model and Privacy

	3 Preserving Privacy
	3.1 Secure Multi-Party Computation
	3.2 TEE-Based Route Server

	4 Implementation
	5 Evaluation
	6 Conclusion
	7 Acknowledgment
	References

