
L7LB: High Performance Layer-7 Load Balancing
on Heterogeneous Programmable Platforms

Xiaoyi Shi, Yifan Li, Chengjun Jia, Xiaohe Hu, Jun Li
Tsinghua University, Beijing, China

{shixiaoy20, liyifan18, jcj18}@mails.tsinghua.edu.cn, {hxhe, junl}@tsinghua.edu.cn

Abstract—Layer-7 load balancing is an essential pillar in
modern enterprise infrastructure. It is inefficient to scale software
layer-7 load balancing which requires hundreds of servers to
meet the large-scale service requirements of 1Tbps throughput
and 1M concurrent requests. This paper presents L7LB with a
novel fast path and slow path co-design architecture running on
a heterogeneous programmable server-switch. L7LB is efficient
by offloading most packets’ forwarding onto the Tbps bandwidth
switch chip, with few CPU cores processing application connec-
tions. The preliminary prototype demonstrates the layer-7 load
balancing functionality and shows that L7LB can meet the large-
scale service requirements.

Index Terms—layer-7, load balancing, server-switch

I. INTRODUCTION

Layer-7 load balancing distributes traffic by inspecting
application data, e.g., HTTP host or HTTP path. Therefore,
modern service providers adopt layer-7 load balancing to
enhance the infrastructural abilities of traffic management,
application performance analysis, and network security.

It is challenging to realize scalable and efficient layer-7
load balancing. Nowadays, software layer-7 load balancing
solutions on commodity servers are flexible to customize
functions and open to develop operation tools. However, due
to the 10Gbps NIC and the 10K concurrent request processing
capability of a single commodity server, to scale software
layer-7 load balancing, hundreds of servers are required to
meet the large scale service requirements of 1Tbps throughput
and 1M concurrent requests.

In this paper, we present, L7LB, a high performance,
i.e., scalable and efficient, layer-7 load balancing design by
leveraging recent advances on programmable switch chip [1]
and combining the advantages of the switch chip high band-
width and the CPU fast computation. The heterogeneous pro-
grammable platform used by L7LB is the commodity server-
switch [2] with a 3.2Tbps switch chip and an Intel Xeon pro-
cessor. Recent research works [3], [4] design millions of con-
current requests layer-4 load balancing with the programmable
switch chip through connection table compression. However,
these designs can not be directly adopted to L7LB due to the
complex application processing, i.e., L7LB establishing and
processing HTTP connections with both clients and back-end
servers. The solution and novelty of L7LB design lie in two
parts:

This work is supported by National Natural Science Foundation (No.
61872212) and Industry-university-research Innovation Fund for Chinese
Universities (No. 2021FNA04002).

• packet processing decomposition, L7LB is decoupled into
fast path, which is I/O intensive and runs on the switch
chip for packet parsing, matching, rewriting and encapsu-
lation, and slow path, which is computation intensive and
running on the CPU for layer-7 connection establishing
and application information parsing and matching,

• fast path and slow path co-design, the established con-
nection metadata in the slow path is passed to and stored
in the fast path connection table to enable that the slow
path only processes the first several handshake packets
and the fast path modifies and forwards the most data
packets.

Therefore, benefiting from the fast path and slow path design,
L7LB achieves line rate processing on the server-switch, real-
izing, scalability, the order of magnitude of Tbps throughput
and Million concurrent requests and efficiency, one server-
switch instead of hundreds of servers. Our preliminary L7LB
prototype demonstrates the layer-7 load balancing function-
ality and shows that most packets are handled by the pro-
grammable switch chip.

II. DESIGN AND IMPLEMENTATION

The basic functionality of L7LB is mapping and balanc-
ing the pair (SIP:SPORT, VIP:VPORT) of the client source
address and the service external virtual address to one of
the back-end destination addresses DIP:DPORT according
to layer-7 application information. Clients establish layer-7
connections with L7LB and L7LB establishes connections
with back-end servers. Then, the requests and responses are
forwarded by L7LB.

The system architecture is shown in Fig. 1. L7LB runs
on the heterogeneous programmable server-switch. The first
few packets of a connection are sent to the slow path to
calculate the back-end server, and then the subsequent packets
are forwarded by the fast path. The fast path is realized using
P4 and runs on the switch chip. The modules of the fast
path include packet parsing, packet matching, packet rewriting,
packet encapsulation and compressed connection table. The
slow path is realized by Go and runs on the CPU. The modules
of the slow path include packet caching, connection selecting
and establishing, table updating, and original connection table.

The layer-7 load balancing functionality is mainly realized
in the connection selecting and establishing module of the
slow path. In this module, the extracted application handshake
information, i.e., HTTP header metadata, as well as the access



Fast Path Slow Path

L7LB on Server-Switch

Parse

Classify

Encapsulate

match miss
Cache

Complete
Conn Table

Table
Update

Ingress
Traffic

Egress
Traffic

rewrite

Select 
Establish

Compressed
Conn Table

Fig. 1. L7LB system architecture

Client

L7LB
Fast Path

L7LB
Slow Path

1. Connection 
Establishing

2. Request

Server

3. Server
Selection and 
Connection

5. Cached 
Packets
Sending

4. Conn Table 
Update

6. Subsequent 
Data Transmission

Fig. 2. L7LB packet processing sequence
1K 32K 128K 512K 1M 2M 3M

Transmitted data size

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f c
ap

tu
re

 p
ac

ke
ts

124 80 185 80
362

80

1108

80

2055

80

3365

80

4840

85

No L7LB
With L7LB

Fig. 3. The main namespace packets

address information, i.e., the pair (SIP:SPORT, VIP:VPORT),
is classified with the configured string or regular expression
rules to get the DIP:DPORT from the matched rule.

The key to achieving Tbps throughput and handling mil-
lion concurrent requests is the compressed (to meet storage
limitation) connection table in the fast path. With respect
to each (SIP:SPORT, VIP:VPORT) access, the DIP:DPORT
is calculated by the first few application handshake packets.
Then, the key and value of (SIP:SPORT, VIP:VPORT) and
DIP:DPORT is inserted to the connection table. Therefore,
subsequent packets are directly matched and forwarded in the
fast path on the switch chip, which has line rate processing
capability for Tbps throughput and million connections.

Inserting only IP and Port pairs into the connection table
and masquerading IP and Port pairs in L7LB fails the com-
munication between the client and server, because the TCP
state machine between the client and L7LB differs from that
between L7LB and the server. The client and server can not
directly recognize the packets without TCP state, e.g., ACK
number and SEQ number, masquerade. To this end, L7LB
records the differences between the two TCP state machines
and changes the ACK number and SEQ number on the fly.

Therefore, the sequence chart of L7LB packet processing
is summarized and shown in Fig. 2. The client establishes
a connection with L7LB slow path. When L7LB slow path
receives requests from the client, the back-end server is
classified and the connection between L7LB slow path and
the server is established. Then, L7LB slow path updates the
connection metadata to the connection table of L7LB fast path.
The cached client messages are sent from L7LB slow path to
the server. The subsequent requests and responses are handled
among the client, L7LB fast path, and the server.

III. EXPERIMENT

The preliminary emulation experiment is run on a server
with an Intel dual 52-core Xeon Gold 6230R Processor and
128GB memory. The programmable switch chip is emulated
using a P4 software switch named bmv2. We start multiple
ApacheBench instances as clients and multiple HTTP servers.
The transmitted HTTP data is generated randomly. All the
processes are isolated and run in different namespaces. L7LB

distributes different client requests to different HTTP servers
according to the pre-configured rules.

To demonstrate the scalability of L7LB, we conduct two
kinds of emulation tests. One is the transparent transmis-
sion (No L7LB), and another is the L7LB in the middle
transmission (With L7LB). We vary the transmitted data size
and capture packets forwarded through the main namespace
where the transparent transmission and L7LB slow path run.
The number of captured packets is shown in Fig. 3. We can
see that when running L7LB the number of packets passing
through the main namespace is almost the same regardless
of the sent packets size, which indicates that besides the first
few handshake packets, the data packets between clients and
servers are forwarded directly using L7LB fast path.

IV. CONCLUSION AND FUTURE WORK

Layer-7 load balancing is becoming an vital pillar in modern
enterprise infrastructure, distributing incoming accesses across
the back-end servers based on application information. In
this paper, we present a scalable and efficient layer-7 load
balancing design on the heterogeneous programmable server-
switch. Benefit from the fast path and slow path decomposition
and the collaboration on connection table metadata updating
and rewriting, most packets are handled by the line rate
programmable switch chip.

Our future work includes exporting the preliminary L7LB
prototype to the real server-switch platform and extending
the L7LB functionality on application data modification and
security protection.

REFERENCES

[1] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. ”Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for SDN.” ACM SIGCOMM Computer Communication Review
43, no. 4, 99-110, 2013.

[2] Intel Server-Switch, shorturl.at/dxGQZ.
[3] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan

Yu. ”Silkroad: Making stateful layer-4 load balancing fast and cheap
using switching asics.” In Proceedings of the ACM SIGCOMM, pp.
15-28. 2017.

[4] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang
Li, Wenchen Han, Nan Chen et al. ”Tiara: A scalable and efficient
hardware acceleration architecture for stateful layer-4 load balancing.”
In Proceedings of USENIX NSDI, pp. 1345-1358. 2022.


