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Abstract: As the core algorithm and the most time consuming part of almost every modern network intrusion 

management system (NIMS), string matching is essential for the inspection of network flows at the line 

speed. This paper presents a memory and time efficient string matching algorithm specifically designed for 

NIMS on commodity processors. Modifications of the Aho-Corasick (AC) algorithm based on the distribution 

characteristics of NIMS patterns drastically reduce the memory usage without sacrificing speed in software 

implementations. In tests on the Snort pattern set and traces that represent typical NIMS workloads, the 

Snort performance was enhanced 1.48%-20% compared to other well-known alternatives with an automa-

ton size reduction of 4.86-6.11 compared to the standard AC implementation. The results show that special 

characteristics of the NIMS can be used into a very effective method to optimize the algorithm design. 
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Introduction 

Network intrusion management systems (NIMSs) are 
fundamental security applications that are growing in 
popularity in various network environments. The heart 
of almost every modern NIMS has a string matching 
algorithm. The NIMS uses string matching to compare 
the payload of the network packet and/or flow against 
the pattern entries of intrusion detection rules[1,2]. 

String matching requires significant memory and 
time costs. For example, the string matching routines 
in Snort account for up to 70% of the total execution 
time and 80% of the instructions executed on real 
traces[3]. The size of the string matching data structure 

is more than 150 MB when using the Aho-Corasick 
(AC) algorithm[4] and the Snort rule set distributed on 
July 27, 2005. Moreover, as the number of potential 
threats and their associated patterns continues to grow, 
the memory and time costs of string matching are 
likely to increase as well. 

These challenges motivate research on the design of 
string matching algorithms specific to NIMS applica-
tions[5-12]. However, most previous algorithms have not 
utilized the specific characteristics of NIMS patterns to 
improve the string matching performance. The E2xB[8] 
algorithm utilized the characteristics of NIMS input 
based on the observation that the input size is relatively 
small (on the order of packet size) and the expected 
matching probability is also small (which is common 
in network intrusion detection system (NIDS)      
environments). 

Hardware applications have also been proposed in-
cluding field programmable gate array (FPGA) and 
application specific integrated circuits (ASIC)[13-20]. 
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The hardware methods can certainly achieve higher 
string matching performance, but the rule set cannot be 
easily updated, especially with the ASIC method. 
Software algorithms are less expensive and more flexi-
ble. With special-purpose, programmable chips tailored 
to network devices such as network processors (NPs), 
software algorithms can also achieve high performance 
and can combine the low cost and flexibility of com-
modity processors with the speed and scalability of 
custom silicon (ASIC chips). 

In this work the characteristics of NIMS patterns 
are used to design a faster string matching algorithm 
that takes less memory. An improved AC algorithm, 
the character indexed AC (CIAC), was developed to 
dramatically reduce the memory requirement. 

1  Snort and String Matching 
1.1  Snort 

Snort is the most popular open source network intru-
sion detection system and its detection model is used 
for reference by many commercial products. 

Snort captures packets from a network interface 
which are preprocessed before sending to the detection 
engine. The preprocessing includes layer three IP 
fragment reassembly, layer four transmission control 
protocol (TCP) session reconstruction, and so forth. 
The detection engine checks packet payloads against 
the intrusion detection rules. If one or more rules 
match, an attack is detected and the corresponding re-
sponse functions are launched. 

The detection rules form a rule set with all the pat-
tern entries of the rules forming a pattern set. For 
newer versions above Snort version 2.0, the detection 
rules are divided into many groups, referred to as sub-
rule sets in this paper. The pattern entries of each sub-
rule set form a sub-pattern set. For example, the TCP 
and user datagram protocol (UDP) rules are divided 
into sub-rule sets by the source and destination port 
numbers. When a TCP or UDP packet arrives, its des-
tination and source port number are used to find the 
appropriate sub-rule sets to be checked. Then a string 
matching algorithm, such as AC, is used to compare 
the packet payload with the corresponding sub-pattern 
sets. If there are matching patterns, the rules that con-
tain the matching patterns are checked to confirm 
whether an attack is occurring. 

1.2  String matching algorithm 

String matching consists of finding one, or more gen-
erally, of all the occurrences of a search string in an in-
put string. In NIMS applications, the pattern is the 
search string, while the payload is the input string. If 
more than one search string simultaneously matches 
against the input string, this is called multiple pattern 
matching. Otherwise, it is called single pattern matching. 
1.2.1  Boyer-Moore (BM) algorithm 
The BM algorithm[21] is the most well-known single 
pattern matching algorithm. The BM algorithm utilizes 
two heuristics, bad character and good suffix, to reduce 
the number of comparisons. Both heuristics are trig-
gered on a mismatch. The BM algorithm takes the far 
most shift caused by the two heuristics. 

Horspool proposed a variation of the BM algorithm, 
the BM-Horspool (BMH) algorithm[22], which utilizes 
only an improved bad character heuristic. BMH is 
simpler to implement than BM, which preserves the 
average performance of BM. 
1.2.2    Maximum weighted matching (MWM) algo-

rithm 
The MWM algorithm[23] uses the bad character heuris-
tic like the BM algorithm but with a two-byte shift ta-
ble. The MWM algorithm also performs a hash on the 
two-byte prefix of the current substring of the input 
string to index into a group of search strings. The 
MWM algorithm can efficiently deal with large 
amounts of search strings. However, its performance 
depends on the length of the shortest search string and 
the characteristic of the input string. 
1.2.3  AC_BM and SBMH algorithms 
The set-wise Boyer-Moore-Horspool (SBMH) algo-
rithm[5] is regarded as the first NIDS-specific string 
matching algorithm. This algorithm adopts heuristics 
like BM to simultaneously search for multiple search 
strings. Coit et al.[6] independently proposed a similar 
algorithm called AC_BM. 
1.2.4.  E2xB algorithm 
The E2xB algorithm[8] is an exclusion-based algorithm 
specific to NIDS applications. This algorithm is based 
on the observation that if there is at least one character 
of the search string that is not contained in the input 
string, then the search string is not a substring of the 
input string. E2xB first checks the input string for miss-
ing fixed size substrings of the search string. If all the 
substrings of the search string can be found, a standard 
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string matching algorithm, such as BM, is launched to 
determine whether actual matching occurs. 
1.2.5  Fast string-matching (FNP) algorithm 
The FNP algorithm[10] is a multiple pattern matching 
algorithm implemented over the network processor. 
This algorithm utilizes the NP hardware-accelerated 
hashing engine to identify matching patterns via a link 
list in the event of hash collision to save the processor 
power. 

2 AC and Its Variations 

The AC algorithm is one of the most popular multiple 
pattern matching algorithms. This algorithm accepts 
all search strings simultaneously to make up of a fi-
nite state automaton (FSA) so that every prefix is rep-
resented by only one state, even if the prefix belongs 
to multiple search strings. The AC algorithm deals 
with the input string characters one by one and has 
proven linear performance to the length of the input 
string, regardless of the number and length of the 
search strings. 

Considering that an attacker could intentionally pro-
vide input that will knowingly cause the worst case 
performance of an algorithm, the automaton-based al-
gorithms such as AC are preferred robust algorithms 
for NIMS. The CIAC algorithm presented in this paper 
is such an algorithm. 

2.1 Implementation of AC 

The AC automaton could be a non-deterministic finite 
automaton (NFA) or a deterministic finite automaton 
(DFA) which is converted from the NFA. The imple-
mentation of AC can be divided into preprocessing and 
searching stages. The AC preprocessing stage con-
structs the NFA or DFA. The NFA behavior is dictated 
by the goto function, failure function, and output func-
tion. Suppose that the pattern set is P = {hers, she, his, 
he} and the alphabet is Σ . The NFA for pattern set P 
is shown in Fig. 1. The symbol “^{h, s}” means all the 
characters of Σ  except “h” and “s”. 

The NFA goto function g( ) works as: next_state = 
g(current_state, input_character). For example, from 
Fig. 1a, g(1, “e”)=2. The input string is processed 
character by character with a next_state value calcu-
lated for each character. 

When there is no valid next_state value for a cur-
rent_state  and  input_character  pair,  the output of g is 

 
Fig. 1  NFA of pattern set P 

marked as FAIL, for example, g(1, “s”) = FAIL. With 
g(current_state, input_character)=FAIL, the failure 
function f(current_state) is used recursively to calcu-
late the new current_state until there is a valid 
next_state for g(f(current_state), input_character). For 
example, because g(4, “s”) = FAIL, the NFA state tran-
sition procedure is: g(4, “s”)=FAIL => g(f(4), “s”)=  
g(7, “s”)=FAIL => g(f(7), “s”)=g (0, “s”)=7. The out-
put function output(current_state) determines if there 
are matching patterns at the current state. For example, 
output(2) = “he”. 

The goto and failure functions can be merged by us-
ing the failure function to pre-compute the next state 
for every character from every state in NFA. The out-
put function and the optimized goto function construct 
a DFA. 

The NFA and DFA data structures for each state, re-
ferred to as nodes in this paper are shown in Fig. 2 
where σ is the alphabet size. The next_state [σ] matrix 
contains σ entries indicating the values of the goto 
function for all possible input characters. 

struct NFA_Node 
{ 
  struct ac_state * next_state[σ];  

struct ac_state * fail; 
struct detection_pattern * matchlist; 

} 
struct DFA_Node 
{ 
  struct ac_state * next_state[σ]; 

struct detection_pattern * matchlist; 
} 

Fig. 2  DFA and NFA state data structure 
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Because DFA requires only one memory reference 
for each input character to calculate next_state, it can 
owe better performance. The implementation of the AC 
algorithm in Snort uses DFA. The AC implementation 
for the pattern set P = {hers, she, his, he} is shown in 
Fig. 3. Each DFA state node contains 256 next_state 
values: NS ,0 255λ λ≤ ≤ . For example, if the current 
state is 0 and the current input character is “h”, then 

104NS  of state 0 is “1” where 104 is the ASCII value 
for the character “h”. The index table contains 10 
pointers to the 10 state nodes. 

The standard AC DFA search procedure is shown in 
Fig. 4. 

2.2  Variations of AC 

The AC automaton requires a huge amount of memory. 
Many papers have been published analyzing the space 
complexity of automatons. Norton[7] proposed a 
“banded-row format” to store data efficiently in Snort. 
The “state 0” node in Fig. 3 will be used as an example, 
as shown in Fig. 5a. The “banded-row format node” is 
converted as shown in Fig. 5b which stores elements 
from the first non-zero value to the last non-zero value, 
“100 000 000 007”. The first entry “12” is the number 
of next_state values stored. The second entry “104” is 
the position of the first non-zero next_state in the origi-
nal standard DFA node, i.e., the ASCII value of charac-
ter “h”. 

 
Fig. 3  DFA implementation in Snort 

current_state = 0;   // Searching starts from state 0 
i = 0; 
while (i<m)        //m is the length of input text 
{ 
 //Get the node address according the value of current_state 
 Step 1: State_Table = Index Table [current_state];   
 //Determinate the next_state according to input character T[i];  

 //T represents the input text 
 Step 2: next_state = State_Table [T[i]]; 
 Step 3: current_state = next_state; 
} 

Fig. 4  Standard AC DFA search procedure 

 
Fig. 5  DFA node data structure of banded-row format 
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Although the memory usage can be reduced, the 
banded-row format automaton node cannot be ran-
domly accessed. This incurs additional computational 
costs. 

3 CIAC Algorithm 

Because the DFA search speed is higher than that of 
NFA, only the DFA is used in this work. But the opti-
mization method can also be applied to NFA. 

3.1  Central idea 

In the CIAC algorithm, the alphabet of all possible 
characters is Σ  and the characters which appear in the 
patterns form Σ ′ ; therefore Σ Σ Σ .′′ ′= −  In most 
cases, Σ ′ is a small subset of Σ . Defining the num-
ber of characters in Σ  as σ , then for single-byte 
coding schemes for western scripts 82 256σ = = . The 
number of characters in Σ ′  is θ , then θ σ< . 

The number of characters appeared in each Snort 
sub-pattern set is counted with the results shown in Ta-
ble 1, where NC represents the number of characters in 
a sub-pattern set and NR represents the number of sub-
sets which have NC different characters. Again, the 
Snort rule set used is that distributed on July 27, 2005. 

Table 1  Number distribution of characters in Snort 
sub-pattern sets 

NC 9 11 12 16 22 30 47 60 79
NR 1 1 8 1 4 1 1 1 17

NC 80 81 82 83 84 85 90 92 107
NR 8 4 6 3 2 3 1 1 77

NC 108 109 110 111 112 113 114 115 116
NR 22 8 7 1 1 2 1 2 1 

NC 120 121 126 133 134 136 144 152 total
NR 2 2 1 1 1 1 1 1 195

The statistical data show that the largest number of 
characters in a sub-set is 152, so in every Snort sub-
pattern set θ σ< , where σ  in this case is 256. Actu-
ally, Table 1 shows that most of the sub-sets have less 
than half the number of possible characters. 

When using DFA, all the next state entries corre-
sponding to the characters belong to Σ ′′  are 0 in all 
state nodes. While using NFA, all the next state entries 
corresponding to the characters belong to Σ ′′  are 
FAIL in all state nodes. The data structure of each state 

node can be regarded as a one-dimensional matrix. All 
the state nodes together can be regarded as a virtual 
two-dimensional matrix as shown in Fig. 3. The col-
umns corresponding to the characters belonging to 
Σ ′′  all have the same value, so these columns can be 
merged into one. 

Suppose that there are n state nodes with θ charac-
ters, the memory required for the standard DFA is 
O( 256n ). If all the (256−θ ) columns corresponding to 
the characters belonging to Σ ′′  all combined into one 
column, the required memory decreases to O( ( 1)nθ + ). 
As shown by the data in Table 1, in real systems 

256θ << , so the space complexity can be dramatically 
reduced. 

3.2  Preprocessing 

The preprocessing stage of CIAC based on DFA is as 
follows. 

Step 1  Construct a standard AC DFA as shown in 
Fig. 3. 

Step 2  Scan the standard DFA to find the columns 
which equal a zero matrix.  

Step 3  Transpose the matrix to the standard AC 
DFA which translates the state node in Fig. 3 into the 
character node in Fig. 6. Each character node contains 
n next state entries corresponding to all the states. 

Step 4  The columns equal to zero are converted to 
rows. Refer to the results in Step 2 to merge these zero 
rows into one row. 

Step 5  A character indexed table with 256 pointers 
to  all  the  character  nodes  is  used as shown in Fig. 6. 

 
Fig. 6  CIAC automaton implementation 
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The merged row corresponding to all the characters be-
long to Σ ′′  is represented by the node “other”. 

The output functions for the standard NFA, DFA, 
and CIAC are all the same. 

3.3  Searching 

The CIAC search procedure is as follows. 
Step 1  Read one input character which is used to 

get the pointer to the corresponding CIAC DFA charac-
ter node by checking the character index table. 

Step 2  Read the current state which is used to get 
the transfer to the next state value by checking the 
character node determined in Step 1. 

Step 3  Set the next state value determined in Step 
2 as the current state. 

Step 4  Check the output function output (cur-
rent_state) to determine if a match is found. 

Step 5  If there are more input characters, return to 
Step 1. 

The implementation of the CIAC search procedure 
is shown in Fig. 7. 

current_state = 0;  //searching starts from state 0 
i = 0; 
while (i<m)      // m is the length of input text 
{ 
 //Get the pointer to the appropriate character node 
 according input character T[i]; 

 //T represent the input text 
 Step 1: ptr_node = Character Index Table [T[i]]; 

    //Determine the next_state according the value of 
 current_state; 
    Step 2: next_state = ptr_node [current_state]; 
   Step 3: current_state = next_state; 
} 

Fig. 7  CIAC search procedure 

CIAC allows for fast random access to the DFA data 
structure (Step 1 and Step 2 in Fig. 7), in the same way 
as the standard AC implementation (Step 1 and Step 2 
in Fig. 4). No additional search costs are incurred, 
while the memory size is reduced dramatically. 

4  Experimental Evaluation 

4.1  Experimental environments 

The CIAC algorithm was implemented and patched 
into Snort to compare its performance with the other 
best alternatives in Snort, AC-STD (standard AC im-
plementation), AC-FULL (standard AC optimized for 

speed, as shown in Fig. 3), AC-BANDED (the banded-
row format AC), MWM, and E2xB. The E2xB source 
code was taken from the author’s website[24]. For the 
other algorithms, the algorithm implementations dis-
tributed with Snort 2.4.2 were used. 

The MWM algorithm in Snort is not an exact im-
plementation, but utilizes a pattern matcher selection 
heuristics. If the number of patterns in the sub set of 
rules is less than 5, the BM algorithm is used. Other-
wise, when the minimum pattern length within the 
rules sub set is 1, the MWM version without a BM bad 
character or a bad word shift is used. For other situa-
tions, the version with the bad word or bad character 
shift is used. 

The experiments used a PC with an Intel® Pentium 
4A processor running at 2.4 GHz, with an L1 cache of 
8 KB and an L2 cache of 512 KB, and 512 MB of 
main memory. The host operating system was Linux 
(Kernel version 2.4.20-8smp, RedHat 9). The tests 
used Snort version 2.4.2 compiled with gcc version 
3.2.2. All the experiments used the default Snort   
configuration. 

4.2  Space performance 

The space performances of CIAC and AC-STD were 
compared using four different Snort rule sets: R040811 
(Snort rule set distributed in Aug. 11, 2004), R050125, 
R050916, and R060515. The results are shown in   
Fig. 8. The horizontal axis represents different rule sets, 
while the vertical axis represents the total memory us-
age. The experimental results show that CIAC automa-
ton size is 4.86-6.11 times smaller than that of the 
standard AC, for the various Snort rule sets. 

 
Fig. 8  Space performances of CIAC and AC-STD 

The CIAC space efficiency compared to other best 
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alternatives in Snort with the latest Snort rule set 
R060515 is shown in Fig. 9. The results show that 
CIAC is one of the most memory efficient algorithms 
with memory usage only a little larger than MWM. As 
mentioned earlier, CIAC has better time performance. 

 
Fig. 9  Space performance of CIAC and other best 
alternatives in Snort 

4.3  Time performance 

Two data package, red.cctf.tar.gz and orange.cctf.tar.gz, 
from the latest DEFCON[25] “capture the flag” data-set 
(DEFCON10) were used to evaluate the time perform-
ance. There are several full packet traces in each data 
package. In this work, all the full packet traces in each 
data package were merged into one file. The finally 
testing data red.cap (containing all the traces in data 
package red.cctf.tar.gz) and orange.cap were used in 
the experiments. The red.cap was 42.35 MB, while the 
orange.cap was 365.05 MB. For simplicity, the traces 
are read from a local file using the appropriate Snort 
option, which is passed to the underlying libpcap li-
brary. (Replaying traces from another host provided 
similar results.) 

The results are shown in Fig. 10. Figure 10a shows 
the Snort performance improvements. The horizontal 
axis represents the various algorithms, while the verti-
cal axis represents the ratio of [(the running time of 
each algorithm / the running time of CIAC)−1]×100%. 

The memory usage and processing times are shown 
in Figs. 10b and 10c. The horizontal axis represents the 
processing time in seconds, while the vertical axis 
represents the memory usage in MB. 

The results show that the CIAC method improves 
the Snort performance by 1.48%-20%, comparing to 
other popular algorithms currently  used in  Snort  with 

 
Fig. 10  Performance comparisons of CIAC and the 
other best alternatives in Snort 

only the MWM performance with the red.cap trace be-
ing 1.29% faster because the MWM performance is 
more sensitive to the input trace. CIAC allows fast 
random access to automaton node data, so it is faster 
than AC_BANDED. The automaton size reduction also 
improves the cache performance so that CIAC is faster 
than AC_STD and AC_FULL. The traces have many 
attack flows, so the performance of the exclusion-
based algorithm E2xB is not good. 
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5  Conclusions and Future Work 

As link speeds increase and pattern sets become larger, 
there is greater pressure to improve the performance of 
NIMS pattern matching algorithms. Software algo-
rithms are less expensive and more flexible than hard-
ware methods. Efficient software algorithms combined 
with chips tailored to construct network devices such 
as network processors can also provide high perform-
ance pattern matching. 

Previous string matching algorithms specific to 
NIMS did not fully utilize the special characteristics of 
NIMS patterns. None of these algorithms have studied 
and leveraged the character distribution of NIMS  
patterns. 

This work describes a memory efficient string 
matching algorithm for NIMS based on the observation 
that the number of characters in a pattern set is less 
than the total number of characters. 

Compared to other well known algorithms, the 
CIAC enables fast random accesses with no additional 
costs incurred in the search time. Test results show that 
the CIAC automaton size is 4.86-6.11 times smaller 
than for other algorithms depending on the Snort rule 
set. In the tests, the CIAC Snort performance was 
1.48%-20% faster than the other methods based on full 
packet traces taken from DEFCON10. CIAC is the best 
algorithm considering the overall performance includ-
ing both the space and time efficiencies. 

Future work will include further analysis of the 
Snort rules to identify more intrinsic characteristics to 
design better algorithms more suitable to NIMS appli-
cations. Another valuable research direction is the use 
of these characteristics to design hybrid algorithms 
which adapt to different sub-set patterns. The CIAC 
algorithm will be optimized on an Intel network proc-
essor to construct a higher performance NIMS detec-
tion engine. 
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