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Abstract--In current live Peer-to-Peer (P2P) streaming systems, 
buffering delay is too large compared with the channel 
switching delay of traditional TV service provided by cable 
companies. In this paper, network coding is applied to a live 
P2P streaming system to minimize the buffering delay that 
users experience. A new scheduling algorithm is designed, with 
server-push mechanism and intelligent method for 
determining initial playback point, to make full use of the 
advantage of network coding. The simulation results show that 
buffering delay can be reduced to as much as 5 seconds, 
compared to more than 15 seconds in current systems. 

Keywords-P2P networks; multimedia streaming; network 
coding 

I. INTRODUCTION 
During recent years, many commercial live Peer-to-Peer 

(P2P) streaming systems emerged after successful 
combination of P2P technology with video streaming 
systems [1]. P2P technology can make up for the shortage of 
server bandwidth by utilizing the uplink bandwidth of users 
in the same streaming session, and add scalability to live 
streaming applications. While compared with traditional TV 
services provided by cable companies, the buffering delay of 
live P2P streaming is too large. When users chooses a live 
P2P steaming, they usually have to wait for more than 15 
seconds before the video starts [2, 3], which badly affects 
users’ quality of experience. 

Network coding was proposed in information theory to 
achieve the maximum throughput of multicast in an acyclic 
network [4]. Y.-h. Chu et al pointed out that linear network 
coding is enough for most situations [5]. T. Ho et al further 
proposed random linear network coding [6] which makes 
network coding practical. The first important application of 
network coding is Avalanche, a new protocol for P2P file 
sharing, which has shown promising results for file sharing 
systems with network coding [7, 8]. 

Network coding has the advantage to reduce buffering 
delay of live P2P streaming. In real system, random linear 
network coding needs to segment the continuous data 
packets with same size. Each segment has the same number 
of original data packets. Network coding operation is limited 
in the segment, such that nearly all coded data packets have 
some information of the original data packets in that segment. 
All coded data packets in the same segment have no 

difference from users’ point of view. In other words, when a 
user wants to request some data packets from a segment 
from his neighbors, all data packets of that segment in his 
neighbors’ buffers are considered equal. This characteristic 
increases the number of data packets the user needs, leading 
to higher successful request ratio and shorter fetching time. 

In this paper, we used several designs to make full use of 
the advantage of random linear network coding for reducing 
buffering delay of live P2P streaming. Our designs were 
checked by simulations. The results indicated that buffering 
delay of live P2P streaming could be reduced to as much as 5 
seconds. 

The remainder of this paper is organized as follows. 
Section II introduces related works. Section III elaborates the 
details of our system design. Section IV validates our design. 
Section V concludes this paper and provides some open 
problems to be solved in the future. 

II. RELATED WORK 
Live P2P streaming has two kinds of delay. One is 

playback delay, which is the time difference between user’s 
playback point and server’s playback point. Another one is 
buffering delay, which is the lag between a channel is chosen 
by a user and the video comes up on user’s screen. D. Ren et 
al [9] tries to decrease the playback delay by constructing a 
power-based topology. In this paper, we focus on buffering 
delay. 

Network coding has been used in live P2P streaming due 
to the similarity between live P2P streaming and multicast. 
Mea Wang et al [10, 11] designed a pull-based live P2P 
streaming system with random linear network coding. They 
evaluated the system under different parameter settings. 
Experiment results show that network coding can improve 
the performance of live P2P streaming system, especially 
when the bandwidth supply barely meets the streaming 
demand. They focus on the fair comparison between live 
P2P streaming systems with and without network coding. 
We believe that network coding can be further explored to 
reduce the buffering delay of live P2P streaming. 

Mea Wang et al [12] further employs random push 
streaming algorithm to utilize the advantage of network 
coding. Simulation results show that this kind of design can 
improve the performance of live P2P streaming greatly in 
terms of buffering delay, resistance to peer (user) dynamics 
and utilization ratio of peer uplink bandwidth. However, all 
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commercial live P2P streaming systems use pull-based or 
push-pull based scheduling algorithm, so their results still 
needs to be validated in real world system. 

III. SYSTEM DESIGN 
In this section, we will give our design of pull-based live 

P2P streaming system with random linear network coding. 
Some definitions are given in table I. 
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A. Design of Architecture 
 

 
Figure 1. The architecture of a Node  

The architecture of a node (peer) is shown in figure 1. 
Compared with live P2P streaming system without network 
coding, network coding based live P2P streaming system 
added two modules to the node architecture, i.e. 
Progressingly Decoding module and Encoding module. 
When node receives a data packet, Progressingly Decoding 

module will read the data packet from the corresponding 
segment the node has received and progressively decode the 
segment with the newly received one [11]. If the newly 
received data packet is not linearly dependent with the data 
packets in the buffer, the progressively decoded result will 
be put into the buffer; otherwise, the newly received data 
packet will be dropped. The function of Encoding module is 
to generate new coded data packets for the neighbors by 
combining the received data packets in the corresponding 
segment. All calculation of random linear network coding is 
realized in Galois field. The field size is 16 (24).  

Table I 
Definitions used in this paper 

Definition Explanation 
rs Streaming rate 
ui Uplink bandwidth capacity of peer i 
us Uplink bandwidth capacity of server 
Ri Packets number that peer i should request in one 

request cycle 
Data packet The minimum transmission unit 

Segment A group of continuous data packets which is the 
operation scope of network coding 

B The original number of data packets in one segment 
Redundant We say received data packet is redundant if the data 

packet is linear dependent with the data packets of 
the same segment this node has received. 

Aggressiveness 
(AGG) 

The number of coded data packets one peer should 
receive before it starts to serve others. 

Density The percentage of nonzero coefficients when the 
linear network coding is performed 

Buffer map Segment availability information 
decodable We say one segment is decodable if and only if this 

segment has AGG data packets that are linear 
independent. 

Skipped 
segment 

The segment that is not decodable when the segment 
arrives at playback point. 

UUR Uplink bandwidth Utilization Ratio 
N Node count in a streaming system 

 

 
Figure 2. Buffer and the corresponding scheduling algorithm 

 
Figure 2 shows the buffer of a node and the 

corresponding scheduling algorithm. There is a 30-second 
exchange buffer before the playback point. In order to 
provide service for other nodes with later playback point, 15 
seconds of played data is stored in the obsolete buffer. 

UDP protocol is employed to transmit data packets. Its 
advantage is the predictable transmission delay which is the 
absence of TCP protocol. Duplicate data packets will be 
produced in live P2P streaming system if the arrival time of 
data packet could not be predicted. However, we can 
estimate the arrival time of the requested data packets with 
corresponding streaming scheduling algorithm by using UDP 
protocol [13]. Because once one peer receives a request 
packet from others, it will send all the requested data packets 
it has in the following request interval time uniformly.  

The use of UDP protocol brings a new problem on 
end-to-end bandwidth estimation. Lack of end-to-end 
bandwidth estimation will lead to that node’s streaming 
scheduling algorithm has no ability to estimate the utilization 
ratio of each neighbor’s uplink bandwidth, which will result 
in that some nodes’ uplink are congested and others are 
starved. In our system, the scheduling algorithm requests 
three data packets at most from each neighboring peer per 
request cycle at the beginning. After that, the limit is set as 
the data packet rate received in last five seconds plus a 
constant. 

B. Scheduling Algorithm 
As shown in Figure 2, the exchange buffer is partitioned 

into three equal parts. Every part is given one third of Ri in 
each request cycle, which is the number of data packets that 
peer i should request per cycle. The first and the second part 
use the greedy scheduling algorithm to request the data 
packets from others. The third part uses rarest first 
scheduling algorithm. The “greedy” scheduling algorithm 
means the data packet closest to the playback point has the 
highest priority. If one segment is not decodable but is the 
closest one to the playback point compared to other 

 



 

segments in that part, this segment will be requested first. 
However, “rarest first” gives higher priority to the newest 
ones [14]. To ensure each node requests enough data packets 
in each cycle, if the number of requested data packets in the 
last three stages is less than the number of data packets that 
the peer should request, the remaining number of data 
packets will be assigned to the whole exchange buffer by 
using greedy algorithm. This scheduling algorithm can keep 
all the segments in the exchange buffer from being empty, 
promoting the nodes with different playback points to 
cooperate with each other perfectly. 

The cooperation requires each node to access the buffer 
information of its neighbors as soon as possible. This 
involves two parameters. One is AGG and the other is the 
time to send buffer map packet. As for AGG, we set it as two 
that means that once one node has received two data packets 
of one segment, this node is ready to serve others in terms of 
the corresponding segment. While its neighbors have no 
ideas about the segment before they received buffer map 
packet. Therefore, we let the node send buffer map packet to 
its neighbors immediately after it received AGG data packets 
of one segment. Because the video stream is partitioned into 
segments, the overhead introduced by buffer map packet is 
bounded by the neighbor count and the reciprocal of the time 
that one segment spans. This mechanism can let the 
neighbors acquire the newest information immediately, 
reducing the delay further. 

The following question is how to request each segment 
from neighbors. Because coded data packets in the same 
segment have no difference, previous literatures [10, 11] 
request data packet based on granularity of segment. One 
segment stands for one-second video stream, so the 
granularity is a slightly coarse. In our design, the granularity 
of scheduling is reduced to data packet level. Once one 
segment is requested, the pair (segment_number, 
number_of_packets) will be filled in the request packet for 
the target neighbor. After the neighbor received the request 
packet, this node will only transmit the number of data 
packets it has in its own buffer to its neighbor to avoid 
redundancy if the requested data packets in 
(segment_number, number_of_packets) is bigger than that in 
its own corresponding segment. Otherwise, this neighbor 
will transmit the requested number of data packets back to it. 

The number of data packet requested per cycle needs 
adjusting according to network situation. One segment is 
composed of one second’s data packets. The request interval 
is set as half second to tradeoff overhead and delay. 
Normally, one node can request half segment at most one 
time, but the node may not be able to achieve streaming rate 
due to data packet loss. Therefore, the requested number of 
data packets per cycle is set as 65% of the segment. 
Moreover, once there is one segment which can not be 
decoded in the most urgent 10-second buffer, the requested 
number of data packets in one cycle is increased to (0.65 + 
(10 - i) * 0.2) times of normal count, where i refers to the 
number of seconds between current playback point and the 
non-decodable segment with the most urgent segment 
number. Therefore, the worst case is that node requests about 
five times of the normal count per cycle. The worst case is 

also limited by the sum of end-to-end bandwidth under this 
node gains. 

C. Minimizing Server Bandwidth Costs 
Buffering delay and playback delay can be a tradeoff 

with server bandwidth cost [15]. The higher the server 
bandwidths costs are, the shorter the buffering delay and 
playback delay are. Therefore, minimizing server bandwidth 
costs can reduce buffering delay and playback delay. 

The capacity of server uplink bandwidth is an important 
factor affecting streaming quality. Due to the characteristics 
of random linear network coding, one node cannot decode 
the coded data packets before it acquires B data packets with 
no dependency. Therefore, the server should insert at least B 
data packets per segment into the streaming system. 
However, the pull-based scheduling algorithm only cares 
about the peer’s own requirement and all the neighbors of 
the server compete for the uplink bandwidth of server, which 
leads to that server may not be able to insert B data packets 
of some segments into the streaming system. Moreover, the 
situation deteriorates with the decrease of server uplink 
bandwidth. 

In our system, server-push mechanism is used to 
minimize the use of server uplink bandwidth. The first 
question is how many data packets should be pushed? On the 
one hand, the server should push more than B data packets 
per segment to the system due to the data packet loss and 
linear dependency of data packets. On the other hand, the 
number of pushed data packets cannot be too large. This is 
because the pushed data will compete for the server uplink 
bandwidth, which will lead to the loss of data packets and 
increase of possibility that less than B data packets of some 
segments are inserted into the system when the server uplink 
bandwidth is less than the rate of pushed data packets. So in 
our system, the number of pushed data packets per segment 
is set to 1.2 times of the number of data packets in one 
segment, i.e. . The extra uplink bandwidth of server 
is used by pull-based scheduling if any. 

1.2* B

The remaining question is to whom the data should be 
pushed. If all the data packets are pushed to one neighbor of 
the server, the same situation that happened in the server 
without push-based scheduling will appear again to this 
neighboring peer. Therefore, the data should be pushed to 
different neighbors to make the data as dispersive as possible. 
However, each neighbors’ peer should gain at least AGG 
data packets of each segment to make them have the ability 
to relay the data packets to others. 

D. Entry Points to Data Requests 
How to determine the initial playback point of each peer 

is a non-trivial question, especially in a large-scale system. 
Let us look at two extreme conditions. If all uplink 
bandwidths of users are bigger than streaming rate, i.e. 

 for all i, every node can find two neighbors, one 
parent and one child, and the playback point can be simply 
set as slightly latter than its parent. In this way, the buffering 
delay can be very small, but the largest playback delay is 
proportional to the number of nodes. Moreover, the extra 
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)uplink bandwidth of peers  will be wasted. 
Another example is that all peers have the same playback 
point. Although the peers can cooperate with each other in 
terms of uplink bandwidth, this system is not scalable, 
because some peers will not be able to get the data before 
deadline with the increase of peer number due to the 
transmission delay of data packets between peers. 

( i su r−

In our design, the playback point is determined by 
most-popular mechanism. Each newly joined node requests 
peers’ information from server first then it sends the 
connection packets to each of them and waits for responses. 
Once two third of the neighbors’ response has been received, 
the playback point will be determined based on the 
popularity of segments in its neighbors. The playback point 
is set as the segment number that is most popular with 
highest segment number in its neighbors in order to fully 
utilize the neighbors’ uplinks bandwidth and reduce the 
buffering delay at the same time. Moreover, only the greedy 
algorithm is applied during buffering process in the scope of 
exchange buffer to fill in the most urgent segment as soon as 
possible, leading to a short buffering delay. Once the 
playback point is determined, data packets will be requested 
from the playback point. 

IV. EXPERIMENTS AND VALIDATIONS 

 

 
In this section, we check our design by doing simulations. 

The simulator P2PStrmSim [16] is employed to evaluate the 
performance of our design. Table II provides main parameter 
settings used in the following simulations.  

In terms of end-to-end delay, we use the measurement 
result of latency used in [17] to simulate the real under-layer 
Internet topology. End-to-end bandwidth is distributed 
uniformly between 50kbps and 2Mbps.  

We use the peers with different uplink bandwidth to 
simulate the heterogeneity of the networks. Three types of 
peers are employed and their uplink bandwidths are 1Mbps, 
384kbps and 128kbps respectively, which simulates three 
typical DSL peers. Once the peer joined the system, they 
would stay in the system to the end of simulation. Different 
Peer Resource Index (PRI) can be achieved by adjusting the 
fraction of each type of peers. PRI is defined as the ratio of 
total uplink bandwidth to the minimum requirement of 
download bandwidth, i.e. 

*
*

s i

s

u N u
PRI

N r
+

=  

In the following simulations, we set . The exact 
fractions of each type of peers (1Mbps, 384kbps and 
128kbps) are (0.42, 0.42, 0.16). 

1.2PRI =

The uplink bandwidth of server is set 
to 1.4* 700s su r kbps= =

1.3* 650s su r kbps

. Table III gives a typical 
simulation result of overhead. We can see that the overhead 
caused by all kinds of sources is less than 10%. The pushed 
data rate is equal to . Therefore, 1.2* 600sr kb= ps

= = is enough for server to stream video. 
In order to ensure that enough data packets of each segment 
are streamed to system from server, we further give 
additional 10% uplink bandwidth to server, making the 
uplink bandwidth of server equal to . 700kbps

A. Simulations for Validating Buffering Delay 

 
Figure 3 shows the average streaming quality with 

different buffering delay. A segment will be skipped when 
the segment cannot get enough data packets to be decoded 
before its deadline. The shorter buffering delay is, the more 
segments will be skipped. We can see from Figure 3 that 
average skipped segments are only 0.2% even when the 
buffering delay is 5 seconds. The peer can still get healthy 
streaming quality with 5 seconds of buffering delay. 

B.  Simulations for Checking System Scalability and the 
Ability to Resist Flash Crowd 
In order to make our designs applied in real system, other 

aspects of network coding based live P2P streaming needs to 

3 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Buffering Delay (Seconds)

P
er

ce
nt

ag
e 

of
 S

ki
pp

ed
 S

eg
m

en
ts

 (%
)

 
Figure 3. Average streaming quality with different buffering delay

Table III 
One example for the sources of overhead and the corresponding fraction  

Source of Overhead Overhead Percentage 
(Compared with streaming rate)

Network coding coefficients 1.8 

Redundant packets 2.3 

Skipped segments 0.2 

Control packets 2.9 

Total 7.2 

Table II 
Parameter settings of simulations 

Parameters Values 
Streaming rate 500 kbps 
Number of data packets per segment 50 
Data packet size 1250 bytes 
Number of nodes 600 
Simulation time 600 seconds 
Peer arriving rate 5 per second 
Neighbor count of each peer 25 
Peer Resource Index (PRI) 1.2 
Uplink bandwidth capacity of server (us) 700 kbps 
Galois field size 16 (24) 
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be checked, such as system’s ability to resist peers’ flash 
crowd, the performance stability when the number of nodes 
are increased. 

Figure 4 shows the streaming qualities when the arriving 
rate of nodes is increased. The system can maintain good 
performance when the arriving rate reaches ten nodes per 
second. The ability to resist peers’ flash crowd is 
proportional to the scale of system. When the scale of our 
system reaches one million nodes, the system can support 
more than ten thousand new nodes per second. Furthermore, 
the uplink bandwidth of server in our system can be set as 
very slow, only barely meeting the minimum requirement. 

As shown in Figure 5, skipped segment fraction keeps 
low and stable when the node count varies from 600 to 3,000 
with buffering delay of 5 seconds. We believe that the 
streaming quality can also hold good and stable when the 
node count reaches more than 3,000, basing on the trend. 

 

 

V. CONCLUSIONS AND FUTURE WORKS 
Compared to traditional TV services provided by cable 

companies, the delay of live P2P streaming system is 
currently too large. In this paper, we applied network coding 
to live P2P streaming system to reduce buffering delay with 
our design. The methods used are data packet granularity 
based scheduling algorithm, server-push method, and 
intelligent method for determining initial playback point. 
The simulations results showed that this system could make 

the buffering delay as low as five seconds when server 
uplink bandwidth is only 1.4 times of streaming rate while 
maintaining a healthy streaming quality and ability to resist 
flash crowd. 

For future works, we will use the real trace data to check 
the performance of our system. Also we will study the 
playback delay to increase users’ quality of experience, 
especially during live broadcast, such as World Cup. 
Because the playback time difference between users can be 
up to several minutes in real live streaming system with large 
number of users.  
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