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a b s t r a c t

In this paper, we propose an extensible open network services gateway (OpenGate) for high-performance
network processing at the edge of high-speed networks. The OpenGate system embraces recent advances
of open network technologies: the performance is guaranteed by using open-standard ATCA platforms;
and the extensibility is achieved by employing parallelized open source software. As an application
example of OpenGate, a high-performance security gateway, OpenGate-SG, was developed using existing
ATCA platforms and open source software. This system provides multiple security services, including
stateful firewall, intrusion prevention and anti-virus. Experimental results show that, OpenGate-SG can
achieve up to 200 Gbps stateful firewall throughput with 8 Gbps intrusion prevention and anti-virus,
which is competitive to the performance of today’s high-end security products. OpenGate-SG has also
been tested as a security gateway for a university campus network with more than 1000 students.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

With the increase of Internet traffic and the multitude of net-
work services, the need for both performance and flexibility has
become the key challenge for novel network services gateways
(NSG). The rapid growth of data centers, the IP convergence of tele-
com services, and the security requirement of enterprise networks
together make the great demand for high-performance NSGs to
meet the following challenges:

(1) Performance: New generation NSGs are commonly inte-
grated with multiple 1 Gbps/10 Gbps interfaces. The emer-
gence of 100 Gbps Ethernet interface will bring about
further challenges for high-throughput packet processing
[1,2]. In addition, a 10 Gbps NSG is typically required to sup-
port millions of concurrent connections, as well as tens of
thousands connection creation rate.

(2) Extensibility: NSGs require the flexibility to accommodate
interoperability, quality of service, dynamic algorithms, net-
work security, and other services for multiple protocols. Due
to the diversity of network services and the instability of
network topology, NSGs must not only support all current
requirements, but also have the extensibility to support
unforeseen future requirements.

Most of today’s equipment vendors design their high-end
products based on proprietary hardware. Such a closed-but-fast
model gives them complete control over system quality, but
has become a barrier to innovation [3]. Recently, both the aca-
demic and industrial worlds initiated research programs on open
network technology, which encourages research innovation and
allows third parties to develop software extensions for proprie-
tary hardware. The inherently collaborative and distributive nat-
ure of open network technology will benefit the NSG design from
multiple aspects: open source software can help to quickly de-
ploy novel services; open system standards can consolidate mul-
tiple vendors’ functions into one physical box; open network
architecture can reduce redundant network devices and thus
save unnecessary cost. In this paper, we propose an open net-
work services gateway (OpenGate) by exploiting recent advances
of open network technologies. Main contributions of this paper
are:

(1) OpenGate design: OpenGate is designed to meet the goals of
an extensible NSG. It follows the open standard of Advanced
Telecom Computing Architecture (ATCA) to guarantee the
system performance and scalability, and provides multiple
programming APIs to support a variety of open source
software.

(2) Example application: As an application example, a high-per-
formance security gateway, OpenGate-SG, was developed
based on the OpenGate architecture. OpenGate-SG provides
multiple network security services, including stateful fire-
wall, intrusion prevention and anti-virus.
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(3) Performance evaluation: OpenGate-SG is tested using both
traffic generator and real-life traffic traces. Experimental
results show that, our system can achieve up to 200 Gbps
stateful firewall throughput with 8 Gbps intrusion preven-
tion and anti-virus. OpenGate-SG has also been tested as a
security gateway for a university campus network with
more than 1000 students.

The rest of the paper is organized as follows: in Section 2, we
discuss the open network technologies related to our research; in
Section 3, we propose the system design of OpenGate; OpenGate-
SG is described in Section 4 as an application example, and its per-
formance is evaluated in Section 5; in Section 6, we state our
conclusion.

2. Background

Open technologies have different scopes in network and system
research, such as open source software, open system standards and
open network architecture. Although they focus on different re-
search topics, their inherent collaborative and distributive natures
all contribute to the success of open network technologies. In this
section, we will discuss the open network technologies related to
our OpenGate design.

2.1. Open network software

The open source community brainstorms, develops, enhances
and maintains the open source software by collaboration and free
sharing. A big success has been achieved by open source software
in commoditized platforms. However, adapting open source soft-
ware to a specialized hardware environment such as multi-core
network processors meets the following challenges:

(1) Parallel processing: Because the performance of single-
threaded open source software is commonly not scalable
on multi-core platforms, OpenGate needs to provide an
effective way to support parallel processing of open source
based network services.

(2) Load balancing: To maximize the overall performance on
multi-core platforms, the workload should be appropriately
distributed among multiple processing threads. Load balanc-
ing is also required to reduce inter-dependencies of multiple
processing threads for scalable parallelism.

In addition, multi-threaded programming is considered difficult
even with new tools and enhanced compilers. Fortunately, net-
work traffics have inherent independency at certain granularities,
which can be exploited for scalable parallel processing [4]. In our
design, OpenGate exploits this independency and provides a paral-
lel programming model to achieve scalable performance of open
source software.

2.2. Open network platform

Based on the standardized platforms and multi-core processors,
system-level open network technologies are studied in recent
years [5]. The driving forces of this research are from:

(1) Service providers: They can deploy novel services faster and
cheaper by consolidating multiple vendors’ functions into a
single standardized platform.

(2) Equipment vendors: Open system creates a software ecosys-
tem that helps them gain new features without non-recur-
ring engineering (NRE) costs.

(3) Network researchers: Open system is an ideal platform for
innovation. Novel algorithms and protocols can be easily
deployed and evaluated on these platforms.

With the emergence of ATCA technologies, the goal of system-
level standardization for open network platforms can be achieved.
ATCA is an industry standard to create a new blade and chassis
optimized for network communications [6]. Based on the ATCA
standard, server blades, switch cards and storage devices from dif-
ferent manufacturers can use the same electrical interface to work
together within in the same ATCA chassis. In this paper, the pro-
posed OpenGate NSG fully exploits the advantages of the ATCA
platform to achieve both performance and scalability. More detail
about the ATCA technology and open modular computing specifi-
cations can be found at the official PICMG website [6].

2.3. Open network architecture

With the evolving of enterprise networks and datacenters, tra-
ditional interconnect technology has been inefficient to adapt to
the rapid changes of network traffics and topologies. Open network
architectures are proposed to improve the manageability of exist-
ing network.

McKeown et al. proposed an open-protocol network switching
architecture named OpenFlow [9]. OpenFlow allows researchers
to run experiments on heterogeneous switches in a uniform way
at line-rate, while vendors do not need to expose the internal hard-
ware of their switches. As an application example, Ethane [10] cou-
ples OpenFlow switches with a centralized controller, trying to
take control of the enterprise network. An Ethane switch sends
the first packet of a flow to the controller. This controller deter-
mines the path of the flow and installs the forwarding entries at
OpenFlow switches. Off-path middle-boxes can be imposed by
including them in the source routes. NOX extends the ideas of Eth-
ane and scales this centralized paradigm to very large systems [11].
In comparison, Joseph et al. proposed a policy-aware switching
layer (PLayer) for datacenter networks [12]. According to their de-
sign, unmodified middle-boxes can be placed on the network path
by plugging them into inter-connected policy-aware switches. Dif-
ferent from Ethane, policy lookup is done within the pswitches
(fast-path) rather than the centralized controller (slow-path). The
authors claimed that such a distributed approach can make it bet-
ter suited for scaling to a large number of data flows and more ro-
bust against network churn and attacks.

Because OpenGate is an inter-connected distributed system
working as a small cluster network, we borrow ideas from open
network architectures, such as management centralization and
policy-path separation, to enhance the flexibility and manageabil-
ity of our system.

3. OpenGate overview

OpenGate embraces multiple open network technologies to
meet the performance and flexibility requirements. Its software
architecture supports existing open source software, its system
architecture employs the ATCA open network technology, and its
data-plane network takes advantages of open network architec-
ture. According to Fig. 1, OpenGate contains the following process-
ing modules:

(1) Network processing module (NPM): NPM provides the exter-
nal network interfaces and packet forwarding engine for
OpenGate. NPM is responsible for front-end network pro-
cessing, including packet forwarding, flow classification,
stateful inspection and traffic management. NPM is also
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responsible for load-balancing among back-end services
processing blades. Due to the high-throughput requirement,
NPM is implemented on network processor (NP) based
blades.

(2) Service processing module (SPM): SPM provides flexible appli-
cation-level processing capability to meet the requirement
for the ever-evolving network services. With the help of
front-end load-balancing, the overall performance of Open-
Gate can be increased by inserting new SPM blades in the
ATCA chassis or plugging SPM servers into the ATCA switch
blades. SPM is implemented on the Intel Architecture (IA)
platform to gain maximum programming flexibility.

(3) Control processing module (CPM): Because OpenGate is a
cluster system conducting distributed processing, a sys-
tem-wide control processing module is necessary for cen-
tralized management. CPM provides an extensible
management model for system initialization, monitoring
and update. CPM also provides the GUI/CLI interfaces for
OpenGate administrators.

3.1. OpenGate network processing module

NPM is not only responsible for packet forwarding, but also re-
quired to maintain connection states to support stateful inspection
and connection-oriented load-balancing. In addition, because net-
work I/O interfaces reside in the NPM, the overall traffic of Open-
Gate should be managed by NPM. Our design of OpenGate NPM
contains the following building blocks:

(1) Packet receive/transmit blocks: These blocks are responsible
for receiving and transmitting packets via multiple network
interfaces in the NPM. These building blocks are commonly
implemented by hardware co-processors to avoid excessive
memory copies and frame reassembly.

(2) Packet processing blocks: Packet processing in NPM is imple-
mented at different granularities. At packet-level, incoming
packets are handled by per-packet processing blocks, such
as protocol parsing and header validation. When session
(bi-direction TCP/ICMP/pseudo-UDP connection) is estab-
lished, packets are processed at session-level, i.e. packets
with the same header (for specific fields, such as 5-tuple
fields) are processed in the same way. In addition, for traf-
fic management tasks, such as traffic shaping and rate
limiting, packets are processed at flow-level, i.e. all packets
match the same policy or belong to the same application
type are treated as a flow and take the same traffic

management actions. Packet processing blocks are running
at core-affinitive threads for high-throughput fast-path
processing.

(3) Local management blocks: Local management blocks are
responsible for NPM resource management, blade initializa-
tion, policy update and system-wide communication. Local
management blocks are running on a slow-path processor
with Linux OS support.

As the front-end of a network system, the packet processing
performance of NPM is critical. Linux-based software program-
ming model for L2–L4 processing cannot guarantee the line-rate
forwarding performance on NPM. Therefore, OpenGate runs an
optimized network stack (based on Linux Netfilter) on NPM and
provides a series of NPM APIs for developers to add novel NPM
functions. For packet-level processing, OpenGate provides task-
based APIs: each of the incoming packets, system events, and con-
trol messages is defined as a task; each task is associated with a
task-descriptor, which contains the metadata of the task, the mem-
ory address to access the task, and the processing state of the task.
To add a new processing function for a certain type of packets or
system events, OpenGate developers only need to register a new
task type and provide with its processing callbacks to the main
loop of OpenGate network stack using NPM APIs. For session-level
and flow-level processing, OpenGate network stack uses an ex-
tended session table to store not only the packet header and con-
nection states of the session, but also a service chain to specify
the packet processing sequence. A service chain contains two
parts: for NPM local processing, it provides a function vector (a
pointer list of functions with the same types of parameters and re-
turn values) to specify the building blocks required by the session;
for remote processing on back-end services blades, it uses a blade-
identifier list to specify which blade to forward to for certain types
of service. Further, to support efficient packet switching among
NPMs and SPMs, a next-hop identifier is encoded in the packet
header for data-plane transmission. Back-end blades can thus
determine the next-hop blade by decoding the identifier. To add
new functionalities at session/flow-level, OpenGate developers
can use OpenGate APIs to register new service chain and provide
corresponding processing functions to the main loop of the Open-
Gate network stack.

3.2. OpenGate service processing module

The main objective of SPM is to provide various types network
services. To guarantee the efficiency for new service deployment

SPM CPM

Control plane network

Data plane network

NPM

External interfaces

• Open system architecture
• Network processors
• Proprietary hardware 

abstraction

• Open source software
• Multi-core IA processors
• Linux OS

Internal interfacesInternal interfaces Internal interfaces

• System management
• Centralized database
• Device monitor
• GUI/CLI

Fig. 1. OpenGate system overview.
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and the flexibility for service update, SPM contains the following
building blocks:

(1) Multi-threaded service blocks: Service blocks are running at
Linux user-space as independent (lock-free) threads. A
thread-isolator guarantees the lock-free parallel processing
mode by separating their input traffic flows. Incoming pack-
ets are dispatched to multiple service threads according to
flow-level load-balancing strategies [13].

(2) Fast-path routing blocks: These blocks are implemented as
kernel modules to support fast-path policy-based packet for-
warding [12].

(3) Local management blocks: These blocks are responsible for
local management such as SPM configuration and communi-
cation with CPM.

Although IA-based platforms has better programmability than
network processor platforms, the code efficiency for multi-core
processing, as well as the interaction with front-end NPM, make
it still challenging to provide an efficient SPM programming model.
By exploiting the flow-level parallelism of network processing [4],
we propose a simple and flexible programming model for Open-
Gate SPMs.

At Linux user-space, thread-isolated processing is adopted by
OpenGate SPMs. A thread-isolator is designed to serve as a traffic
dispatcher, as well as a service manager. It gets packets from kernel
space via netfilter queues, and then dispatches them (at flow-level)
to different service threads according to user-defined load-balanc-
ing strategies. Because the input traffic has been isolated by the
thread-isolator, service threads work independently with each
other. To add new service threads, OpenGate developers only need
to modify the single-threaded source code to meet the interface of
OpenGate SPM thread-isolator. In addition, to avoid unnecessary
memory duplication, developers can register memory initialization
functions to the thread-isolator for read-only memories shared
among multiple service threads. The thread-isolator will allocate
new input queues to support new service threads and will also ini-
tialize and update shared memory for them.

After processing the incoming packets, SPM needs to forward
them back to NPMs. Note that, using the external routing table
(which may have millions of routing entries) to forward packets
is not a scalable solution on a Linux-based IA platform. Therefore
we propose a policy-based forwarding scheme for efficient and scal-
able data-plane forwarding. According to NPM processing, each
data-plane packet has an identifier encoded in its packet head.
When the packet is received by a SPM, it will be decoded by a ker-
nel module inserted between Ethernet driver and Linux ip_rev pro-
cess. Based on the identifier, the SPM can determine the next-hop
NPM, and the packets will be correctly forwarded to the NPM via
Linux policy-routing [14]. The kernel module for policy-based for-
warding is also reprogrammable to meet different requirements of
data-plane packet switching.

3.3. OpenGate control processing module

CPM provides a centralized system management for the Open-
Gate platform, including device monitoring, system configuration
and GUI/CLI. The key challenge for CPM design is how to correctly
and effectively handle various kinds of system events and configu-
rations. In our design, a message-based processing model is pro-
posed, which contains:

(1) Centralized database: A centralized database is crucial for
distributed system. The database is used not only for con-
figuration storage, but also for the consistence of data
access.

(2) Message handlers: OpenGate CPM provides a message-based
programming model. Each registered message corresponds
to a series of message handlers. Every handler is responsible
for a certain processing, such as database update, GUI/CLI
display, and policy setup. As a centralized control model,
CPM message handlers send CPM messages to other blades,
which will be processed by NPM and SPM daemons for local
updates.

(3) Communication daemons: Every blade in OpenGate has com-
munication daemons to interact with each other. These dae-
mons receive and parse remote messages, call local message
handlers, and report local processing results. In our imple-
mentation, all communication messages are sent through
control-plane network and the format of the massages are
described by XML.

OpenGate also provide programming APIs for CPMs, including
database access, message parser/sender, and GUI/CLI interfaces.
OpenGate developers can add new control functions by registering
new message types to the message parser with its corresponding
message handlers. The handlers can then access the centralized
database and communicate with NPMs and SPMs by calling corre-
sponding OpenGate CPM APIs.

4. An example application: OpenGate-SG

As an application example, we develop an OpenGate Security
Gateway (OpenGate-SG) on the proposed architecture. OpenGate-
SG provides multiple network security services, including stateful
firewall, intrusion prevention and anti-virus. NPMs and CPMs of
OpenGate-SG are implemented in a 12U 14-slot ATCA chassis.
SPMs are developed on 1U servers and connected with ATCA chas-
sis through two aggregation switches, one for data-plane transmis-
sion and the other for control-plane communication. All incoming
packets are first processed by NPMs for stateful inspection (SI) as
firewalling. Then, according to user-defined policies, packets need
deep inspection (DI) are sent to SPMs for intrusion prevention and
anti-virus. After both SI and DI, legitimate packets are sent out
from the NPM external interfaces, while malicious ones are
dropped. CPM provides the GUI/CLI interfaces for system monitor-
ing and policy configurations. Fig. 2 is the system overviews of
OpenGate-SG and Table 1 shows the component specifications.

4.1. NPM implementation on OpenGate-SG

OpenGate-SG NPMs are implemented on Radisys ATCA-7220
blades. Each of them has dual OCTEION5860 16-MIPS-core net-
work processors [19] and four 10 Gbps SFP+ Ethernet interfaces.
According to Fig. 3, an incoming packet is first processed at pack-
et-level for L2–L3 decapsulation and validation. Packet-level pro-
cessing blocks also check where the packet comes from (to
support remote service chain) and whether the packet needs
slow-path processing (for exceptional and control packets). All
per-packet processing results are stored in the task-descriptor to
trigger the session-level and flow-level service chain. If the packet
is the first one of a flow, a new session entry is inserted into the
session table after the packet passes all session creation processing.
Different from previous work by Turner et al. [7], session creation
in OpenGate-SG is implemented in the fast-path. This is important
because a security device without high connection establishing
rate is very vulnerable to deny-of-services (DoS) attacks. Follow-
up packets belong to the same session are processed according to
the service chain stored in the session table. We use OpenGate
NPM APIs to register a series of NPM services in the chain, such
as network address translation (NAT), IPSec VPN, and TCP state val-
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idation (see Fig. 3). Remote service chain includes Snort-based
intrusion detection and ClamAV-based anti-virus. Packets need
deep inspections are sent to a certain SPM according to NPM
load-balancing decision. We use a weighted 5-tuple flow-direc-
tion-agnostic hash to dynamically balance the traffic among all
SPMs: the workload of each SPM, such as CPU/Memory usage, traf-
fic throughput, are periodically reported to the CPM, and the CPM
will update the load-balance weights table on NPM if a sensible
change of workload distribution is observed. Note that, because
this feedback load-balance strategy only takes effect on new flows,
packets belong to existed flows will still be forwarded to their ori-
ginal destination SPM, which guarantees the completeness and
correctness of TCP reassembly required by deep inspection.

4.2. SPM implementation on OpenGate-SG

SPMs are implemented on 1U Intel IA servers with dual quad-
core XEON E5335 processors. Each SPM has 2 gigabits Ethernet
interfaces, one for data-plane interconnection and the other for
control-plane communication. According to Fig. 4, the processing
path of data-plane packets is determined by the policies on NPMs
(policy-path separation [8]), so the SPMs must return the packet to
its original NPM after processing it. This can be realized by adding
less than 100 lines of C codes to the policy-based forwarding
module provided by OpenGate (refer to Section 3.2). The modified

kernel module compares the source MAC of the packet with all
NPM data-plane interfaces’ MACs and then set the fwmark field
in the sk_buff of the packet with a next-hop identifier. Each identi-
fier corresponds to a routing table, which contains only one route
entry with the default gateway to a specific NPM data-plane inter-
face. Note that, because the number of NPM data-plane interfaces
is comparably small (on the order of ten), the efficiency of MAC
lookup and routing decision is guaranteed.

After kernel processing, data-plane packets are sent to user-
space service threads via netfilter queues (NFQueues). The Open-
Gate SPM thread-isolator is responsible for receiving data-plane
packets from kernel space. Based on the packet header, the
thread-isolator calculates a flow-direction-agnostic consistent
hash value [4] to determine the flow-ID of the packet. Then accord-
ing to SPM load-balance strategy, the thread-isolator sends all
packets of a certain flow to the same service thread, which runs
Snort2.8 [15] and ClamAV0.95 [16] (in inline mode) for intrusion
prevention and anti-virus. Because all service threads run indepen-
dently with each other, the overall memory usage will grow line-
arly as the number of threads increases. For example, each
Snort2.8 thread requires near 2 GB memory if the whole IPS signa-
tures are turned on. To reduce memory usage, we register read-
only shared memory (signature lookup data structures) of Snort
and ClamAV to the OpenGate thread-isolator, which will initialize
and update these memories for all the threads. Experimental re-
sults show that, with memory registration, 7 Snort threads only
consume 2.4 GB memory, which is far less than the 2 GB * 7 =
14 GB memory usage without memory sharing. This result is in
accordance with a previous work proposed by Schuff et al. [20].

4.3. CPM implementation on OpenGate-SG

OpenGate-SG CPM is implemented on Intel MPCBL-0040 ATCA
blades. Implementation of control processing functions is shown
in Figs. 5 and 6. A centralized_database (using MySQL) is used to
store system configurations. The message_parser parses the XML-
based control messages and calls corresponding message_handlers
we have registered to conduct control processing. After that, the
message_sender sends the update messages to NPM and SPM dae-
mons for system update. If necessary, the message_sender also
sends processing results to the GUI/CLI applications to display
new configurations. For example, when a new routing entry is
added from the GUI interface, the message_parser will receive a
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Fig. 2. OpenGate-SG system overview.

Table 1
OpenGate-SG components.

Module Function Hardware

Chassis Blades carrier Radisys ATCA-6010 [17],
12U, 14Slots Platform

Switch fabric 1G/10 Gbps base/fabric Ethernet
switch

NPM Stateful inspection Radisys ATCA-7220 [18],
dual 16-MIPS-core

Traffic management OCTEON5860 NP, BusyBox Linux

SPM Snort 2.8 inline IPS [15] Intel IA blades, dual
quad-core XEON E5335

ClamAV 0.95 anti-virus [16] Redhat Enterprise Linux 4

CPM System management Intel MPCBL-0040
ATCA blade

GUI/CLI Debian Linux
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control message from the GUI applications. It will then call the
NPM_route_update handler, which will first update the configura-
tion_database, and then send an update message by calling mes-
sage_sender API to all NPMs to update their routing tables. After
that, the message_sender will invoke the GUI application to display
the new routing table.

5. Performance evaluation

5.1. Test overview

To verify the efficiency and extensibility of OpenGate, we have
done extensive hardware tests. The performance tests include
stateful inspection tests for L2–L4 and deep inspection tests for

L2–L7 processing. We also compare OpenGate-SG with state-of-
art products from both academic and industrial worlds to provide
a baseline for the performance evaluation. OpenGate-SG has also
been tested as a security gateway for a university campus network
with more than 1000 students.

5.2. Stateful inspection performance

In this test, the performance of stateful firewall throughput and
session creation rate is evaluated. According the OpenGate archi-
tecture, this evaluation mainly depends on the NPM performance.
Since there are totally 16-MIPS-cores of each OCTEON5860 proces-
sor on the NPM, and we use 15 of them to run fast-path code,
leaving one for slow-path processing (where a busy-box Linux is

 User-land

Kernel-space

Netfilter INPUT Netfilter FORWARD

Network device drivers

SPM 
daemon

Snort 2.8 
thread #4

Netfilter OUTPUT

Services chain decoder

Policy routingOutput routing

Snort 2.8 
thread #3

Snort 2.8 
thread #2

Snort 2.8 
thread #1

ClamAV 0.95 
thread #2

ClamAV 0.95
thread #1

Shared memory
Anti-virus configuration

Shared memory
IDS configuration

update

config

lookup

lookup

Thread-isolator
Flow table

(for flow-level load-balancing)

N
FQ

ue
ue

action

Fig. 4. OpenGate-SG SPM.

Packet-level processing

IDS statisticsL2/L3 decap

Sanity check IP 
defragment

Session 
lookup

…...

Packet 
receive

New 
session?

Packet 
transmit

FAST PATH SLOW PATH

Slow Path 
packet 

processing

Policy 
update for 
routing,

forwarding, 
traffic 

management

NPM 
daemon

No
Session-level processing

Inbound 
IPSec

Inbound
NAT

L4 stateful
inspection

L2/L3 encap

To-host
traffic

Outbound
NAT

Outbound 
IPSec …….

Session creation

…...

Routing

Packet 
classification

IPSec/NAT
setup

Traffic 
management 

setup

Load-
balancingFlow-level processing

Meter Scheduler

Shaper …...

Yes

Shared memory:
policy lookup tables

Shared memory:
extended session table

No

Yes
Exceptional
packets?

Fig. 3. OpenGate-SG NPM.

Y. Qi et al. / Computer Communications 34 (2011) 200–208 205



Author's personal copy

running for initialization and management). Because the NPM fast-
path code is run-to-completion (RTC) and each core uses simple
executive mode, i.e. all the fast-path cores can work
independently, we can control the number of cores participating

in processing to test speedups. A SmartBit packet generator
(SmartBit6000) is used to generate 10 Gbps bi-directional traffic.
To make a strict and objective test, packet size is set to 64B (min-
imum Ethernet packet size) and the packet loss rate is set to zero.

Figs. 7 and 8 are the results of firewall throughput test. In our
prototype, each session entry has 256B size and totally 2M ses-
sion entries are supported. The input traffic is 1,000,000 UDP
flows (varied in 5-tuple) with 64B packet size. We can see from
Fig. 7 that as the number of cores increases, the firewall through-
put grows linearly. The throughput finally reaches near line-rate
with 11 cores.

Fig. 9 shows the session creation rate on NPM. We use SmartBit
to generate 64B TCP SYN packets with different 5-tuple headers, so
that NPM will create a new session for each of them. By monitoring
the SYN packet receiving rate on SmartBit, we can figure out the
session creation rate on the NPM (without successful session crea-
tion, SYN packets will be dropped by the NPM). According to Fig. 9,
the session creation rate reaches near 3 millions new session/sec-
ond with only 6 cores (due to SmartBit performance, we have no
results with more cores). Compared to today’s high-end firewall
products, which commonly have 10–100K new session/second
rates, the session creation rate of OpenGate-SG is extremely high.
Main reasons for such a high-performance session creation rate
are the fast-path session creation mechanism and an efficient pol-
icy lookup algorithm [22].
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5.3. Deep inspection performance

The software we used for deep inspection includes the open
source Snort2.8 and ClamAV0.95. The source code of thread-isola-
tor is an extended version of dispatcher.c in Snort3.0 beta [15]. In
our test, Snort2.8 is configured to support all important security
features, including Stream5 and HTTP Inspect preprocessors. All
rules (over 10,000) of Snort2.8 and ClamAV0.95 are used in our
test. They are compiled using the Aho-Corasick Full algorithm for
fast processing, consuming 2.6 GB memory space for 7 threads
(with memory sharing). Test traffic includes both real-life traffic
traces and synthetic HTTP data (shown in Table 2). All these traces
are sent to the OpenGate-SG using TCP replay [23].

Figs. 10 and 11 are the DI performance of a single SPM blade.
We can see from these figures that the performance grows near lin-
early with the number of threads (because we set core affinitive for
service threads, the number of threads is the same as the number
of cores). With 4 cores, a single SPM reaches more than 800 Mbps
performance for the CERNET traffic. While for HTTP and Lincoln
Lab traces, one SPM only achieves about 400 Mbps performance
even with 7 cores. This is mainly because the number of attack
and virus signatures for HTTP traffic scanning is much larger than
those of other types of traffic [15,16].

Fig. 12 shows the impact of different load-balancing schemes on
SPM. Three load-balancing schemes are implemented for compar-
ison in our prototype: 2tuple-hash (source IP and destination IP)
and 5tupe-hash (source IP, destination IP, source Port, destination
Port, transport-layer Protocol) are hash-based static-binding
schemes, i.e. packets with the same hash value will be processed
by the same thread. In comparison, Join-the-Shortest-Queue (JSQ
[24]) is a dynamic-binding scheme. A new packet flow (with the
same 5tuple header) will be processed by the thread with shortest
input queue length. According to Fig. 12, JSQ always performs bet-
ter than 2tuple-hash and 5tuple-hash schemes. This is mainly be-
cause JSQ can dynamically distribute traffic flows according to the
current statues of the service threads. As a tradeoff, JSQ needs to
maintain a flow table to store existing flow-thread bindings.

5.4. Related work

Based on a standardized 12U 14-Slot ATCA chassis (e.g. Radysis
ATCA-6010), 10 NPMs (other 4 slots left for 2 switch blades and 2
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Table 2
Packet traces for IPS/AV.

LL HTTP CERNET

Source MIT Lincoln
Lab [21]

Generated by
software

Tsinghua
University RIIT

Date 1999-4 2009-6 2008-8
Size (MB) 519 – 700
Average packet

size (byte)
159 792 664

HTTP packets (%) 51.5 100 5.8
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CPMs) can be supported. According to our test, each NPM has
20 Gbps (10 Gbps bi-directional) SI performance and each SPM
has up to 800 Mbps DI performance. So the overall system can
achieve up to 200 Gbps SI and 8 Gbps DI performance.

In comparison to the Overlay Hosting Service (OHS) system pro-
posed by Turner et al., which is the first example of ATCA-based
open platforms to provide a reprogrammable high-performance
overlay platform for PlanetLab users [7]. They use network proces-
sor (Intel IXP 2800) based ATCA blades for fast-path network pro-
cessing, while general-purpose processor (Intel XEON) based
blades are reserved for slow-path and control processing. Two
example applications, IPv4 forwarding and Internet indirection
[8], were implemented on their platform, which are designed for
core routers to do packet-level processing at the backbone of the
Internet. Compared to OHS, OpenGate-SG achieves 4 times higher
throughput (20 Gbps vs. 5 Gbps), and at the same time provides
application-level services.

Table 3 is a performance comparison of OpenGate-SG with to-
day’s most powerful commercial products, Juniper SRX-5860 [25]
and Fortinet Fortigate-5140 [26]. As new-generation ATCA prod-
ucts will be available, such as OCTEONII based NP blades and
XEON5500 based IA blades, we believe that the performance of
OpenGate-SG could be further improved without redesigning the
software architecture.

6. Conclusion

In this paper, we propose an extensible open network services
platform for high-speed network processing, OpenGate, which em-
braces recent advances of open network technologies, including
open source software, open system standards and open network
architecture. As an ATCA-based security gateway, OpenGate-SG is
implemented and tested. Experimental results show that, the
OpenGate-SG can achieve up to 200 Gbps stateful firewall perfor-
mance together with 8 Gbps deep inspection performance, which
is competitive to today’s most powerful commercial products.
Our future work includes implementation of more network appli-
cations on the OpenGate platform. The load-balance strategy also
needs to improve if different types of NPMs and SPMs are imple-
mented on the same OpenGate system. Another topic is power-
aware processing, i.e. how to control the overall power consump-
tion while making best use of all the NPM and SPM resources. In

summary, we believe the research on open network technologies
is significant and valuable, and will bring about mutual benefit
for both academic and industrial worlds.
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Table 3
OpenGate-SG vs. commercial products.

System MAX SI MAX DI

Fortigate-5140 70 Gbps (with 14 ATCA modules) 4.2 Gbps IPS with AV
SRX-5860 137 Gbps 8 Gbps IPS without AV
OpenGate-SG 200 Gbps (with 10 NPMs) 4–8 Gbps IPS with AV
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