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Abstract—Accurate performance evaluation for network al-
gorithms is vital to meet various requirements of di↵erent
applications, such as QoS, network security, tra�c engineering.
Although worst-case and average-case analysis are widely used
in algorithm evaluation, they are often insu�cient due to the
lack of practicality. Smoothed Analysis (SA) introduces a new
concept of smoothed complexity, remedying the shortcomings in
worst-case and average-case analysis. However, recent research
towards SA focuses on theoretical evaluation, and thus those
methods tend to be too complicated for the analysis of network
algorithms. To address the problem, Sampling-based Smoothed
Analysis (SSA) for network algorithm evaluation is proposed.
SSA extends feasibility for practical performance evaluation
and achieves promising experimental results. As examples, two
algorithms for typical network problem are evaluated using the
proposed SSA framework, and the results explicitly illustrate
their significant performance di↵erence in spite of the same
theoretical worst-case complexity. Besides evaluation accuracy,
SSA also provide more insight for algorithms to facilitate current
algorithms improvement and new algorithms design.

I. Introduction

Performance evaluation of network algorithms is critical to
real-life application, e.g. to guarantee Quility-of-Service, to
save memory usage, to reduce power consumptions. Accurate
performance measurement is particularly vital for algorithms
applied to large-scale network applications which receive, pro-
cess, and respond millions of requests per second with limited
computing resources. Processing time and memory usage of
the algorithms are strictly limited by realistic demands and
capacities of network devices. Thus, objective and reliable
performance evaluation plays an indispensable role in network
algorithm design and implementation.

Traditionally, worst-case analysis and average-case anal-
ysis are widely used in algorithm performance evaluation.
However, they are often inadequate for accurate performance
measurements due to the following reasons.

1) Worst-case analysis unveils algorithm performance under
contrived and extreme circumstances. Thus it may be unduly
pessimistic since realistic input datasets may seldom incur
worst-case scenarios for algorithms. In practice, some algo-
rithms with high worst-case complexity still achieve great real-
life performance [1].

2). Average-case analysis shows average of performance
over wholesale inputs. Thus it is hard to obtain average-

case performance for those algorithms with unknown input
distribution. Even when calculating average-case performance
is possible for some algorithms, it tends to result in an
optimistic evaluation against practical performance since it
eliminates the worse parts and only reflects average feature
of all the inputs.

In a nutshell, worst-case or average-case analysis is not
always consistent with the practical performance. Smoothed
Analysis (SA) was proposed to fill the gap between analytic
results and practical algorithm performance by D. A. Spielman
and S.-H. Teng in 2004 [1]. SA not only takes the worst
case into consideration, but also includes the surrounding
area, which leads to higher accuracy for practical algorithm
evaluation. A lot of related work endeavor to use SA for
evaluating di↵erent algorithms, such as 2-Opt Algorithm for
the TSP [2], ICP Algorithm [3], Binary Search Trees [4],
Integer Programming [5], and Path Trading [6]. However, cur-
rent research mainly focuses on theoretical Smoothed Analysis
for algorithms, which tends to have intrinsic drawbacks to
analyze algorithms applied to real-life applications in context
of networking for the following reasons.
• The input dimension of network algorithms is high.
• Prior distribution of the whole input space is often
unknown.
• Software and hardware limitation is complex and hard to
model.
Since mathematical derivation of SA for networking algo-

rithms is infeasible, our approach leverages Sampling-based
Smoothed Analysis (SSA) to simplify the process, which
utilizes sampling method to overcome the di�culty for math-
ematical modeling while maintains the benefits of SA.

Our contributions: With a solid underpinning on SA, we
propose SSA as a feasible method for practical performance
evaluation. To support our framework, we perform worst-
case analysis, average-case analysis and SSA, respectively, to
evaluate temporal and spatial performance of two algorithms
for a typical network problem. While other methods present
confusing results, experimental results of SSA is consistent
with practical experience, proving that SSA achieves reason-
able performance evaluation for network algorithms.

The rest of the paper is organized as follows. In Section 2,
we introduce the technical background of this paper; Section
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3 presents the framework of SSA; as a case study, we evaluate
the temporal and spatial performances of two well-known
algorithms using SSA in Section 4; in the last section, we
state our conclusion.

II. Background

A. Introduction of SA

As is analyzed above, worst-case evaluation and average-
case evaluation emphasize di↵erent aspects of performance
properties and may deviate away from practical performance.
In the seminal paper on Smoothed Analysis [1], D. A. Spiel-
man and S.-H. Teng present a novel algorithm evaluation
framework to remove the aberration and obain a close-to-
real performance analysis. Compared to worst-case analysis
and average-case analysis, SA initiatively reflects the density
of worst cases. A standard theoretical SA framework is as
follows.

P is a problem and A is an algorithm to solve P. We
denote MA(x) as the metric we use to evaluate A on an input
x , X as the domain of inputs x for A, �g as a Gaussian
random variables with mean 0 and constant deviation �,
SA(x) as the smoothed result for input x, and CM

A (x) as the
complexity for algorithm A under metric MA(x) on input x.
As a general definition, we use Eg to denote the mean as g
varies randomly. Based on above denotations, the worst-case
performance of A is max(MA(x)). The worst-case complexity
CM

Aworst
= max(CM

A (x)). As for SA, a smoothed result of input
x is defined as

SA(x) = Eg(MA(x + �g))

SA Complexity is defined as

max(Eg(CM
A (x + �g)))

A more detailed definition and description can be found in [1]
and [7].

Currently, SA is used to analyze many classical algorithms
which have high worst-case complexity while perform ef-
ficiently in practice. These algorithms include Multi-Level
Feedback Algorithm, Integer Linear Programming, Iterative
Closest Point (ICP) algorithm, the 2-Opt Algorithm for the
TSP.

B. Limitation of Theoretical Smoothed Analysis

In network field, some research uses SA to eliminate low-
probability worst instances and obtain close-to-real evaluation
results [6]. However, since real-life network problems are
intrinsically complicated, theoretical analysis often has to
make assumptions and simplify the process and hardware
limitations. Therefore, SA loses part of its accuracy and thus
becomes an auxiliary method to obtain an upper or lower
bound of complexity for an algorithm. In Sec 1, we discuss
a general scenario where theoretical analysis cannot receive a
satisfactory result. In this part, we will illustrate more about
the intrinsic shortages in theoretical analysis via analyzing a
typical network problem.

Packet Classification is one of the fundamental network
problems and has been widely studied to meet high perfor-
mance demand of various network applications such as intru-
sion detection, access control, and flow monitor. Currently,
a multitude of algorithms such as RFC [8], HSM [9] and
HyperSplit [10] have been developed to address the problem.
During the prepossessing stage, these algorithms take multi-
dimensional filter set as input and build the corresponding
search structures. Afterwards, the algorithms process packet
classification via looking up through the structure.

Evaluation of Packet Classification algorithms commonly
uses three performance metrics, classification speed, memory
usage, and preprocessing time [11]. To conduct performance
evaluation based on SA, it is necessary to generalize how
realistic inputs varies. A suite of tools for benchmarking
named ClassBench [12] reveal the structure properties of the
input filter sets. When adjusting the parameters, the data
structures will be reconstructed as if some rules are added,
deleted or modified in reality, which provides convenience
for practical performance evaluation. However, theoretical SA
evaluation of Packet Classification algorithms is still a thought-
provoking problem and lack of feasibility. Chief di�culty
lies in that performance and e�ciency of many algorithms
are sensitive to the structural and statistical properties of
input filter sets. Moreover, traversing all the input cases is
infeasible due to the high-dimensional input space and the
time-consuming prepossessing stage.

To address the problem of feasibility, we utilize sampling
method to improve the original SA and propose SSA. In
this paper, we use SSA to evaluate two packet classification
algorithms, compare evaluation results with other analysis
methods and verify the e�ciency and reasonability of our
framework.

III. SSA Framework

Based on theoretical SA framework in Sec 2.A, we present
a Sampling-based Smoothed Analysis framework (SSA). In
SSA, we make several modifications based on theoretical
framework to facilitate experimental analysis.

A. Methodology

Input Data Set Generation:
To conduct SSA evaluations while achieve approximate

accuracy, we need to generate a large enough input data set
for particular input selection corresponding to SA principles.
STEP1: gather N typical cases and constitute a typical-case

set S .
STEP2: choose worse cases from typical-case set S and

generate a worse-case set W. Here an input x in S
is noted as a worse case if and only if MA(x) >
maxy 2 U(x){MA(y)}. MA(x) represents the metric we
use to evaluate A on an input x. U(x) represents the
neighborhood of x in S .

Sampling for Worse-case Set W:
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For each x in W, based on Smoothed Analysis principles,
we will sample according to a particular distribution in the
neighborhood of x.
STEP1: choose joint distribution for sampling on inputs in

worse-case set W.
STEP2: sample based on the joint distribution in the neighbor-

hood of each instance x in W, verify the distribution
of samples, and generate a sampling set for each x
in worse-case set W: S x = {x + �g}. The notation of
� and g are the same as Sec 2.A.

Sampling-based Smoothed Analysis for each x in W:
Based on each S x, we use Smoothed Analysis metrics to

evaluate the performance of the algorithm.
STEP1: evaluate performance based on S x for each x: MA(x+

�g)
STEP2: calculate expectations of result set MA(x + �g) for

each x: Eg(MA(x + �g))
STEP3: obtain max of all the expectations

maxx(Eg(MA(x + �g))
as SSA result.

B. Modifications and Mathematical Derivation
Theoretical SA is mathematically accurate while hard to

generate a general derivation method for all the algorithms.
SSA framework modifies theoretical SA to facilitate experi-
mental performance evaluation while maintains the approxi-
mate accuracy at the same time. With certain assumptions and
enough sampling times, SSA framework is in correspondence
with theoretical SA method.

In theoretical method, it is simple to conduct Smooth
Analysis for each input in overall input domain and analyze
the smoothed performance. However, in experimental method,
conducting smoothed analysis experiments for every input in
the whole domain is often infeasible. Thus, the original SA
formula:

max(Eg(MA(x + �g)))

is changed in SSA as:

maxx(Eg(MA(x + �g)))

The most significant divergence between SA and SSA is s-
moothing each input in the whole input plane or just smoothing
inputs in a particular set. When we choose enough cases into
the particular sampling set, the two approach converge to a
uniform result. An extreme example is that when the number
of sampling cases in the sampling set is infinite, the set of
sampling cases approximately covers the overall input plane.
Then, the two approaches will generate the same results.

Meanwhile, it is reasonable to choose part of inputs, for ex-
ample worse cases, as sampling cases to represent other inputs
if performance metric for inputs is mathematically smoothed
enough. Because in this case, we can expect performances
of inputs around worse cases are also not so good so that
the worst sampling result for worse cases can represent the
worst sampling result for the whole input plane. Thus, the
experimental Smoothed Analysis result may be nearly the
same as the theoretical SA analysis.

C. Discussion of the Framework

In this part, we will discuss some bewildering elements in
designing and conducting real experiments under the guidance
of SSA. Our discussion mainly focuses on two aspects, “Worse
Case” Generation and Sampling Frequency. We hope our
discussion can inspire further study and research to improve
the accuracy and feasibility of SSA method.
“Worse Cases” Generation Selection of “Worse Cases” is
a critical step for SSA. As is defined in Section 3.A, “Worse
Cases” are a set of cases which satisfied the formula:

MA(x) > maxy 2 U(x){MA(y)}

“Worse Cases” generation need not traverse all the input plane,
which is often impractical. In other words, “Worse Cases”
are local maximums on input plane for performance metric.
Numerical analysis provides us with several e�cient methods
to find local maximums from the whole input plane [13].
Sampling Frequency Sampling frequency significantly influ-
ences the accuracy of experimental results. Higher sampling
frequency will contribute to more accordance with theoretical
SA. Meanwhile, higher sampling frequency will also enlarge
experimental di�culty since it extends the time period for
conducting SSA, especially for those algorithms which have a
long processing time. Thus, to obtain a proper sampling fre-
quency is to trade o↵ between the correctness and feasibility.

When the sampling frequency increases, the experimental
results will approximate to theoretical analysis. We can use
the variation of evaluation results as a measurement to select
a proper frequency. If the variation of performance evaluation
results is smaller enough, e.g. smaller than a threshold, when
sampling frequency increases, it is believed that the current
sampling frequency does well enough for the performance
metric.

IV. Case Study
In this section, we use SSA to evaluate the performance

of two algorithms for a typical network problem, Packet
Classification problem. We will show that SSA is more capable
of revealing the practical performance of network algorithms.

For confidential concerns, it is impossible to get enough
real rule filters as typical inputs. In all the following experi-
ments, we utilize ClassBench [12] to generate inputs and to
obtain samples in the neighborhood of a given worse case.
ClassBench generates synthetic while realistic filters based on
a filter seed and provides three controlling parameters naming
smoothing, port scope, and address scope. We vary the three
parameters in their own range, respectively, and consider the
generated filter sets as the inputs for the following algorithms.

A. Algorithm Introduction

We utilize two classical packet classification algorithms
as case study, Computational Geometry Algorithm [14] and
HyperSplit Algorithm [10].
Computational Geometry Algorithm Computational Geom-
etry Algorithm uses a basic KD-Tree data structure. It chooses
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Fig. 1: (CG) Worse Case Memory Size before and after SA

a dimension to split the high-dimensional space in order, that
is, from dimension 1, dimension 2, ... , to dimension n, then
restarting from dimension 1, over and over again until the
space is split small enough. However, the memory occupancy
of Computational Geometry Algorithm is always high due to
the overlaps of the rules, which leads to considerable overhead
of memory accessing. Therefore, Computational Geometry
Algorithm hardly meets the requirement of high-performance
empirically.
HyperSplit Algorithm HyperSplit algorithm uses an op-
timized KD-Tree data structure for packet classification. It
combines the advantages of both parallel search and tree
search algorithms by using a simple but e�cient binary search
tree for classification. Unlike the basic KD-Tree data structure,
HyperSplit uses rule-based heuristics to select the most e�-
cient splitting point on a specific field. Compared with Com-
putational Geometry Algorithm, HyperSplit consumes much
less memory with little sacrifice in terms of tree depth. It is
believed that HyperSplit is able to utilize higher cache hit rate
and achieve practicability under most realistic circumstance.

TABLE I: Worst and Average Memory Results

Algorithm Worst-case Memory(KB) Average Memory(KB)

CG 14061 1769.01

HS 7606 763.24

B. Evaluation of Spatial Performance

As is mentioned in Sec 2.B, memory size is one of the
key metrics in packet classification algorithms evaluations. The
average-case and worst-case memory size for Computational
Geometry Algorithm (CG) and HyperSplit Algorithm (HS)
is showed in Table I . From the table, worst-case memory
usage of the two algorithms are large, which indicates that
neither of them is adequate for practical use. Meanwhile, their
average-case memory usage are small. As a result, worst-case
analysis and average-case analysis present totally di↵erent
evaluation results for the performance and are inconsistent
with our experiences. To deal with the conflict, we utilize
SSA to obtain a further insight into the practical performance
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Fig. 2: (HS) Worse Case Memory Size before and after SA

of the two algorithm. Later we will show that the experiment
results are consistent with our practical experience and that
HS outperforms CG in terms of memory usage.

Using SSA framework, for CG and HS, we choose the
first 100 worse cases out of more than one hundred thousand
input sets and conduct SSA experiments under the guidance
of our framework, respectively. Figure 1 depicts the memory
occupancy for Computational Geometry Algorithm before and
after Smoothed Analysis, and Figure 2 illustrates the memory
usage for HyperSplit Algorithm before and after Smoothed
Analysis. Note that, the SSA curves in Figure 1 and Figure 2
are “jagged” rather than “smoothed”. The surrounding of a
worse case may be a “peak” or a “plateau”. Here a “peak”
represents the situation that memory sizes of the surrounding
points decrease rapidly from the center point, namely, the
worse case we chose. A “plateau” depicts the situation that
memory sizes of the surrounding points decrease slightly
and slowly from the center point. The SSA result should be
smoothed if we choose consecutive points. However, in this
case, since our worse cases scatter randomly on the input plane
and may be “peak-like” points or “plateau-like” points, it is
naturally that the curves depicted the memory size after SA
are jagged rather than smoothed.

From Figure 1 and Figure 2, it is obviously that after
Smoothed Analysis, the memory size decreases to almost
half of the value of the peak point for both algorithms. The
result curves illustrated that the two algorithms are stable and
only have several peak points which result in high memory
usage. These results clearly show that the memory occupancy
of HyperSplit after SSA is small enough for the cache in
a large number of current processors, while CG is more
likely to exceed the cache volume and result in higher cache
miss rate. Thus, our SSA framework explains why HyperSplit
is feasible and e�cient in practice while has a theoretical
exponential worst-case complexity of ⇥(NF), where N is the
non-overlapping hyper-rectangles generated from filter set and
F is the number of fields in packet header [10].

To show how SSA works more clearly, we plot panoramas
to depict how memory usage varies while parameters vary.
Since we have three parameters to control the input filters,
we fix the smoothing parameter and conduct SSA based
on the other two parameters to build a three-dimensional
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Fig. 3: Memory Size before and after Smoothed Analysis

figure. Figure 3a and Figure 3b show how memory usage
varies for CG algorithm before and after Smoothed Analysis,
respectively. Similarly, Figure 3c and Figure 3d illustrate how
memory usage varies for HS algorithm before and after SSA.
Also, we depict the contour lines for di↵erent memory size in
each figure to illustrate the fluctuation of memory size. For
both algorithms, almost all peaks vanish after SSA, which
means the distribution of worse cases is disperse. In other
words, it is hard to be entrapped into a worse case plateau for
real filter sets.

C. Evaluation of Processing Speed

SSA also provides more insight into practical performance
comparison of network algorithms. Mostly, the input sets of
network algorithms are not constant and often come up with
some minor modifications, e.g. adding rules, deleting rules or
changing the ranges of rules. Thus, users tend to care more
about the performance within certain input areas rather than
the performance at each input point. In this part, we varies two
parameters of ClassBench to evaluate on the depth of search
trees, which represents the possible worst search times and is
considered a significant measurement to evaluate processing
speed [10]. Figure 4 depicts how depth varies before and after

SSA. Figure 4a and Figure 4b shows varying of worst depth for
CG algorithm before and after SSA. Likewise, Figure 4c and
Figure 4d illustrate the distinctions for HS algorithm. Based on
the observation of the contour line in Figure 4b and Figure 4d,
we can find that CG narrowly wins HS on the metric of
depth within the corresponding input areas. However, when
comparing Figure 4a and Figure 4c before SSA, it is di�cult
to tell which algorithm has a better performance.

V. Conclusions and FutureWork
In this paper, we propose a framework named SSA for

network algorithm performance evaluation. The framework
originates from SA and achieves feasibility and reasonability
of practical performance evaluation for network algorithm with
complex processing and high-dimensional input space. The
experiment results on two well-known packet classification
algorithms draws the preliminary conclusion that, while in
some situations worst-case analysis and average-case analysis
may have conflict or unclear results, SSA is able to reveal the
practical performance.

However, it is not theoretically proved that how SSA will
converge to SA as the sampling rate increases, which will be
conducted in our future work. Besides, we will apply SSA
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Fig. 4: Worst Depth before and after Smoothed Analysis

to other typical network algorithms, obtaining more insight
into algorithm comparison and the improvement of SSA
framework. Study on the method of worse-case generation
is also needed to help SSA achieve higher e�ciency. As to
sampling models and sampling rate, we will try distributions
other than Gaussian randomness and determine the sampling
rate by means of input space analysis.

VI. Acknowledgement

The authors would like to thank Jialing Zhang and Baohua
Yang for their contributions. This work was supported by
Tsinghua National Laboratory for Information Science and
Technology.

References

[1] D. Spielman and S. Teng, “Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time,” Journal of the ACM
(JACM), vol. 51, no. 3, pp. 385–463, 2004.
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