
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

180

Manuscript received July 5, 2006.
Manuscript revised July 25 , 2006.

Robust Quick String Matching Algorithm for Network
Security

Jianming Yu,1,2 and Yibo Xue,2,3

1 Department of Automation, Tsinghua University, Beijing, China
2 Research Institute of Information Technology, Tsinghua University, Beijing, China

3 Tsinghua National Lab for Information Science and Technology, Beijing, China

Summary
String matching is one of the key algorithms in network
security, and many areas could be benefit from a faster
string matching algorithm. Based on the most efficient
string matching algorithm in usual applications, the
Boyer-Moore (BM) algorithm, a novel algorithm called
RQS is proposed. RQS utilizes an improved bad character
heuristic to achieve bigger shift value area and an
enhanced good suffix heuristic to dramatically improve the
worst case performance. The two heuristics combined with
a novel determinant condition to switch between them
enable RQS achieve a higher performance than BM both
under normal and worst case situation. The experimental
results reveal that RQS appears efficient than BM many
times in worst case, and the longer the pattern, the bigger
the performance improvement. The performance of RQS is
7.57~36.34% higher than BM in English text searching,
16.26~26.18% higher than BM in uniformly random text
searching, and 9.77% higher than BM in the real world
Snort pattern set searching.
Key words:
String matching; network security; algorithmic performance
attack

Introduction

String matching is one of the basic and important research
subjects in computer science. String matching consists in
finding one, or more generally, all the occurrences of a
search string, also be called as pattern, in an input string. If
more than one search strings are matched against the input
string simultaneously, it is called multiple pattern
matching. Otherwise, it is called single pattern matching.
Single pattern matching algorithm will be referred only in
this paper.

Single pattern matching algorithm is widely used in
network security environments. (In network security realm,
pattern is a string indicating network intrusion, attack,
virus, Spam or dirty network information et al). For
example, in Snort, the famous open sources lightweight

NIDS [1, 2], the Boyer-Moore (BM) [3] algorithm is
called while the number of patterns needed to be matched
is less than five. Single pattern matching algorithm is also
the basis to construct exclusion-based pattern matching
algorithm and hybrid pattern matching engine to handle
enormous network security detection patterns.

The exclusion-based string matching algorithm utilizes
heuristics to identify the patterns that could not occur in
the input string first, and then use single pattern matching
algorithm to match the patterns could not be excluded. The
ExB [4] and E2xB [5] are typical exclusion-based
algorithms. The hybrid pattern matching engine triggers
different algorithms, generally combines single pattern
matching and multiple pattern matching algorithms,
depending on different application environments such as
the number of patterns and the size of input string.
Considering the fact that no single algorithm performs best
in all cases, a hybrid pattern matching engine appears to be
the best approach in network security applications [6, 7].

Along with the development of network attack
technologies, the network security equipment itself
becomes the attack objective. So does the string matching
algorithm. An effective attack method to string matching
algorithm is “algorithmic performance attack”: an attacker
intentionally provides inputs that will overload or cause
the worst case performance of an algorithm [6]. It could
slow down the search and cause dropped packets, upon
which the intruder could begin his attack. For example, the
processing time of Snort can be raised by up to 25 times
under such attack [8]. Improving the average-case and
worst-case performance of string matching algorithm
simultaneously would effectively defend from the
algorithmic performance attack.

The BM algorithm is considered as the most efficient
string-matching algorithm in usual applications, and is
widely regarded as providing the best average-case
performance of any known algorithm [6, 13]. In this work
we concentrate on improving the average and worst case
performance of BM at the same time. A novel algorithm
named as Robust Quick String Matching (RQS) is
proposed.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

181

The rest of the paper is organized as follows. Section 2
gives the description of the BM algorithm. Section 3 is a
formal description of RQS. In section 4, detailed
evaluation and analysis of RQS is presented. We
summarize our contributions in section 5, where the open
issues for future investigation is outlined as well.From this
section, input the body of your manuscript according to the
constitution that you had. For detailed information for
authors, please refer to [1].

2. Related Works: The BM Algorithm

String matching deals with a string T=t1t2…tn (the input
string) of size n and searches it for all occurrences of
another, shorter string P=p1p2…pm (the search string) of
size m (n > m). Both strings build over a finite set of
character called an alphabet denoted byΣ .

String matching algorithms scan the T with the help of the
sliding window mechanism. The size of the window is
generally equal to m. To a check point j (1≤j≤n), the
window is positioned on tjtj+1…tj+m-1. At each check point,
the characters of the window are compared with the
characters of the search string. After a whole match or
after a mismatch, the window is shifted along the T
according to the heuristics of each algorithm.

BM utilizes two heuristics, bad character and good suffix,
to reduce the number of comparisons (compared to Brute
Force string matching). The search is carried out by
shifting the window from left to right. t1 is the first check
point. Within each window, the characters of the window
and the P are compared from right to left. Both heuristics
are triggered on a mismatch. Suppose the matching check
is taken between ti+1ti+2…ti+m, 0≤i≤n-m and p1p2…pm now,
and pj+1pj+2…pm=ti+j+1ti+j+2…ti+m, 1 ≤ j ≤ m-1, the
mismatching occurs at pj, pj≠ti+j.

The bad character heuristic works this way: when a
mismatch appears, the window is shifted to right so that
the mismatching character in T, ti+j, is aligned with pk1,
k1=max{k2|pk2=ti+j, 1≤k2<j}. If ti+j dose not appears in
p1p2…pj-1, the window is shifted to the position that p1 is
one position past ti+j.

The good suffix heuristic, works another way: when a
mismatching occurs, there is a non-empty suffix that
matches. The window is shifted to the next occurrence of
the suffix in p1p2…pm-1. If the suffix does not appear, the
window is shifted to the position that pk3 is aligned with
ti+m, k3=max{k4| p1p2…pk4=ti+m-k4+1…ti+m}, 1≤k4≤m-j-1. If
k3 does not exist, the window is shifted to the position that
p1 is one position past ti+m.

BM takes the far most shift caused by the two heuristics.

3. RQS: Robust Quick String Matching

The RQS algorithm utilizes an improved bad character
heuristic and an enhanced good suffix heuristic to improve
the average and worst case performance of BM
simultaneously.

The improved bad character heuristic of the RQS
algorithm is shown in Figure 1. The character next to the
rightmost character of the current window is always used
as the bad character. For example in Figure 1, at current
check point marked by the broken line window, use
character ‘s’ of T as the “bad character” to calculate the
shift value. Compared with the bad character heuristic of
BM, this will provide a larger shift value area and easy to
implement [14].

Fig 1. The improved bad character heuristic of RQS algorithm
The main drawback of BM is that after a shift it forgets the
information about characters already matched. So in worst
case situation, its behavior is same as Brute Force. We
proposed a novel enhanced good suffix heuristic which
could remember the characters already matched when
needed.

The enhanced good suffix heuristic is: while the
information of the characters already matched is needed to
remember at a specific check point, only good suffix
heuristic is used at that check point. Compared to the
policy of BM (at every check point always calculate good
suffix and bad character shift value and select the bigger
one), we can easily remember the characters have already
matched by a variable and do not compare them again at
next check point. As shown in Figure 2, if the shift value,
shift, is calculated by good suffix heuristic at current check
point, so p0p1…pm-shift-1=pshiftpshift+1…pm-1. We use variable
offset=m-shift to remember the starting position at next
check point, then at next check point only need to compare
poffset…pm-1.

x x k m f s h a… …. T

y s f m f

y s f m f

1 23

≠
P

P

bad character

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

182

Fig 2. The enhanced good suffix heuristic of RQS
To keep the simplicity of implementation and achieve
bigger shift value, a simple determinant condition is
proposed to determine if the enhanced good suffix
heuristic need to be called to remember the information of
the characters already matched.

Under the worst case situation, the behavior of BM is same
as the Brute Force. This means the shift value is always
equal to one. So in the design of RQS, if the shift value
calculated by the improved bad character heuristic is equal
to one at current check point, the enhanced good suffix
heuristic is utilized. This has two benefits. First, we could
get a bigger shift value because the shift value calculated
by good suffix heuristic is no less than one. Second, we
could decrease the characters need to check at next check
point because the enhanced good suffix heuristic
remembered the characters already matched.

The search procedure of the proposed RQS algorithm is
shown in Figure 3. Two tables are used to store the shift
value calculated by the two heuristics: RQSBc[] for bad
character and RQSGs[] for good suffix. Where P is the
search string, m is its length. T is the input string, n is its
length.

If (n<m) do exit;
j = 0; // j represents the check point
offset = 0;
while (j <= n - m) do begin
 i = m-1;
 if (RQSBc[T[j + m]] > 1) do // using RQS bad
character heuristic
 while(P[i] = T[j+i] and i>=0) do begin
 i = i-1;
 end while
 j = j+RQSBc [T[j + m]];
 else // using RQS good suffix heuristic

while (P[i] = T[i + j] && i >= offset) do begin
 i = i-1;
end while

 if (i < offset) do // a match found

 j = j+RQSGs[0];
 offset = m-shift; //remember the character
already matched
 else do
 j = j+RQSGs[i];

offset = 0;
end while

Fig 3. The search procedure of RQS

4. Experiments and Analysis

We implemented the RQS algorithm and compared the
performance of it with the BM algorithm. The codes of
BM in [13] are used, and it is a high quality
implementation.

4.1 Experimental Environment

In the experiments we used a PC with Intel Pentium® 4
2.4 GHz processor, with L1 cache of 8KB and L2 cache of
512KB, and 512MB of RAM. The host operating system
is Microsoft® Windows XP professional. The compiler
used is Microsoft® Visual C++ 6.0.

In all the experiments the length of the input string T is
16KB. We performed experiments with three kinds of
input string T. The first was made up of the same character
‘A’ to test worst case performance. The second is a piece
of English text obtained from a software manual. And the
third consists of uniformly random characters from
256-character alphabet.

4.2 The Worst Case Test

To the input string and search string both be made up of
the same character, the shift value is always equal to one
and the match number is maximum. It provides the worst
case scenario to string matching algorithm. We found that
there are such keywords used in practice, for example the
blow detection rule of Snort.

alert tcp any any -> any any (ack:0; flags:SFU12;
content:”AAAAAAAAAAAAAAAA”; depth: 16;).

It tries to find the keyword ”

AAAAAAAAAAAAAAAA” in all the tcp flow.

T=AA…A and P=AA…A was used to test the performance
of RQS and BM. The results are shown in Figure 4. The
horizontal axis represents the pattern length, and the
vertical axis represents processing time.

a b a b x x x … …. T

a b a b P

a b a b P

shift

offset

shift

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

183

0

500

1000

1500

2000

2500

5 10 15 20 25

Pattern Length

T
i
m
e

(
u
s
)

BM

RQS

Fig 4. The performance with P=AA…A and T=AA…A
We could find that the performance of RQS is stable and
higher than BM for many times under this situation.
Because the information of the characters already matched
is remembered, the number of character comparison is
dramatically reduced. In fact, because the shift value is
always equal to one under this situation, the enhanced
good suffix heuristic is called at every check point. So the
number of characters compared is equal to the length of
input string and regardless of the length of the keyword.

4.3 Experiments with an English Text

The text is obtained from a software manual. The patterns
are randomly selected from the text. For every pattern
length, we selected 250 different patterns, and the 250
patterns are compared with the text one by one.

The results are shown in Figure 5. The horizontal axis
represents the pattern length, and the vertical axis
represents processing time. The processing time is the
average searching time of 250 patterns.

0

10

20

30

40

50

60

5 10 15 20 25

Pattern Length

T
i
m
e

(
u
s
)

BM

RQS

Fig 5. The performance with an English text searching
We can find that the performance of RQS is 7.57~36.34%
higher than BM in the English text searching.

4.4 Experiments with Uniformly Random Text

One text which consists of uniformly random characters
from 256-character alphabet is generated. The patterns are
randomly selected from the text. For every pattern length,
we selected 250 different patterns, and the 250 patterns are
compared with the text one by one.

The results are shown in Figure 6. The horizontal axis
represents the pattern length, and the vertical axis
represents processing time. The processing time is the
average searching time of 250 patterns.

0

5

10

15

20

25

30

35

40

5 10 15 20 25

Pattern Length

T
i
m
e

(
u
s
)

BM

RQS

Fig. 6. The performance with uniformly random text
We can find that the performance of RQS is
16.26~26.18% higher than BM in the uniformly random
text searching.

4.5 Experiments with Snort Pattern Set

The real world pattern set of Snort rules is extracted. The
latest Snort rules distributed in Jun. 15, 2006 are used.
There are totally 2410 different patterns. The pattern
length arranges from 1 to 122. The text used is uniformly
random text with 256-character alphabet. The 2410
patterns are compared with the text one by one.

The results are shown in Figure 7. The horizontal axis
represents different algorithm, and the vertical axis
represents processing time. The processing time in Figure
6 is the total searching time of the 2410 patterns.

45

46

47

48

49

50

51

52

T
i
m
e

(
m
s
)

BM RQS

Fig. 7. The performance with Snort pattern set

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

184

We can find that the performance of RQS is 9.77% higher
than BM in the real world Snort pattern set searching.

5. Conclusion and Future Work

We have examined the problem of string matching for
network security, especially the anti-algorithmic
performance attack problem, and presented the design of
an improved BM algorithm called RQS. RQS utilizes an
improved bad character heuristic to achieve bigger shift
value area and an enhanced good suffix heuristic to
remember the information of characters already matched
when needed. A novel determinant condition to determine
if the enhanced good suffix heuristic need to be called is
proposed. So the worst case performance of RQS is
dramatically improved compared with BM and the normal
performance is also improved at the same time..

We have evaluated RQS against BM using different texts
and patterns. The experimental results reveal that RQS
appears efficient than BM many times in worst case, and
the longer the pattern, the bigger the performance
improvement. RQS is also efficient than BM in normal
situation. The performance of RQS is 7.57~36.34% higher
than BM in the English text searching, 16.26~26.18%
higher than BM in the uniformly random text searching,
and 9.77% higher than BM in the real world Snort pattern
set searching.

Future work would include designing exclusion-based
algorithm and hybrid pattern matching engine for network
security applications based on RQS. The design idea of
this paper, improving and balancing the normal and worst
case performance of string matching algorithms for
network security, will be applied to multiple pattern
matching algorithms.

Acknowledgments

We would like to thank the anonymous reviewers for
providing useful comments on this paper. We would thank
our colleagues at the Network Security Laboratory,
Research Institute of Information Technology, Tsinghua
University for their comments and enlightening
discussions on draft of the paper. And this work is
supported by Intel IXA University Program.

References
[1] M. Norton, and D. Roelker, “The new Snort”, Computer
security journal, vol. 19, no. 3, pp. 37-47, 2003.
[2] M. Roesch, “Snort: lightweight intrusion detection for
networks”, Proc. 13th System Administration Conference and
Exhibition (LISA’1999), pp. 229-238, 1999.
[3] R. Boyer, and J. Moore, “A fast string searching algorithm”,
Communications of the ACM, vol. 20, no. 10, pp. 762-772, 1977.

[4] E. P. Markatos, S. Antonatos, M. Polychronakis, and K. G.
Anagnostakis, “EXB: Exclusion-based signature matching for
intrusion detection”, Proc. The CCN’02, 2002.
[5] K. G. Anagnostakis, E. P. Markatos, S. Antonatos, and M.
Polychronakis, “E2XB: A domain-specific string matching
algorithm for intrusion detection”, Proc. 18th IFIP International
Information Security Conference (SEC2003), 2003.
[6] M. Fisk, and G. Varghese, “Fast content-based packet
handling for intrusion detection”, UCSD Technical Report
CS2001-0670, May 2001.
[7] S. Antonatos, K. G. Anagnostakis, E. P. Markatos, and M.
Polychronakis, “Performance analysis of content matching
intrusion detection system”, Proc. 2004 International Symposium
on Applications and the Internet (SAINT’04), 2004.
[8] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos,
“Generating realistic workloads for network intrusion detection
systems”, Software engineering notes, vol. 29, no. 1, pp. 207-215,
2004.
[9] R. N. Horspool, “Practical fast searching in strings”,
Software practice and experience, vol. 10, no. 6, pp. 501-506,
1980.
[10] R. M. Karp, and M. O. Rabin, “Efficient randomized
pattern-matching algorithms”, IBM J. Res. Dev., vol. 31, no. 2,
pp. 249-260, 1987.
[11] D. Knuth, J. Morris, and V. Pratt, “Fast pattern matching in
strings”, SIAM journal on computing, vol. 6, no. 2, pp. 323-350,
1977.
[12] M. Crochemore, M. C. Hancart, Pattern Matching in
Algorithms and Theory of Computation Handbook. CRC Press
Inc., Boca aton, FL, 1999.
[13] C. Charras, and T. Lecroq, “Exact string matching
algorithms”, http://www-igm.univ-mlv.fr/~lecroq/string/, 1997.
[14] D. M. Sunday, “A very fast substring search algorithm”,
Communications of the ACM, vol. 33, no. 8, pp. 132-142, 1990.

Jianming Yu received the B.S.
degree in Electrical Power
System and Its Automation from
Zhengzhou University of
Technology in 1999 and the
M.S. degree in Control Theory
and Control Engineering from
Harbin Institute of
Technology in 2003. From 2003
to now, he stayed in Network
Security Laboratory, Research

Institute of Information Technology, Tsinghua University as a
PhD candidate to study network intrusion detection, string
matching for network security, and network equipments design
based on network processor.

