

SCALABLE STRING MATCHING FRAMEWORK

ENHANCED BY PATTERN CLUSTERING

Bo Xu1, 3, Kai Zheng2, Yibo Xue3, 4, Jun Li3, 4
1Dept. of Automation, Tsinghua University, Beijing, China

2China Research Lab, IBM, Beijing, China
3Research Inst. of Info. & Tech., Tsinghua University, Beijing, China
4Tsinghua National Lab for Information Sci. & Tech., Beijing, China

xb00@mails.tsinghua.edu.cn

ABSTRACT
String matching plays an important role in content inspection based applications such as
network intrusion detection/prevention and anti-virus. It is facing critical performance
challenges due to the rapid increase in network bandwidth and the expansion in pattern set
size. With multicore processors emerging as the dominant network processing platform,
traditional one-dimension workload distribution model via flow-based traffic parallel
processing can not fully exploit their computing power and cache hierarchy. In this paper, a
scalable string matching framework is proposed by introducing another workload
distribution dimension in pattern set. This framework distributes workloads in two
dimensions: the network traffic dimension and the pattern set dimension. A novel pattern
clustering mechanism named PCM is presented to optimize the pattern set partitioning.
Experimental results show that the proposed framework obtains a throughput speedup of
60% compared with the traditional one-dimension workload distribution mode on real-life
rule sets while the PCM pattern clustering mechanism further improves the overall
throughput by 15%~20%. The framework can adapt to various string matching algorithms
and the PCM scheme can be applied to different leap-based algorithms.

Keywords: string matching, clustering, intrusion detection, load balancing

1 INTRODUCTION

As the Internet becomes one of the most critical
infrastructures of modern society, network security is
attracting more and more concern. Being the most
widely deployed security device, firewall controls the
information access between internal and external
networks by inspecting the packet headers. However,
there are numerous types of malicious attacks that
deceive firewalls by hiding threaten patterns in packet
payloads, such as intrusions, viruses and spam.
Consequently, content inspection based devices such
as network intrusion detection/prevention systems
(NIDS/NIPS), virus scanners, and spam filters emerge
to complement the functionalities of firewalls. Besides,
unified threat management system (UTM) appears to
integrate all the packet filtering applications together.
In these content inspection devices, the most challenge
task is to accelerate string matching speed to catch up
with the booming of network bandwidth as well as the
expansion of pattern set sizes.

Traditional string matching architectures based on
general purpose processors suffer severely from the
limitation in computing power and the lack of
parallelism. On the other hand, hardware solutions,

which are typically based on FPGA/ASIC, try hard to
exploit various levels of parallelism with integrated
heterogeneous accelerators on-chip. However,
hardware schemes are restricted from publicly
deployment due to their intrinsic insufficiencies: first,
hardware platforms like FPGA/ASIC have high price
and long time-to-market term; second, they are
specifically designed chips with poor programmability
and portability.

Compared with hardware solutions, open source
IDS products, such as Snort [1] and Bro [2], provide
much more portable, flexible and economical
mechanisms for detecting attacks or intrusions.
Meanwhile, multicore processor is emerging as a
competent alternative to serve as the platform for
today’s network security appliances, owing to its high
programmability compared with hardware approaches
and high processing power compared with general
CPUs. Hence, implementing software schemes on
multicore processors becomes an attractive solution.

This paper focuses on improving the searching
speed and the scalability of string matching systems
on multicore platforms. Conventional solutions on
multicore platforms usually dispatch the incoming
packets to different processing cores based on flow-

Part of this research is conducted during Bo Xu’s internship in IBM
CRL.

level traffic load balancing, which is called the one-
dimension workload distribution model in this paper.
This one-dimension solution is easy to implement,
for the cores share the same pattern set and hence the
same data structures. Accordingly, the entire string
matching speed can be improved simply by
increasing the number of cores, given that the packets
flows can be evenly dispatched.

However, the one-dimension solution faces tough
performance challenge when the pattern set size grows,
since most of existing string matching algorithms scale
poorly with large pattern sets. For instance, the
prevailing DFA-based AC [3] algorithm consumes
linearly increasing memory storage with the increase
of pattern set size, which will cause performance
decline due to the increase in cache misses.
Meanwhile, leap based algorithms such as WM [4]
and RSI [5] suffer from the decrease in average leap
value caused by the expansion of pattern set size. Take
WM for example: with the pattern size growing, the
occurrence probabilities of each character pair will
grow as well. If the two suffix characters of the pattern
set happen to cover all the values from 0x0000 to
0xFFFF, the Bad-Character SHIFT table will get zero
in every entry, indicating that no leap could be
obtained, which will further result in brute-force
comparisons at each position, thus completely
conceals the benefit of the leap-based algorithms.

To overcome the disadvantages of the one-
dimension workload distribution model, this paper
proposes a two-dimension workload distribution
framework by introducing an additional dimension on
the pattern set. Consequently, an efficient and scalable
string matching architecture is constructed by
appropriately partitioning the pattern set as well as
balancing the incoming traffic. However, this two-
dimension framework brings a new issue of how to
partition the patterns into subsets to gain algorithmic
benefits, since different string matching algorithms
perform distinctively on the same pattern set while the
same string matching algorithm might performs
distinctively on different pattern sets.

In this paper, the proposed two-dimension
framework firstly groups the patterns into short and
long categories, which are suitable for DFA-based and
leap-based algorithms respectively, and then partitions
the long patterns into smaller subsets via a novel
pattern clustering mechanism, which exploits the
intrinsic characteristics of the adopted algorithm.
Afterwards, on the second dimension, the framework
dispatches the incoming packets via flow-level traffic
balancing. The contributions of this paper can be
summarized as follows:

 A scalable string matching framework on
multicore platform is proposed by introducing a
new dimension in pattern set partitioning into
workload distribution. Compared with the
traditional one-dimension workload distribution
model, the new two-dimension framework better
exploits the computing power and cache utilities

of the multicore platforms, which achieves an
overall performance speedup of 60%~80%.

 A novel pattern clustering mechanism called
PCM is presented to optimize the pattern set
partitioning according to the characteristics of
the adopted algorithms. Theoretical cost function
of the optimization is illustrated and
experimental results show that the PCM
algorithm contributes an additional performance
gain of 10%~20% into the two-dimension
framework compared with random pattern
clustering mechanism.

The rest of this paper is organized as follows.
Section Ⅱ analyzes the challenges in string matching
on multicore platforms. Section Ⅲ describes the
proposed two-dimension workload distribution
framework and the PCM pattern clustering mechanism.
Experimental results and analysis are given in Section
Ⅳ. Related works are discussed in Section Ⅴ and
finally conclusions are drawn in Section Ⅵ.

2 PROBLEM ANALYSIS

String matching is widely employed in various
network security devices including IDS/IPS, virus
scanners, and spam filters, etc. In these devices, string
patterns are used to denote different kinds of attacks or
infections. The emerging of multicore processors
facilitates the research on software-based string
matching architectures and an intuitive idea is to
dispatch the incoming packets into different cores to
scan the traffic in parallel. Although this model
exploits the parallelism of multicore platforms via
flow-level traffic load balancing, its scalability faces
tough challenge because each core should deal with
the entire pattern set with numerous patterns.

As a well-known open source intrusion detection
system, Snort [1] has 5,831 patterns in the rule set of
March 2008 and the number is keep growing. It is
observed in our tests that the expansion of the pattern
set size causes performance decline of string matching
algorithms, either DFA-based or leap-based. To
interpret this phenomenon, AC is taken as the
representative of DFA-based algorithms and MRSI [6]
is taken as the representative of leap-based algorithms.

Fig. 1-(a) depicts the searching speed of the AC
algorithm, which is tested on one core of the AMD
Opteron processor 270 CPU with 64KB L1 cache. It
shows that the searching speed of AC keeps
decreasing with the increase of pattern number and the
performance drops rapidly when the pattern set
contains more than 512 patterns. It is believed that the
performance decline is due to the increasing cache
miss ratios in data accesses, caused by the limited
cache size as well as the increasing number of patterns.
This affirmation is validated in Fig. 1-(b), which
depicts the data cache miss ratios captured by cache
profiling and shows that the data cache miss ratios
keep increasing with the number of patterns. Therefore,

large pattern sets are likely to induce high cache miss
ratios, and thus cause low searching speed. For
instance the throughput with 1,992 patterns in Fig. 1-(a)
is only about one third of the throughput with less than
100 patterns.

Fig. 2-(a) shows the searching speed of MRSI on
the same core as used in testing AC. The patterns are
selected from Snort patterns with length no shorter
than 6 bytes. It is shown that the throughput is
decreasing as the number of patterns grows. This
should be attributed to the leap-based characteristic of
the MRSI algorithm, for the occurrence probability of
each character pair at certain position increases with
the growing of the pattern number and accordingly the
average leap value decreases. Fig. 2-(b) shows the
curve of the average leap values with increasing
number of patterns, which is consistent with the above
deduction. As a conclusion, the expansion in pattern
set size will cause performance decline in leap-based
algorithms as well. Moreover, leap-based algorithms
have intrinsic defections to cover short patterns. For
example, WM cannot process patterns shorter than 4
byes and MRSI cannot process patterns shorter than 6
bytes.

On multicore platforms, the traditional one-
dimension workload distribution model dispatches the
packets into cores at flow-level granularity and
employs the same algorithm in all the string matching
engines. An overview of the traditional framework is
shown in Fig. 3, where the cores share the entire
pattern set and the packets belonging to the same flow
are processed in the same core. In this model, although
the flow-based scheduling scheme can exploit the
parallelism of multicore processors, the performance
decline caused by the expansion of pattern set size are
not solved, which will depress the overall inspecting
speed of the framework. A better solution is to
partition the pattern set into smaller subsets and adopt
suitable algorithms on each subset, which motivates
our work in this paper.

3 OUR SOLUTION

3.1 Two-Dimension Workload Distribution
Framework

To overcome the shortcomings of the traditional
one-dimension workload distribution model, we
extend it to a two-dimension framework by
introducing another workload distribution dimension
on pattern set. As a result, large pattern sets can be
split into small subsets to avoid the performance
decline caused by the extension of pattern sets, and
meanwhile different types of string matching
algorithms can be selected to adapt the characteristics
of each pattern subset.

The novel architecture proposed in this paper is
named as two-dimension workload distribution
framework. It distributes workload in one dimension

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000
Number of Patterns

Th
ro

ug
hp

ut
(M

bp
s)

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

1 10 100 1000 10000
Number of Patterns

C
ac

he
 M

is
s

R
at

io

(a) (b)
Figure 1: Throughput and cache miss ratio of AC

0

50

100

150

200

250

300

350

1000 2000 3000 4000 5000
Number of Patterns

Th
ro

ug
hp

ut
(M

bp
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1000 2000 3000 4000 5000
Number of Patterns

A
ve

ra
ge

 L
ea

p
V

al
ue

(a) (b)
Figure 2: Throughput and average leap value of MRSI

P4

Core#1 P3
P2

P1

Pkt1Pkt3

Pkt2

Pattern
Set

P4

Core#2 P3
P2

P1 Pattern
Set

Flow-based Load Balancing

Pkt4
P4

Core#3 P3
P2

P1 Pattern
Set

Figure 3: One-dimension workload distribution model

Core#1
P2

P1

Core#3
P4

P3

P6Core#4
P5

Pkt1Pkt3

Pkt2Pkt4

Pkt1Pkt2Pkt3Pkt4

Pkt1Pkt2Pkt3Pkt4

Short Pattern
Subset

Core#2
P2

P1

Long Pattern
Subset#1Packet Duplications via

Shared Memory

Short Pattern
Subset

Long Pattern
Subset#2

AC Engine

AC Engine

MRSI Engine

MRSI Engine

Flow-based
Load Balancing

Figure 4: Two-dimension workload distribution framework

by pattern set partitioning to exploit the best pattern
scattering in the pattern subsets, and then engages
flow-based load balancing in another dimension to
achieve high systemic throughput.

Fig. 4 illustrates a prototype of the two-dimension
workload distribution framework. In the first
dimension, the entire pattern set is divided into two
categories, the short patterns P1~P2 and the long
patterns P3~P6, and further, the long patterns are
divided into two subsets: P3 & P4 to be processed in
Core#3 and P5 & P6 to be processed in Core#4. DFA-
based and leap-based algorithms are employed to
process the short and long pattern subsets separately,
where AC and MRSI are selected in this example. In
the second dimension, flow-based load balancing is
employed to distribute the incoming packets evenly to
different cores. The packets need to be duplicated to
be dispatched into the pattern subsets simultaneously.
However, compared with the searching speed of the
string matching engines, it is believed that the
duplicating and dispatching of the packets will not
become the bottleneck of the whole framework.

3.2 System Architecture
As shown in Fig. 5, the proposed framework

mainly contains four components: a Flow Buffer, a
Resource Manager & Scheduler (RMS), a Pattern Set
Divider (PSD), and several String Matching Engines
(SMEs).

Flow Buffer is in charge of storing and
reassembling the incoming packets, so that the packets
belonging to the same flow are stored sequentially in
the same queue. PSD is responsible for pattern set
partitioning and data structure optimization. It
determines how to divide the patterns into subsets in
the preprocessing stage, which will be further
discussed in Section Ⅲ.C. SMEs denote the cores
where string matching operations are performed. RMS
is responsible for allocating the computing resources
(cores) in the preprocessing stage according to the
expected overall performance. RMS also schedules the

packets distribution in the searching stage. Detailed
explanation of RMS is stated in Section Ⅲ.E.

3.3 Pattern Set Partitioning
In the preprocessing stage, PSD is in charge of

dividing the patterns into subsets for distributed
pattern matching in the SMEs. There are three steps for
pattern set partitioning.

In the first step, string matching algorithms are
chosen for the SMEs. The selection of algorithms is
related to the characteristics of the pattern set. Take
Snort rule for example: Fig. 6 shows the length
distribution of Snort rules in March 2008, which
contain 5,831 patterns. The rule set has 68 patterns
with l byte, and 1,421 patterns shorter than 6 bytes.
Since leap-based algorithms cannot handle short
patterns, DFA-based algorithms are required.
Meanwhile, since DFA-based algorithms suffer from
cache misses with large pattern sets, leap-based
algorithms are required to complement DFA-based
algorithms. In this paper, AC is selected as the
representative of DFA-based algorithms to handle the
short patterns less than 6 bytes, while MRSI is selected
as the representative of leap-based algorithms to
handle the rest long patterns. It should be noticed that
the two-dimension framework is independent of the
algorithms. AC and MRSI are simply selected as an
example to illustrate the advantage of the two-
dimension framework.

In the second step, the pattern subset sizes should
be decided for the AC and MRSI engines. As known,
both of the algorithms suffer performance decline due
to the expansion of pattern set sizes. For AC, as
illustrated in Fig. 1-(a), it typically has an inflexion in
performance due to the increase in data cache miss
ratios. Furthermore, the inflexion is mainly determined
by the L1 cache size of the CPU. Hence, the proper
pattern subset size for AC is determined by the
hardware architecture of the multicore platforms.
When deployed on the platform in the case of Fig. 1,
the proper size should be less than 512 patterns, for the

SME

Resource Manager & Scheduler

Pattern Set DividerFlow Buffers

Pattern Set

Subset#1 Subset#2 Subset#N

Pattern Subsets

Traffic

Matching Results

SME SME

Shared Memory

Traffic Dimension Pattern Set DimensionMulticore Processor

Figure 5: System architecture of the two-dimension workload distribution framework

performance decline accelerates at this point, which
makes it an inflexion. The pattern subset sizes for
MRSI engines should be determined by the
performance expectation on single core. For example,
as shown in Fig. 2-(a), if the single core matching
speed is expected to be larger than 300Mbps, the
pattern subset size should be less than 2,000 patterns.

In the third step, the patterns are classified into
different subsets. For DFA-based algorithms like AC,
the performance of each subset is primarily
determined by the number of patterns rather than the
scattering of the patterns in different subsets. However,
pattern scattering can significantly influence the
performance of leap-based algorithms like MRSI since
the leaps are determined by the distribution of the
characters in patterns. Consequently, pattern clustering
for leap-based algorithms becomes an open issue,
which motivates the design of the pattern clustering
mechanism in this paper.

3.4 Pattern Clustering Mechanism (PCM)
Pattern scattering in the pattern subsets is of great

significance to the searching speed of leap-based
algorithms. If the patterns in each subset are treated as
a cluster, the pattern scattering in the subsets can be
seen as a pattern clustering problem. Mathematically,
pattern clustering is an optimization problem of
seeking the optimal mapping function :f P S→ to
minimize the sum of cost values (1)j j mλ ≤ ≤∑ , where
P is the pattern set { |1 }iP p i n= ≤ ≤ and S stands for
the m subsets { |1 }jS S j m= ≤ ≤ .

In this paper, a novel pattern clustering mechanism
named the PCM scheme is devised to optimize the
pattern partitioning for leap-based algorithms. Herein,
MSRI is taken as the representative of leap-based
algorithms to illustrate the details of the PCM scheme,
which can easily adapt to other leap-based algorithms
with slight modification in the cost functions. The
procedure of the PCM scheme for MRSI includes:

1) Given the number of clusters m,
randomly select m patterns and place each of
them into one subset. A cost value is calculated
for each subset according to a prescribed cost

function. So m cost values are gotten as
(1)j j mλ ≤ ≤ .
2) For each ip in the other n m−

patterns, calculate sum of cost values k jλ∑ ,
which denotes the total cost with ip joining the
subset kS . If 1mint j k m k jλ λ≤ ≤=∑ ∑ , then put ip
into the subset tS . Thus, the initial subset-ids of
all the patterns are set and the subsets get their
initial cost values 0 (1)j j mλ ≤ ≤ .

3) Start pattern clustering iterations. In
the first iteration, for each ip , assuming its
subset-id is t , change its subset-id from 1 to m
and calculate the new sum of cost values 0

k jλ∑ ,
which denotes the total cost with ip joining the
subset kS . If 0 0

1minv j k m k jλ λ≤ ≤=∑ ∑ , change the
subset-id of ip from t to v . After all patterns
finish the first iteration, some patterns are set
new subset-id and the subsets get new cost
values 1(1)j j mλ ≤ ≤ .

4) Proceed the pattern clustering
iretations until the two consecutive total cost
tolerance is smaller than a given positive value
ε . Thus, if 1() /r r r

k j k j k jλ λ λ ε−− <∑ ∑ ∑ , the
iterations will be stopped at iteration r and the
patterns get their final subset-ids.

The design of cost function has crucial influence
on the practical performance of MRSI engines, for it
determines how the patterns are clustered. Fig. 7
shows the data structure of MRSI [6], in which the
three Block Leap Tables (BLTs) stores the longest
leaps that can be generated according to the three two-
character blocks and the Potential Match Table (PMT)
stores the possible matching patterns when the leap
value in BLT#1 equals to zero. The last two characters
are used as hash indexes in PMT. The matching
process of MRSI is:

a) Use the three two-character blocks of the input
text to index the BLTs and get three leap values;

b) Denote the maximum of the three leap values as
maxL . If max 0L > , then shift the input text by maxL ;

c) If max 0L = , use the last two-character block of
the input text as the index to search PMT, and match

0

100

200

300

400

500

600

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

Pattern Length

N
um

be
r o

f P
at

te
rn

s

Figure 6: Pattern length distribution of Snort rules Figure 7: Data structure of MRSI

the potential patterns one by one to find out the exact
matches.

According to the searching procedure of MRSI, it
is observed that the leap values in the three BLTs and
the lengths of the hash lists in PMT are the key factors
that impact string matching speed. Obviously, MRSI
performs better if the leap values are larger or the hash
list lengths are shorter. Thus, a good pattern clustering
mechanism should aim at obtaining the longest
average leap value of the entries in the three BLTs and
obtaining the shortest average length of the hash lists
in PMT.

The leap values in the three BLTs can be denoted
as (0 65535,1 3)k

iL i k≤ ≤ ≤ ≤ , and so the average leap
value will be ()k

iL mean L= . The hash list lengths can
be designated as (0 65535)iH i≤ ≤ , and so the average
hash list length will be ()iH mean H= . It should be
noticed that, if there is a potential match, MRSI needs
averagely / 2H times of memory accesses (naïve
comparisons) to find out the exact matches. In contrast,
if there is no potential matches, MRSI can shift input
text by L , which can be expressed as 1/ L times of
memory accesses in cost. Therefore, if using matchP to
indicate the average possibility of searching PMT, the
cost function of MRSI can be denoted as Equation 1.

(1) / * / 2match matchP L P Hλ = − +
 (1)

Based on this cost function, the patterns can be
clustered into several subsets to optimize MRSI’s
average performance in the subsets. It has been proved
that the PCM scheme converges at a locally optimal
solution. The proof is omitted here due to the page
limit. Since the PCM scheme uses a hill-climbing
strategy, the convergence point might not be the global
optimal solution. However, the locally optimal
solution is quite satisfactory according to our
evaluation results. The experimental result of the PCM
scheme’s convergence speed is provided in Section
Ⅳ.D, which shows the convergence speed of PCM is
pretty fast. The selection of matchP is a tiny issue since
it is unknown before the input text is scanned entirely.
In practice, it can be estimated according to the prior
searching results of the context, though it is not a
precise value. The impact of matchP on clustering effect
is discussed in Section Ⅳ.E.

3.5 Resource Management and Scheduling
RMS is responsible for managing the computing

resources and scheduling the incoming traffic.
Resource management is to allocate the computing
resources (cores) to the string matching engines (SMEs)
in the preprocessing stage while traffic scheduling is to
distribute the incoming traffic to the SMEs in the
searching stage.

In the preprocessing stage, RMS determines how
many cores should be allocated to each subset to meet

the overall performance requirement. The aim is that
the scanning speed on the subsets should be balanced
to ensure high utilization of hardware resources. Thus,
given an overall expected throughput, assign enough
cores to each subset. Otherwise, if the number of cores
is not enough, the cores should be allocated
proportionally based on the searching speed on each
subset to achieve a possibly maximum throughput,
assuming the single core searching speed on each
subset is prior knowledge with specific string
matching algorithms. A simple resource management
algorithm is proposed here:

Assume PSD has divided the patterns into m
subsets 1 2, , ... , mS S S , and the single core searching
throughputs on the subsets are denoted as 1 2, , ... , mT T T .
Given the expected throughput E and the number of
cores C, the number of cores needed for subset

(1)kS k m≤ ≤ should be / (1)kE T k m≤ ≤⎡ ⎤⎢ ⎥ . Denote
1

/m
sum kk

E E T
=

= ⎡ ⎤⎢ ⎥∑ . If sumC E≥ , the number of cores
assigned to subset (1)kS k m≤ ≤ is / (1)kE T k m≤ ≤⎡ ⎤⎢ ⎥ .
Else sumC E< , the number of cores assigned to subset

(1)kS k m≤ ≤ is / / , (1)k sumC E T E k m⎢ ⎥× ≤ ≤⎡ ⎤⎢ ⎥⎣ ⎦ .
Considering the number of cores should be integers,
there might be some cores left. If there are L cores left,
assign the left cores to the L subsets with the L largest
residues. Residue of subset (1)kS k m≤ ≤ is defined
as / / / / , (1)k k sum k sumR C E T E C E T E k m⎢ ⎥= × − × ≤ ≤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ .

In the searching stage, RMS acts as a scheduler and
decides which core the incoming packets should be
distributed. The scheduling has two compulsory steps:
first, if the pattern set is divided into m subsets, RMS
duplicates m copies of every packet and sends each
copy of it to the cores combined with each pattern
subset; second, if one pattern subset is assigned with
more than one core, RMS is responsible for balancing
the workload on the cores to approach high CPU and
cache utilities. In addition to the second step, RMS is
required to dispatch the packets at flow level to detect
avoidance attacks which span packets.

To summarize, in the two-dimension workload
distribution framework, PSD takes charge of the first
dimension workload distribution on pattern set
partitioning while RMS takes charge of the second
dimension workload distribution on traffic load
scheduling.

4 EXPERIMENTAL RESULTS

4.1 Experiment Setup
The proposed two-dimension workload

distribution framework and the PCM scheme were
evaluated on an AMD Opteron multicore platform.
The platform has 4 cores running at 2GHz with totally
2GB DDR2 memory. Each core has 64KB L1 cache
and supports 4 zero-overhead-content-switched
hardware threads. In the tests, AC is selected as the
representative of DFA-based algorithms, and MRSI is
selected as the representative of leap-based algorithms.

Two real-life pattern sets are adopted to evaluate
the performance of the two-dimension framework
compared with the traditional one-dimension model.
One is the Snort rule set in March 2008, including
totally 5,831 patterns. Along with the Snort rule set, a
real-life trace provided by DEFCON [7] is used as the
testing trace, which contains totally 353,799,850 bytes.
Another real-life rule set is the rule set of the well-
known anti-virus software ClamAV [8]. The ClamAV
rule set is larger than 100K patterns, but only 8,000
patterns are randomly selected from it to test the two
frameworks, since the AC algorithm cannot handle
more than 8,000 patterns on the AMD Opteron
multicore platform due to the huge memory
occupation and thus the traditional one-dimension
model cannot get its throughput. A randomly
generated trace is used as the test trace along with the
ClamAV rule set.

4.2 Evalution of the Two-dimension Framework
To evaluate the efficiency of the two-dimension

workload distribution framework, the overall
throughput of the proposed two-dimension framework
is compared against the traditional one-dimension
model.

In the traditional one-dimension workload
distribution model, the entire pattern set is applied in
all the string matching engines (SMEs). Since leap-
based algorithms cannot handle short patterns, AC
becomes the only choice for the string matching
algorithm in the SMEs. As shown in Fig. 3, each SME
handle the whole pattern set with AC algorithm. When
tested on the AMD Opteron multicore platform, each
of the four cores runs a SME with AC algorithm, while
the incoming traffic is distributed to the four cores
with flow-level load balancing. The overall throughput
is the average value of three times of tests with each
pattern set and its corresponding trace.

When testing the two-dimension workload
distribution framework, short patterns with less than 6
bytes are handled by AC while the long patterns are
handled by MRSI. As shown in Fig. 4, two cores of
the AMD Opteron multicore platform are selected as
AC string matching engines, and flow-level load
balancing is applied. The long patterns are split into
two subsets either with random clustering mechanism
(RCM) or with the PCM scheme, and the other two
cores run MRSI string matching engines with the two
subsets separately. Every incoming packet is
duplicated and sent into the two MRSI engines to scan
simultaneously. The overall throughput is a total value
of the two AC engines and the two MRSI engines, and
an average value of three times of tests with each
pattern set and its corresponding trace is taken as the
final result.

Table 1 shows the performance of the one-
dimension model and the two-dimension framework
with the two real-life pattern sets and their
corresponding traces on the AMD Opteron multicore
platform. With the DEFCON trace and the Snort

pattern set which contains 5831 patterns, the one-
dimension model gets a throughput of 192Mbps.
Meanwhile, the two-dimension framework with
random clustering mechanism (RCM) gets a
throughput of 316Mbps, which is 64% higher than the
performance of the one-dimension model. Besides,
when the PCM scheme is adopted, the two-dimension
framework achieves a throughput of 377Mbps, which
introduces an extra 19% speedup compared with the
RCM scheme.

With the ClamAV pattern set which contains 8000
patterns and a randomly generated trace, the one-
dimension model gets a throughput of 142Mbps.
Meanwhile, the two-dimension framework with
random clustering mechanism (RCM) gets a
throughput of 234Mbps, which is 64% higher than the
performance of the one-dimension model. When the
PCM scheme is engaged, the two-dimension
framework obtains a throughput of 274Mbps, which
introduces an extra 17% performance gain compared
with the RCM scheme.

Table 1: Performance of different frameworks

Pattern Set One-dim Two-dim Two-dim
(PCM)

Snort 192 Mbps 316 Mbps 377 Mbps

ClamAV 142 Mbps 234 Mbps 274 Mbps

Besides, the throughput with the ClamAV rule set
is slightly lower than that with the Snort rule set. This
is due to the larger number of patterns and longer
average pattern lengths in the ClamAV rule set, which
will cause performance decline in AC string matching
engines.

4.3 Evalution of the PCM Scheme
The PCM scheme is the kernel algorithm in

Pattern Set Divider (PSD). It determines the scattering
of long patterns in the MRSI subsets, which can
significantly influence the overall performance of the
two-dimension framework.

To evaluate the performance of the PCM scheme,
experiments were conducted on the real-life DEFCON
trace along with the long patterns of the Snort rule set,
which includes totally 4,410 patterns with no less than
6 bytes. Since there is no any prior pattern clustering
mechanism in the literature, performance comparison
is done between the PCM scheme and the random
clustering mechanism (RCM), which randomly
partitions the patterns into the subsets and ensures
every subset having the same number of patterns.

For better comparing the performance of the PCM
scheme and the RCM scheme, the long pattern rule set
is divided into 2, 4, 8, and 16 subsets to test the overall
MRSI string matching performance on the AMD
Opteron multicore platform. Furthermore, since the
performance of MRSI is determined by the total
memory access times, the average leap values, the

number of naïve comparisons, and the number of table
indexing were observed on the two clustering schemes.

Fig. 8 illustrates the MRSI performance gain with
the PCM scheme compared with the RCM scheme. It
shows that the PCM scheme outperforms RCM by
15%~25% when the number of subsets varies from 2
to 16, where PCM achieves its highest improvement
percentage when the number of pattern subsets equals
to 4. One reason is that the AMD Opteron multicore
platform has 4 cores, which will get highest CPU
utilization efficiency when the number of tasks equals
to 4.

Fig. 9 depicts the average leap values of the MRSI
algorithm when the patterns are partitioned by the two
pattern clustering mechanisms. With a given number
of subsets, the overall average leap value is the mean
of the average leap values on each subset. It is shown
that the average leap value with PCM is visibly larger
than with RCM when the number of subsets varies
from 2 to 16. Besides, when the number of subsets
increases, the average leap values with the two
schemes keep increasing, since the number of patterns
in each subset is reduced.

Fig. 10 shows the percentage of naïve comparisons
needed by the MRSI algorithm with the PCM scheme
compared to the RCM scheme. With a given number
of subsets, the mean of naïve comparisons on each
subset is taken as the overall number of naïve
comparisons. It is illustrated that PCM reduces the
naïve comparisons by 10%~30% compared with RCM
and the reducing percentage reaches its peak value
when the number of subsets equals to 4, which

partially contributes to the highest performance
improvement shown in Fig. 8.

Fig. 11 shows the percentage of table indexing
times needed by the MRSI algorithm with the PCM
scheme compared to the RCM scheme. The table
indexing means the memory accesses in the BLTs of
MRSI’s data structures, which is part of the overhead
in string matching. It is shown that PCM reduces the
times of table indexing by 15%~25% compared with
RCM. Besides, the reducing percentage is relatively
stable in spite of different number of subsets.

4.4 Convergence Speed of PCM
Table 2 provides the times of iterations needed for

the PCM scheme with different number of subsets. It
is shown that the PCM scheme converges quite fast
and the required times of iterations increase slowly
when the number of subsets grows.

Table 2: PCM convergence speed

#Subsets 2 4 8 16

#Iterations 0 2 3 5

4.5 Selection of Matching Rate
The cost function for PCM is
(1) / * / 2match matchP L P Hλ = − + , where the matching rate

is a key factor that could impact the clustering effect
of the patterns. The matching rate is defined as the
times needed for naïve comparisons divided by the
total length of the input text. The challenge is that the
exact matching rate is unknown before the traffic is
inspected against the patterns completely. In
implementation, the matching rate can be predicted
according to the matching rate of the previous traffic

60%

70%

80%

90%

100%

110%

120%

130%

0 2 4 6 8 10 12 14 16 18
Number of Subsets

O
ve

ra
ll

Pe
rfo

rm
an

ce

RCM

PCM

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18
Number of Subsets

A
ve

ra
ge

 L
ea

p
V

al
ue

RCM

PCM

Figure 8: MRSI throughput speedup Figure 9: MRSI average leap values

50%

60%

70%

80%

90%

100%

110%

0 2 4 6 8 10 12 14 16 18
Number of Subsets

N
um

be
r o

f N
aï

ve
 C

om
pa

ris
on

s

RCM

PCM

50%

60%

70%

80%

90%

100%

110%

120%

0 2 4 6 8 10 12 14 16 18
Number of Subsets

To
ta

l T
ab

le
 In

de
xi

ng
 T

im
es

RCM

PCM

Figure 10: MRSI naïve comparison percentage Figure 11: MRSI table indexing percentage

in a period of time, one hour for example. Otherwise,
the matching rate can be set a default value for
expedience.

Fig. 12 gives the overall performance of MRSI
with different matching rate applied in the PCM cost
function. In this test, the number of MRSI subsets is
set 2 and the experiments are conducted on the AMD
Opteron multicore platform. Each subset is assigned
with two cores and flow-level load balancing is
engaged to distribute the incoming packets. It is shown
that the overall performance varies between 580Mbps
and 625Mbps and the throughput reaches its peak
value when the matching rate equals to 3.5%. In fact,
the total matching time is 12,633,581 and the precise
matching rate is 3.57%, given the trace of 353,799,850
bytes in length. The results demonstrate that the PCM
clustering scheme achieves the highest performance
when the matching rate approaches the actual rate in
practice.

5 RELATED WORKS

Many string matching algorithms and architectures
have been proposed in recent years for content
inspection. In summary, the previous works can be
classified into two categories: one is hardware
solutions based on FPGA/ASIC; the other is software
algorithms based on general purpose processors.
Furthermore, the software algorithms can be classified
into DFA-based algorithms and leap-based algorithms.

Aho-Corasick (AC) [3] is the most popular DFA-
based software algorithm for multiple pattern string
matching. It employs a deterministic finite automaton
(DFA) to organize the patterns and reveals matching
results in one pass. The advantage of AC is that it only
needs search time on the order of O(n), regardless of
the number of patterns, where n is the length of the
input text. However, AC suffers from two intrinsic
deficiencies. First, it does not exploit the heuristics in
the pattern set to generate a leap for avoiding
unnecessary comparisons. Second, the memory
occupation of AC increases linearly with the growing
of the pattern set size, which will cause higher cache
miss rates and correspondingly lower searching speeds.

Wu-Manber (WM) [4] is the representative of
leap-based algorithms that evade unnecessary
comparisons at some matching positions based on

heuristics. WM inherits the bad character heuristic of
Boyer-Moore (BM) [9] algorithm and uses two or
three suffix characters to generate a leap. If the leap
value does not equal to zero, the matching window can
be shifted by this value; otherwise naïve comparisons
will be adopted to verify the potential matching
patterns indicated by the prefix hash table. WM
consumes much less memory than AC, but it needs
time-consuming comparisons when no leap could be
generated. Moreover, when the pattern set grows large,
the probability of getting leaps and the average leap
value are inevitable to become smaller, which will
deeply impact the string matching speed.

There are many other software algorithms
proposed in recent years. Leap-based algorithms
including AC_BM [10], Setwise Boyer-Moore [11],
E2xB [12], RSI [5], MRSI [6] are presented to
leverage the characteristics in pattern sets for
improving scanning performance. However, these
leap-based algorithms suffer from the same problem
with WM that the prospective leap value will become
smaller when the number of patterns increases.

Hardware algorithms mainly rely on the specially
designed architectures to accelerate string matching.
FPGA-based algorithms [13-20] and ASIC-based
algorithms [21-27] exploit the parallelism in circuits as
well as the abundance of data channels to achieve
gigabit-level throughput. However, the high cost, long
developing term, and poor flexibility encumber their
feasibility of wide deployment.

In recent years, multicore processors have emerged
as a competitive candidate for high performance string
matching architectures. They are superior to general
purpose CPUs for their powerful computing capability
and rich memory banks. Besides, multicore platforms
surpass hardware circuits by their high
programmability, flexibility and portability. This paper
aims at exploring a scalable string matching
framework on multicore platforms for intrusion
detection and deep inspection systems.

6 CONCLUSIONS

In this paper, a novel parallel processing
framework, called the two-dimension workload
distribution framework, is proposed to optimize the
multi-pattern string matching on modern multicore
platforms. The innovations are motivated by the poor
scalability and performance of the traditional one-
dimension model, which dispatches the string
matching workload only by flow-level traffic load
balancing. The proposed two-dimension workload
distribution framework improves the traditional model
by introducing a new dimension on pattern set
partitioning to balance the workload distribution by
pattern clustering. It firstly partitions the patterns into
subsets according to the selected algorithms’
characteristics in the first dimension, and then
dispatches the incoming packets via flow-level load
balancing in the second dimension. Furthermore, a

500

520

540

560

580

600

620

640

0 1 2 3 4 5 6 7 8 9
Matching Rate(%)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 12: MRSI performance with different matching rates in PCM

novel pattern clustering mechanism named PCM is
presented to optimize the performance on the long
pattern subsets in MRSI engines.

The PCM scheme is devised based on the intrinsic
characteristics of the MRSI algorithm, and it can
easily be extended to support other leap-based
algorithms with slight modifications in the cost
function. In addition, the two-dimension workload
distribution framework can adapt to various string
matching algorithms besides AC and MRSI. The
framework provides a platform to split the pattern set
into subsets according to the characteristics of
different algorithms. It is believed that this scalable
framework can support large pattern sets with more
than 100K patterns, and the overall searching
performance can meet gigabyte level line speed
requirement with modest number of cores.

Experimental results show that the proposed two-
dimension workload distribution framework achieves
a performance speedup of 60% with real-life rule sets,
compared with the traditional one-dimension model.
Besides, assisted by the PCM scheme, the two-
dimension workload distribution framework obtains an
additional 15%~20% performance gain compared with
the random clustering mechanism (RCM). Besides,
PCM is proved to converge at a locally optimal
solution and has a rapid convergence speed, which
facilitates its employment in practice.

Future work will be done on designing elaborate
resource manager and scheduler to automatically
allocate the computing resources on the pattern subsets,
and to automatically balancing the overhead in the
string matching engines. The final objective is to
devise an intelligent architecture that can
automatically distribute workload on both pattern and
traffic dimensions to form up a well-performed
parallel processing system.

7 REFERENCES

[1] M. Roesh: Snort – Lightweight Intrusion Detection for

Network, Proc. of the 13th Systems Administration
Conference (1999).

[2] Bro intrusion detection system, http://www.bro-ids.org/.
[3] A. Aho and M. Corasick: Fast Pattern Matching: An Aid to

Bibliographic Search, Commun. ACM, vol. 18, no. 6, pp.
333-340 (1975).

[4] S. Wu and U. Manber: A Fast Algorithm for Multi-pattern
Searching, Technical Report TR-94-17, Dept. Computer
Science, University of Arizona (1994).

[5] B. Xu, X. Zhou, and J. Li: Recursive Shift Indexing: A Fast
Multi-Pattern String Matching Algorithm, Proc. of the 4th
International Conference on Applied Cryptography and
Network Security (2006).

[6] X. Zhou, B. Xu, Y. X. Qi, and J. Li: MRSI: A Fast Pattern
Matching Algorithm for Anti-virus Applications, Proc. of the
7th International Conference on Networking (2008).

[7] MIT DARPA Intrusion Detection Data Sets,
http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.
html.

[8] ClamAV Anti-virus, http://www.clamav.net/.
[9] R. Boyer and J. Moore: A Fast String Searching Algorithm,

Commun. ACM, vol. 20, no. 10, pp. 762-772 (1977).
[10] C. J. Coit, S. Staniford, and J. McAlerney: Towards Faster

Pattern Matching for Intrusion Detection, or Exceeding the
Speed of Snort, Proc. of the 2nd DARPA Information
Survivability Conference and Exposition (2002).

[11] M. Fisk and G. Varghese: Fast Content-based Packet
Handling for Intrusion Detection, UCSD Technical Report
CS2001-0670 (2001).

[12] K. G. Anagnostakis, E. P. Markatos, S. Antonatos, and M.
Polychronakis: E2xB: A Domain-pecific String Matching
Algorithm for Intrusion Detection, Proc. of the 18th IFIP
International Information Security Conference (2003).

[13] B. L. Hutchings, R. Franklin, and D. Carver: Assisting
Network Intrusion Detection with Reconfigurable Hardware,
IEEE Symposium on Field-Programmable Custom
Computing Machines (2002).

[14] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos:
Implementation of A Content-scanning Module for an
Internet Firewall, IEEE Symposium on Field-Programmable
Custom Computing Machines (2003).

[15] C. R. Clark and D. E. Schimmel: Scalable Pattern Matching
for High Speed Networks, IEEE Symposium on Field-
Programmable Custom Computing Machines (2004).

[16] Z. K. Baker and V. K. Prasanna: Time and Area Efficient
Pattern Matching on FPGAs, IEEE Symposium on Field-
Programmable Custom Computing Machines (2004).

[17] Z. K. Baker and V. K .Prasanna: Methodology for Synthesis
of Efficient Intrusion Detection Systems on FPGAs, IEEE
Symposium on Field-Programmable Custom Computing
Machines (2004).

[18] L. Bu and J. A. Chandy: FPGA Based Network Intrusion
Detection Using Content Addressable Memories, Proc. of
IEEE International Conference on Field-Programmable
Technology (2004).

[19] I. Sourdis and D. Pnevmatikatos: Pre-decoded CAMs for
Efficient and High-speed NIDS Pattern Matching, IEEE
Symposium on Field-Programmable Custom Computing
Machines (2004).

[20] Z. K. Baker and V. K. Prasanna: High-throughput Linked-
pattern Matching for Intrusion Detection Systems, Proc. of
Symposium on Architecture for Networking and
Communications Systems (2005).

[21] F. Yu, R. H. Katz, and T. V. Lakshman: Gigabit Rate Packet
Pattern-matching Using TCAM, Proc. of the 12th IEEE
International Conference on Network Protocols (2004).

[22] J. Lockwood: Deep Packet Inspection Using Parallel Bloom
Filters, IEEE Micro, vol. 24, pp. 52-61 (2004).

[23] N. Tuck, T. Sherwood, B. Calder, and G. Varghese:
Deterministic Memory-efficient String Matching Algorithms
for Intrusion Detection, Proc. of INFOCOM (2004).

[24] L. Tan and T. Sherwood: A High Throughput String
Matching Architecture for Intrusion Detection and Prevention,
Proc. of International Symposium on Computer Architecture
(2005).

[25] J. V. Lunteren: High-performance Pattern-matching Engine
for Intrusion Detection, Proc. of IEEE INFOCOM (2006).

[26] S. Dharmapurikar and J. Lockwood: Fast and Scalable
Mattern Matching for Network Intrusion Detection Systems,
IEEE Journal on Selected Areas in Communications, vol. 24,
pp. 1781-1792 (2006).

[27] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu: A Memory-
efficient Parallel String Matching Architecture for High-speed
Intrusion Detection, IEEE Journal on Selected Areas in
Communications, vol. 24, pp. 1793-1804 (2006).

