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ABSTRACT 
String matching plays an important role in content inspection based applications such as 
network intrusion detection/prevention and anti-virus. It is facing critical performance 
challenges due to the rapid increase in network bandwidth and the expansion in pattern set 
size. With multicore processors emerging as the dominant network processing platform, 
traditional one-dimension workload distribution model via flow-based traffic parallel 
processing can not fully exploit their computing power and cache hierarchy. In this paper, a 
scalable string matching framework is proposed by introducing another workload 
distribution dimension in pattern set. This framework distributes workloads in two 
dimensions: the network traffic dimension and the pattern set dimension. A novel pattern 
clustering mechanism named PCM is presented to optimize the pattern set partitioning. 
Experimental results show that the proposed framework obtains a throughput speedup of 
60% compared with the traditional one-dimension workload distribution mode on real-life 
rule sets while the PCM pattern clustering mechanism further improves the overall 
throughput by 15%~20%. The framework can adapt to various string matching algorithms 
and the PCM scheme can be applied to different leap-based algorithms. 
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1 INTRODUCTION 
 

As the Internet becomes one of the most critical 
infrastructures of modern society, network security is 
attracting more and more concern. Being the most 
widely deployed security device, firewall controls the 
information access between internal and external 
networks by inspecting the packet headers. However, 
there are numerous types of malicious attacks that 
deceive firewalls by hiding threaten patterns in packet 
payloads, such as intrusions, viruses and spam. 
Consequently, content inspection based devices such 
as network intrusion detection/prevention systems 
(NIDS/NIPS), virus scanners, and spam filters emerge 
to complement the functionalities of firewalls. Besides, 
unified threat management system (UTM) appears to 
integrate all the packet filtering applications together. 
In these content inspection devices, the most challenge 
task is to accelerate string matching speed to catch up 
with the booming of network bandwidth as well as the 
expansion of pattern set sizes. 

Traditional string matching architectures based on 
general purpose processors suffer severely from the 
limitation in computing power and the lack of 
parallelism. On the other hand, hardware solutions, 

which are typically based on FPGA/ASIC, try hard to 
exploit various levels of parallelism with integrated 
heterogeneous accelerators on-chip. However, 
hardware schemes are restricted from publicly 
deployment due to their intrinsic insufficiencies: first, 
hardware platforms like FPGA/ASIC have high price 
and long time-to-market term; second, they are 
specifically designed chips with poor programmability 
and portability.  

Compared with hardware solutions, open source 
IDS products, such as Snort [1] and Bro [2], provide 
much more portable, flexible and economical 
mechanisms for detecting attacks or intrusions. 
Meanwhile, multicore processor is emerging as a 
competent alternative to serve as the platform for 
today’s network security appliances, owing to its high 
programmability compared with hardware approaches 
and high processing power compared with general 
CPUs. Hence, implementing software schemes on 
multicore processors becomes an attractive solution.  

This paper focuses on improving the searching 
speed and the scalability of string matching systems 
on multicore platforms. Conventional solutions on 
multicore platforms usually dispatch the incoming 
packets to different processing cores based on flow-

Part of this research is conducted during Bo Xu’s internship in IBM 
CRL. 



level traffic load balancing, which is called the one-
dimension workload distribution model in this paper. 
This one-dimension solution is easy to implement, 
for the cores share the same pattern set and hence the 
same data structures. Accordingly, the entire string 
matching speed can be improved simply by 
increasing the number of cores, given that the packets 
flows can be evenly dispatched.  

However, the one-dimension solution faces tough 
performance challenge when the pattern set size grows, 
since most of existing string matching algorithms scale 
poorly with large pattern sets. For instance, the 
prevailing DFA-based AC [3] algorithm consumes 
linearly increasing memory storage with the increase 
of pattern set size, which will cause performance 
decline due to the increase in cache misses. 
Meanwhile, leap based algorithms such as WM [4] 
and RSI [5] suffer from the decrease in average leap 
value caused by the expansion of pattern set size. Take 
WM for example: with the pattern size growing, the 
occurrence probabilities of each character pair will 
grow as well. If the two suffix characters of the pattern 
set happen to cover all the values from 0x0000 to 
0xFFFF, the Bad-Character SHIFT table will get zero 
in every entry, indicating that no leap could be 
obtained, which will further result in brute-force 
comparisons at each position, thus completely 
conceals the benefit of the leap-based algorithms.  

To overcome the disadvantages of the one-
dimension workload distribution model, this paper 
proposes a two-dimension workload distribution 
framework by introducing an additional dimension on 
the pattern set. Consequently, an efficient and scalable 
string matching architecture is constructed by 
appropriately partitioning the pattern set as well as 
balancing the incoming traffic. However, this two-
dimension framework brings a new issue of how to 
partition the patterns into subsets to gain algorithmic 
benefits, since different string matching algorithms 
perform distinctively on the same pattern set while the 
same string matching algorithm might performs 
distinctively on different pattern sets.  

In this paper, the proposed two-dimension 
framework firstly groups the patterns into short and 
long categories, which are suitable for DFA-based and 
leap-based algorithms respectively, and then partitions 
the long patterns into smaller subsets via a novel 
pattern clustering mechanism, which exploits the 
intrinsic characteristics of the adopted algorithm. 
Afterwards, on the second dimension, the framework 
dispatches the incoming packets via flow-level traffic 
balancing. The contributions of this paper can be 
summarized as follows:  

 A scalable string matching framework on 
multicore platform is proposed by introducing a 
new dimension in pattern set partitioning into 
workload distribution. Compared with the 
traditional one-dimension workload distribution 
model, the new two-dimension framework better 
exploits the computing power and cache utilities 

of the multicore platforms, which achieves an 
overall performance speedup of 60%~80%.  

 A novel pattern clustering mechanism called 
PCM is presented to optimize the pattern set 
partitioning according to the characteristics of 
the adopted algorithms. Theoretical cost function 
of the optimization is illustrated and 
experimental results show that the PCM 
algorithm contributes an additional performance 
gain of 10%~20% into the two-dimension 
framework compared with random pattern 
clustering mechanism.  

The rest of this paper is organized as follows. 
Section Ⅱ analyzes the challenges in string matching 
on multicore platforms. Section Ⅲ describes the 
proposed two-dimension workload distribution 
framework and the PCM pattern clustering mechanism. 
Experimental results and analysis are given in Section 
Ⅳ. Related works are discussed in Section Ⅴ and 
finally conclusions are drawn in Section Ⅵ. 

 
2 PROBLEM ANALYSIS 
 

String matching is widely employed in various 
network security devices including IDS/IPS, virus 
scanners, and spam filters, etc. In these devices, string 
patterns are used to denote different kinds of attacks or 
infections. The emerging of multicore processors 
facilitates the research on software-based string 
matching architectures and an intuitive idea is to 
dispatch the incoming packets into different cores to 
scan the traffic in parallel. Although this model 
exploits the parallelism of multicore platforms via 
flow-level traffic load balancing, its scalability faces 
tough challenge because each core should deal with 
the entire pattern set with numerous patterns. 

As a well-known open source intrusion detection 
system, Snort [1] has 5,831 patterns in the rule set of 
March 2008 and the number is keep growing. It is 
observed in our tests that the expansion of the pattern 
set size causes performance decline of string matching 
algorithms, either DFA-based or leap-based. To 
interpret this phenomenon, AC is taken as the 
representative of DFA-based algorithms and MRSI [6] 
is taken as the representative of leap-based algorithms.  

Fig. 1-(a) depicts the searching speed of the AC 
algorithm, which is tested on one core of the AMD 
Opteron processor 270 CPU with 64KB L1 cache. It 
shows that the searching speed of AC keeps 
decreasing with the increase of pattern number and the 
performance drops rapidly when the pattern set 
contains more than 512 patterns. It is believed that the 
performance decline is due to the increasing cache 
miss ratios in data accesses, caused by the limited 
cache size as well as the increasing number of patterns. 
This affirmation is validated in Fig. 1-(b), which 
depicts the data cache miss ratios captured by cache 
profiling and shows that the data cache miss ratios 
keep increasing with the number of patterns. Therefore, 



large pattern sets are likely to induce high cache miss 
ratios, and thus cause low searching speed. For 
instance the throughput with 1,992 patterns in Fig. 1-(a) 
is only about one third of the throughput with less than 
100 patterns.  

Fig. 2-(a) shows the searching speed of MRSI on 
the same core as used in testing AC. The patterns are 
selected from Snort patterns with length no shorter 
than 6 bytes. It is shown that the throughput is 
decreasing as the number of patterns grows. This 
should be attributed to the leap-based characteristic of 
the MRSI algorithm, for the occurrence probability of 
each character pair at certain position increases with 
the growing of the pattern number and accordingly the 
average leap value decreases. Fig. 2-(b) shows the 
curve of the average leap values with increasing 
number of patterns, which is consistent with the above 
deduction. As a conclusion, the expansion in pattern 
set size will cause performance decline in leap-based 
algorithms as well. Moreover, leap-based algorithms 
have intrinsic defections to cover short patterns. For 
example, WM cannot process patterns shorter than 4 
byes and MRSI cannot process patterns shorter than 6 
bytes.  

On multicore platforms, the traditional one-
dimension workload distribution model dispatches the 
packets into cores at flow-level granularity and 
employs the same algorithm in all the string matching 
engines. An overview of the traditional framework is 
shown in Fig. 3, where the cores share the entire 
pattern set and the packets belonging to the same flow 
are processed in the same core. In this model, although 
the flow-based scheduling scheme can exploit the 
parallelism of multicore processors, the performance 
decline caused by the expansion of pattern set size are 
not solved, which will depress the overall inspecting 
speed of the framework. A better solution is to 
partition the pattern set into smaller subsets and adopt 
suitable algorithms on each subset, which motivates 
our work in this paper.  

 
3 OUR SOLUTION 
 

3.1 Two-Dimension Workload Distribution 
Framework 

To overcome the shortcomings of the traditional 
one-dimension workload distribution model, we 
extend it to a two-dimension framework by 
introducing another workload distribution dimension 
on pattern set. As a result, large pattern sets can be 
split into small subsets to avoid the performance 
decline caused by the extension of pattern sets, and 
meanwhile different types of string matching 
algorithms can be selected to adapt the characteristics 
of each pattern subset.  

The novel architecture proposed in this paper is 
named as two-dimension workload distribution 
framework. It distributes workload in one dimension 
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Figure 1: Throughput and cache miss ratio of AC 
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Figure 2: Throughput and average leap value of MRSI 
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by pattern set partitioning to exploit the best pattern 
scattering in the pattern subsets, and then engages 
flow-based load balancing in another dimension to 
achieve high systemic throughput. 

Fig. 4 illustrates a prototype of the two-dimension 
workload distribution framework. In the first 
dimension, the entire pattern set is divided into two 
categories, the short patterns P1~P2 and the long 
patterns P3~P6, and further, the long patterns are 
divided into two subsets: P3 & P4 to be processed in 
Core#3 and P5 & P6 to be processed in Core#4. DFA-
based and leap-based algorithms are employed to 
process the short and long pattern subsets separately, 
where AC and MRSI are selected in this example. In 
the second dimension, flow-based load balancing is 
employed to distribute the incoming packets evenly to 
different cores. The packets need to be duplicated to 
be dispatched into the pattern subsets simultaneously. 
However, compared with the searching speed of the 
string matching engines, it is believed that the 
duplicating and dispatching of the packets will not 
become the bottleneck of the whole framework.  

3.2 System Architecture 
As shown in Fig. 5, the proposed framework 

mainly contains four components: a Flow Buffer, a 
Resource Manager & Scheduler (RMS), a Pattern Set 
Divider (PSD), and several String Matching Engines 
(SMEs).  

Flow Buffer is in charge of storing and 
reassembling the incoming packets, so that the packets 
belonging to the same flow are stored sequentially in 
the same queue. PSD is responsible for pattern set 
partitioning and data structure optimization. It 
determines how to divide the patterns into subsets in 
the preprocessing stage, which will be further 
discussed in Section Ⅲ.C. SMEs denote the cores 
where string matching operations are performed. RMS 
is responsible for allocating the computing resources 
(cores) in the preprocessing stage according to the 
expected overall performance. RMS also schedules the 

packets distribution in the searching stage. Detailed 
explanation of RMS is stated in Section Ⅲ.E.  

3.3 Pattern Set Partitioning  
In the preprocessing stage, PSD is in charge of 

dividing the patterns into subsets for distributed 
pattern matching in the SMEs. There are three steps for 
pattern set partitioning.  

In the first step, string matching algorithms are 
chosen for the SMEs. The selection of algorithms is 
related to the characteristics of the pattern set. Take 
Snort rule for example: Fig. 6 shows the length 
distribution of Snort rules in March 2008, which 
contain 5,831 patterns. The rule set has 68 patterns 
with l byte, and 1,421 patterns shorter than 6 bytes. 
Since leap-based algorithms cannot handle short 
patterns, DFA-based algorithms are required. 
Meanwhile, since DFA-based algorithms suffer from 
cache misses with large pattern sets, leap-based 
algorithms are required to complement DFA-based 
algorithms. In this paper, AC is selected as the 
representative of DFA-based algorithms to handle the 
short patterns less than 6 bytes, while MRSI is selected 
as the representative of leap-based algorithms to 
handle the rest long patterns. It should be noticed that 
the two-dimension framework is independent of the 
algorithms. AC and MRSI are simply selected as an 
example to illustrate the advantage of the two-
dimension framework.  

In the second step, the pattern subset sizes should 
be decided for the AC and MRSI engines. As known, 
both of the algorithms suffer performance decline due 
to the expansion of pattern set sizes. For AC, as 
illustrated in Fig. 1-(a), it typically has an inflexion in 
performance due to the increase in data cache miss 
ratios. Furthermore, the inflexion is mainly determined 
by the L1 cache size of the CPU. Hence, the proper 
pattern subset size for AC is determined by the 
hardware architecture of the multicore platforms. 
When deployed on the platform in the case of Fig. 1, 
the proper size should be less than 512 patterns, for the 
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Figure 5: System architecture of the two-dimension workload distribution framework 



performance decline accelerates at this point, which 
makes it an inflexion. The pattern subset sizes for 
MRSI engines should be determined by the 
performance expectation on single core. For example, 
as shown in Fig. 2-(a), if the single core matching 
speed is expected to be larger than 300Mbps, the 
pattern subset size should be less than 2,000 patterns.  

In the third step, the patterns are classified into 
different subsets. For DFA-based algorithms like AC, 
the performance of each subset is primarily 
determined by the number of patterns rather than the 
scattering of the patterns in different subsets. However, 
pattern scattering can significantly influence the 
performance of leap-based algorithms like MRSI since 
the leaps are determined by the distribution of the 
characters in patterns. Consequently, pattern clustering 
for leap-based algorithms becomes an open issue, 
which motivates the design of the pattern clustering 
mechanism in this paper.  

3.4 Pattern Clustering Mechanism (PCM) 
Pattern scattering in the pattern subsets is of great 

significance to the searching speed of leap-based 
algorithms. If the patterns in each subset are treated as 
a cluster, the pattern scattering in the subsets can be 
seen as a pattern clustering problem. Mathematically, 
pattern clustering is an optimization problem of 
seeking the optimal mapping function :f P S→  to 
minimize the sum of cost values (1 )j j mλ ≤ ≤∑ , where 
P  is the pattern set { |1 }iP p i n= ≤ ≤  and S  stands for 
the m subsets { |1 }jS S j m= ≤ ≤ .  

In this paper, a novel pattern clustering mechanism 
named the PCM scheme is devised to optimize the 
pattern partitioning for leap-based algorithms. Herein, 
MSRI is taken as the representative of leap-based 
algorithms to illustrate the details of the PCM scheme, 
which can easily adapt to other leap-based algorithms 
with slight modification in the cost functions. The 
procedure of the PCM scheme for MRSI includes:  

1) Given the number of clusters m, 
randomly select m patterns and place each of 
them into one subset. A cost value is calculated 
for each subset according to a prescribed cost 

function. So m cost values are gotten as 
(1 )j j mλ ≤ ≤ .  
2) For each ip in the other n m−  

patterns, calculate sum of cost values k jλ∑ , 
which denotes the total cost with ip  joining the 
subset kS . If 1mint j k m k jλ λ≤ ≤=∑ ∑ , then put ip  
into the subset tS . Thus, the initial subset-ids of 
all the patterns are set and the subsets get their 
initial cost values 0 (1 )j j mλ ≤ ≤ . 

3) Start pattern clustering iterations. In 
the first iteration, for each ip , assuming its 
subset-id is t , change its subset-id from 1 to m  
and calculate the new sum of cost values 0

k jλ∑ , 
which denotes the total cost with ip  joining the 
subset kS . If 0 0

1minv j k m k jλ λ≤ ≤=∑ ∑ , change the 
subset-id of ip from t  to v . After all patterns 
finish the first iteration, some patterns are set 
new subset-id and the subsets get new cost 
values 1(1 )j j mλ ≤ ≤ .  

4) Proceed the pattern clustering 
iretations until the two consecutive total cost 
tolerance is smaller than a given positive value 
ε . Thus, if 1( ) /r r r

k j k j k jλ λ λ ε−− <∑ ∑ ∑ , the 
iterations will be stopped at iteration r  and the 
patterns get their final subset-ids.  

The design of cost function has crucial influence 
on the practical performance of MRSI engines, for it 
determines how the patterns are clustered. Fig. 7 
shows the data structure of MRSI [6], in which the 
three Block Leap Tables (BLTs) stores the longest 
leaps that can be generated according to the three two-
character blocks and the Potential Match Table (PMT) 
stores the possible matching patterns when the leap 
value in BLT#1 equals to zero. The last two characters 
are used as hash indexes in PMT. The matching 
process of MRSI is:  

a) Use the three two-character blocks of the input 
text to index the BLTs and get three leap values;  

b) Denote the maximum of the three leap values as 
maxL . If max 0L > , then shift the input text by maxL ; 

c) If max 0L = , use the last two-character block of 
the input text as the index to search PMT, and match 
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the potential patterns one by one to find out the exact 
matches.  

According to the searching procedure of MRSI, it 
is observed that the leap values in the three BLTs and 
the lengths of the hash lists in PMT are the key factors 
that impact string matching speed. Obviously, MRSI 
performs better if the leap values are larger or the hash 
list lengths are shorter. Thus, a good pattern clustering 
mechanism should aim at obtaining the longest 
average leap value of the entries in the three BLTs and 
obtaining the shortest average length of the hash lists 
in PMT.  

The leap values in the three BLTs can be denoted 
as (0 65535,1 3)k

iL i k≤ ≤ ≤ ≤ , and so the average leap 
value will be ( )k

iL mean L= . The hash list lengths can 
be designated as (0 65535)iH i≤ ≤ , and so the average 
hash list length will be ( )iH mean H= . It should be 
noticed that, if there is a potential match, MRSI needs 
averagely / 2H  times of memory accesses (naïve 
comparisons) to find out the exact matches. In contrast, 
if there is no potential matches, MRSI can shift input 
text by L , which can be expressed as 1/ L times of 
memory accesses in cost. Therefore, if using matchP  to 
indicate the average possibility of searching PMT, the 
cost function of MRSI can be denoted as Equation 1.  

(1 ) / * / 2match matchP L P Hλ = − +  
 (1) 

Based on this cost function, the patterns can be 
clustered into several subsets to optimize MRSI’s 
average performance in the subsets. It has been proved 
that the PCM scheme converges at a locally optimal 
solution. The proof is omitted here due to the page 
limit. Since the PCM scheme uses a hill-climbing 
strategy, the convergence point might not be the global 
optimal solution. However, the locally optimal 
solution is quite satisfactory according to our 
evaluation results. The experimental result of the PCM 
scheme’s convergence speed is provided in Section 
Ⅳ.D, which shows the convergence speed of PCM is 
pretty fast. The selection of matchP  is a tiny issue since 
it is unknown before the input text is scanned entirely. 
In practice, it can be estimated according to the prior 
searching results of the context, though it is not a 
precise value. The impact of matchP  on clustering effect 
is discussed in Section Ⅳ.E.  

3.5 Resource Management and Scheduling 
RMS is responsible for managing the computing 

resources and scheduling the incoming traffic. 
Resource management is to allocate the computing 
resources (cores) to the string matching engines (SMEs) 
in the preprocessing stage while traffic scheduling is to 
distribute the incoming traffic to the SMEs in the 
searching stage.  

In the preprocessing stage, RMS determines how 
many cores should be allocated to each subset to meet 

the overall performance requirement. The aim is that 
the scanning speed on the subsets should be balanced 
to ensure high utilization of hardware resources. Thus, 
given an overall expected throughput, assign enough 
cores to each subset. Otherwise, if the number of cores 
is not enough, the cores should be allocated 
proportionally based on the searching speed on each 
subset to achieve a possibly maximum throughput, 
assuming the single core searching speed on each 
subset is prior knowledge with specific string 
matching algorithms. A simple resource management 
algorithm is proposed here: 

Assume PSD has divided the patterns into m 
subsets 1 2, , ... , mS S S , and the single core searching 
throughputs on the subsets are denoted as 1 2, , ... , mT T T . 
Given the expected throughput E and the number of 
cores C, the number of cores needed for subset 

(1 )kS k m≤ ≤ should be / (1 )kE T k m≤ ≤⎡ ⎤⎢ ⎥ . Denote 
1

/m
sum kk

E E T
=

= ⎡ ⎤⎢ ⎥∑ . If sumC E≥ , the number of cores 
assigned to subset (1 )kS k m≤ ≤ is / (1 )kE T k m≤ ≤⎡ ⎤⎢ ⎥ . 
Else sumC E< , the number of cores assigned to subset 

(1 )kS k m≤ ≤  is / / , (1 )k sumC E T E k m⎢ ⎥× ≤ ≤⎡ ⎤⎢ ⎥⎣ ⎦ . 
Considering the number of cores should be integers, 
there might be some cores left. If there are L cores left, 
assign the left cores to the L subsets with the L largest 
residues. Residue of subset (1 )kS k m≤ ≤  is defined 
as / / / / , (1 )k k sum k sumR C E T E C E T E k m⎢ ⎥= × − × ≤ ≤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ .  

In the searching stage, RMS acts as a scheduler and 
decides which core the incoming packets should be 
distributed. The scheduling has two compulsory steps: 
first, if the pattern set is divided into m subsets, RMS 
duplicates m copies of every packet and sends each 
copy of it to the cores combined with each pattern 
subset; second, if one pattern subset is assigned with 
more than one core, RMS is responsible for balancing 
the workload on the cores to approach high CPU and 
cache utilities. In addition to the second step, RMS is 
required to dispatch the packets at flow level to detect 
avoidance attacks which span packets.  

To summarize, in the two-dimension workload 
distribution framework, PSD takes charge of the first 
dimension workload distribution on pattern set 
partitioning while RMS takes charge of the second 
dimension workload distribution on traffic load 
scheduling.  

 
4 EXPERIMENTAL RESULTS 
 

4.1  Experiment Setup 
The proposed two-dimension workload 

distribution framework and the PCM scheme were 
evaluated on an AMD Opteron multicore platform. 
The platform has 4 cores running at 2GHz with totally 
2GB DDR2 memory. Each core has 64KB L1 cache 
and supports 4 zero-overhead-content-switched 
hardware threads. In the tests, AC is selected as the 
representative of DFA-based algorithms, and MRSI is 
selected as the representative of leap-based algorithms.  



Two real-life pattern sets are adopted to evaluate 
the performance of the two-dimension framework 
compared with the traditional one-dimension model. 
One is the Snort rule set in March 2008, including 
totally 5,831 patterns. Along with the Snort rule set, a 
real-life trace provided by DEFCON [7] is used as the 
testing trace, which contains totally 353,799,850 bytes. 
Another real-life rule set is the rule set of the well-
known anti-virus software ClamAV [8]. The ClamAV 
rule set is larger than 100K patterns, but only 8,000 
patterns are randomly selected from it to test the two 
frameworks, since the AC algorithm cannot handle 
more than 8,000 patterns on the AMD Opteron 
multicore platform due to the huge memory 
occupation and thus the traditional one-dimension 
model cannot get its throughput. A randomly 
generated trace is used as the test trace along with the 
ClamAV rule set.  

4.2  Evalution of the Two-dimension Framework 
To evaluate the efficiency of the two-dimension 

workload distribution framework, the overall 
throughput of the proposed two-dimension framework 
is compared against the traditional one-dimension 
model.  

In the traditional one-dimension workload 
distribution model, the entire pattern set is applied in 
all the string matching engines (SMEs). Since leap-
based algorithms cannot handle short patterns, AC 
becomes the only choice for the string matching 
algorithm in the SMEs. As shown in Fig. 3, each SME 
handle the whole pattern set with AC algorithm. When 
tested on the AMD Opteron multicore platform, each 
of the four cores runs a SME with AC algorithm, while 
the incoming traffic is distributed to the four cores 
with flow-level load balancing. The overall throughput 
is the average value of three times of tests with each 
pattern set and its corresponding trace. 

When testing the two-dimension workload 
distribution framework, short patterns with less than 6 
bytes are handled by AC while the long patterns are 
handled by MRSI. As shown in Fig. 4, two cores of 
the AMD Opteron multicore platform are selected as 
AC string matching engines, and flow-level load 
balancing is applied. The long patterns are split into 
two subsets either with random clustering mechanism 
(RCM) or with the PCM scheme, and the other two 
cores run MRSI string matching engines with the two 
subsets separately. Every incoming packet is 
duplicated and sent into the two MRSI engines to scan 
simultaneously. The overall throughput is a total value 
of the two AC engines and the two MRSI engines, and 
an average value of three times of tests with each 
pattern set and its corresponding trace is taken as the 
final result.  

Table 1 shows the performance of the one-
dimension model and the two-dimension framework 
with the two real-life pattern sets and their 
corresponding traces on the AMD Opteron multicore 
platform. With the DEFCON trace and the Snort 

pattern set which contains 5831 patterns, the one-
dimension model gets a throughput of 192Mbps. 
Meanwhile, the two-dimension framework with 
random clustering mechanism (RCM) gets a 
throughput of 316Mbps, which is 64% higher than the 
performance of the one-dimension model. Besides, 
when the PCM scheme is adopted, the two-dimension 
framework achieves a throughput of 377Mbps, which 
introduces an extra 19% speedup compared with the 
RCM scheme. 

With the ClamAV pattern set which contains 8000 
patterns and a randomly generated trace, the one-
dimension model gets a throughput of 142Mbps. 
Meanwhile, the two-dimension framework with 
random clustering mechanism (RCM) gets a 
throughput of 234Mbps, which is 64% higher than the 
performance of the one-dimension model. When the 
PCM scheme is engaged, the two-dimension 
framework obtains a throughput of 274Mbps, which 
introduces an extra 17% performance gain compared 
with the RCM scheme. 

Table 1: Performance of different frameworks 

Pattern Set One-dim Two-dim Two-dim 
(PCM) 

Snort 192 Mbps 316 Mbps 377 Mbps 

ClamAV 142 Mbps 234 Mbps 274 Mbps 

 

Besides, the throughput with the ClamAV rule set 
is slightly lower than that with the Snort rule set. This 
is due to the larger number of patterns and longer 
average pattern lengths in the ClamAV rule set, which 
will cause performance decline in AC string matching 
engines.  

4.3  Evalution of the PCM Scheme 
The PCM scheme is the kernel algorithm in 

Pattern Set Divider (PSD). It determines the scattering 
of long patterns in the MRSI subsets, which can 
significantly influence the overall performance of the 
two-dimension framework.  

To evaluate the performance of the PCM scheme, 
experiments were conducted on the real-life DEFCON 
trace along with the long patterns of the Snort rule set, 
which includes totally 4,410 patterns with no less than 
6 bytes. Since there is no any prior pattern clustering 
mechanism in the literature, performance comparison 
is done between the PCM scheme and the random 
clustering mechanism (RCM), which randomly 
partitions the patterns into the subsets and ensures 
every subset having the same number of patterns.  

For better comparing the performance of the PCM 
scheme and the RCM scheme, the long pattern rule set 
is divided into 2, 4, 8, and 16 subsets to test the overall 
MRSI string matching performance on the AMD 
Opteron multicore platform. Furthermore, since the 
performance of MRSI is determined by the total 
memory access times, the average leap values, the 



number of naïve comparisons, and the number of table 
indexing were observed on the two clustering schemes.  

Fig. 8 illustrates the MRSI performance gain with 
the PCM scheme compared with the RCM scheme. It 
shows that the PCM scheme outperforms RCM by 
15%~25% when the number of subsets varies from 2 
to 16, where PCM achieves its highest improvement 
percentage when the number of pattern subsets equals 
to 4. One reason is that the AMD Opteron multicore 
platform has 4 cores, which will get highest CPU 
utilization efficiency when the number of tasks equals 
to 4.  

Fig. 9 depicts the average leap values of the MRSI 
algorithm when the patterns are partitioned by the two 
pattern clustering mechanisms. With a given number 
of subsets, the overall average leap value is the mean 
of the average leap values on each subset. It is shown 
that the average leap value with PCM is visibly larger 
than with RCM when the number of subsets varies 
from 2 to 16. Besides, when the number of subsets 
increases, the average leap values with the two 
schemes keep increasing, since the number of patterns 
in each subset is reduced.  

 

Fig. 10 shows the percentage of naïve comparisons 
needed by the MRSI algorithm with the PCM scheme 
compared to the RCM scheme. With a given number 
of subsets, the mean of naïve comparisons on each 
subset is taken as the overall number of naïve 
comparisons. It is illustrated that PCM reduces the 
naïve comparisons by 10%~30% compared with RCM 
and the reducing percentage reaches its peak value 
when the number of subsets equals to 4, which 

partially contributes to the highest performance 
improvement shown in Fig. 8.  

Fig. 11 shows the percentage of table indexing 
times needed by the MRSI algorithm with the PCM 
scheme compared to the RCM scheme. The table 
indexing means the memory accesses in the BLTs of 
MRSI’s data structures, which is part of the overhead 
in string matching. It is shown that PCM reduces the 
times of table indexing by 15%~25% compared with 
RCM. Besides, the reducing percentage is relatively 
stable in spite of different number of subsets.  

4.4  Convergence Speed of PCM 
Table 2 provides the times of iterations needed for 

the PCM scheme with different number of subsets. It 
is shown that the PCM scheme converges quite fast 
and the required times of iterations increase slowly 
when the number of subsets grows. 

Table 2: PCM convergence speed 

#Subsets 2 4 8 16 

#Iterations 0 2 3 5 

4.5  Selection of Matching Rate 
The cost function for PCM is 
(1 ) / * / 2match matchP L P Hλ = − + , where the matching rate 

is a key factor that could impact the clustering effect 
of the patterns. The matching rate is defined as the 
times needed for naïve comparisons divided by the 
total length of the input text. The challenge is that the 
exact matching rate is unknown before the traffic is 
inspected against the patterns completely. In 
implementation, the matching rate can be predicted 
according to the matching rate of the previous traffic 
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Figure 8:  MRSI throughput speedup Figure 9:  MRSI average leap values 
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Figure 10:  MRSI naïve comparison percentage Figure 11:  MRSI table indexing percentage 



in a period of time, one hour for example. Otherwise, 
the matching rate can be set a default value for 
expedience.  

Fig. 12 gives the overall performance of MRSI 
with different matching rate applied in the PCM cost 
function. In this test, the number of MRSI subsets is 
set 2 and the experiments are conducted on the AMD 
Opteron multicore platform. Each subset is assigned 
with two cores and flow-level load balancing is 
engaged to distribute the incoming packets. It is shown 
that the overall performance varies between 580Mbps 
and 625Mbps and the throughput reaches its peak 
value when the matching rate equals to 3.5%. In fact, 
the total matching time is 12,633,581 and the precise 
matching rate is 3.57%, given the trace of 353,799,850 
bytes in length. The results demonstrate that the PCM 
clustering scheme achieves the highest performance 
when the matching rate approaches the actual rate in 
practice. 

 
5 RELATED WORKS 
 

Many string matching algorithms and architectures 
have been proposed in recent years for content 
inspection. In summary, the previous works can be 
classified into two categories: one is hardware 
solutions based on FPGA/ASIC; the other is software 
algorithms based on general purpose processors. 
Furthermore, the software algorithms can be classified 
into DFA-based algorithms and leap-based algorithms. 

Aho-Corasick (AC) [3] is the most popular DFA-
based software algorithm for multiple pattern string 
matching. It employs a deterministic finite automaton 
(DFA) to organize the patterns and reveals matching 
results in one pass. The advantage of AC is that it only 
needs search time on the order of O(n), regardless of 
the number of patterns, where n is the length of the 
input text. However, AC suffers from two intrinsic 
deficiencies. First, it does not exploit the heuristics in 
the pattern set to generate a leap for avoiding 
unnecessary comparisons. Second, the memory 
occupation of AC increases linearly with the growing 
of the pattern set size, which will cause higher cache 
miss rates and correspondingly lower searching speeds.  

Wu-Manber (WM) [4] is the representative of 
leap-based algorithms that evade unnecessary 
comparisons at some matching positions based on 

heuristics. WM inherits the bad character heuristic of 
Boyer-Moore (BM) [9] algorithm and uses two or 
three suffix characters to generate a leap. If the leap 
value does not equal to zero, the matching window can 
be shifted by this value; otherwise naïve comparisons 
will be adopted to verify the potential matching 
patterns indicated by the prefix hash table. WM 
consumes much less memory than AC, but it needs 
time-consuming comparisons when no leap could be 
generated. Moreover, when the pattern set grows large, 
the probability of getting leaps and the average leap 
value are inevitable to become smaller, which will 
deeply impact the string matching speed.  

There are many other software algorithms 
proposed in recent years. Leap-based algorithms 
including AC_BM [10], Setwise Boyer-Moore [11], 
E2xB [12], RSI [5], MRSI [6] are presented to 
leverage the characteristics in pattern sets for 
improving scanning performance. However, these 
leap-based algorithms suffer from the same problem 
with WM that the prospective leap value will become 
smaller when the number of patterns increases.  

Hardware algorithms mainly rely on the specially 
designed architectures to accelerate string matching. 
FPGA-based algorithms [13-20] and ASIC-based 
algorithms [21-27] exploit the parallelism in circuits as 
well as the abundance of data channels to achieve 
gigabit-level throughput. However, the high cost, long 
developing term, and poor flexibility encumber their 
feasibility of wide deployment.  

In recent years, multicore processors have emerged 
as a competitive candidate for high performance string 
matching architectures. They are superior to general 
purpose CPUs for their powerful computing capability 
and rich memory banks. Besides, multicore platforms 
surpass hardware circuits by their high 
programmability, flexibility and portability. This paper 
aims at exploring a scalable string matching 
framework on multicore platforms for intrusion 
detection and deep inspection systems. 

 
6 CONCLUSIONS 
 

In this paper, a novel parallel processing 
framework, called the two-dimension workload 
distribution framework, is proposed to optimize the 
multi-pattern string matching on modern multicore 
platforms. The innovations are motivated by the poor 
scalability and performance of the traditional one-
dimension model, which dispatches the string 
matching workload only by flow-level traffic load 
balancing. The proposed two-dimension workload 
distribution framework improves the traditional model 
by introducing a new dimension on pattern set 
partitioning to balance the workload distribution by 
pattern clustering. It firstly partitions the patterns into 
subsets according to the selected algorithms’ 
characteristics in the first dimension, and then 
dispatches the incoming packets via flow-level load 
balancing in the second dimension. Furthermore, a 
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novel pattern clustering mechanism named PCM is 
presented to optimize the performance on the long 
pattern subsets in MRSI engines.  

The PCM scheme is devised based on the intrinsic 
characteristics of the MRSI algorithm, and it can 
easily be extended to support other leap-based 
algorithms with slight modifications in the cost 
function. In addition, the two-dimension workload 
distribution framework can adapt to various string 
matching algorithms besides AC and MRSI. The 
framework provides a platform to split the pattern set 
into subsets according to the characteristics of 
different algorithms. It is believed that this scalable 
framework can support large pattern sets with more 
than 100K patterns, and the overall searching 
performance can meet gigabyte level line speed 
requirement with modest number of cores.  

Experimental results show that the proposed two-
dimension workload distribution framework achieves 
a performance speedup of 60% with real-life rule sets, 
compared with the traditional one-dimension model. 
Besides, assisted by the PCM scheme, the two-
dimension workload distribution framework obtains an 
additional 15%~20% performance gain compared with 
the random clustering mechanism (RCM). Besides, 
PCM is proved to converge at a locally optimal 
solution and has a rapid convergence speed, which 
facilitates its employment in practice.  

Future work will be done on designing elaborate 
resource manager and scheduler to automatically 
allocate the computing resources on the pattern subsets, 
and to automatically balancing the overhead in the 
string matching engines. The final objective is to 
devise an intelligent architecture that can 
automatically distribute workload on both pattern and 
traffic dimensions to form up a well-performed 
parallel processing system.  
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