
Security Based Heuristic SAX for XML Parsing

Wei Wang
Department of Automation
Tsinghua University, China

Beijing, China

Abstract - XML based services integrate information
resources running on different platforms or
technologies to enhance the service efficiency. Thus,
the volume of XML traffic on networks is increasing
rapidly, and it demands for efficient XML processing
algorithms to support high performance services,
especially in XML security applications. This paper
proposes a memory efficient XML parsing algorithm
leveraging on security based heuristic and SAX
(Simple API for XML) algorithm with schema
validation, called Security Based Heuristic SAX
(SBH-SAX), which exploits the characteristics of
XML security applications and the connections
between different XML processing functions.
Experimental results demonstrated the overall
performance improvement of XML parsing and XML
security processing using SBH-SAX. Comparing to
SAX based processing and DOM based processing,
system with SBH-SAX requires the least memory
usage in most security processing cases, and also
performs twice faster in processing.

Keywords: SBH-SAX, XML Parsing, XML Security

1. Introduction
 XML based services, like Web services and AJAX
based applications, are quickly gaining popularity,
which integrate information resources running on
different platforms or technologies, and enhance the
efficiency of services. Thus, the volume of XML
application traffic on networks is increasing rapidly
and predicted to take about 45% of overall network
traffic in 2008 [1].
 There are two key challenges in the deployment of
XML based services: security and performance.
● Security
Although XML can provide seamless connections

between applications, it gives attackers some chances
to invade the security of hosts via network at the
same time. XML related security threats are mainly
emerging as data compromise, XML based DoS
(Denial of Service) and content-based attack. These
security problems motivate the development of XML
security processing functions, XML encryption and
XML signature, which provide element-level
protection.
 ● Performance

As XML traffic is growing, the system resources
consumed by XML processing are over loading the
system and decreasing the performance of XML
based services.
 XML processing functions in XML enabled
network can be integrated in an XML dedicated
appliance, such as XML firewall, onto which the
XML processing in application servers is offloaded.
Besides convenience for management, it can also
reduce the overlap across services in the XML based
applications and free the server resources to better
handle other critical functions. The XML appliance
demands for advanced XML processing algorithms to
support high performance services, especially in
XML security applications.
 This paper presents a memory efficient XML
parsing algorithm leveraging on security based
heuristic and SAX (Simple API for XML) algorithm
with schema validation, called Security Based
Heuristic SAX (SBH-SAX), which exploits the
characteristics of XML security applications and the
connections between different XML processing
functions.

The remainder of the paper is organized as follows.
Section 2 analyzes the previous work for XML
parsing with schema validation; Section 3 presents
system characteristics of XML security system;
Section 4 describes the proposed algorithm Security
Based Heuristic SAX (SBH-SAX); Section 5
illustrates experimental analysis of security system
with SBH-SAX compared with other popular
algorithms; as a summary, Section 6 states the
conclusion.

2. Previous Work
XML parsing with schema validation is one of the

basic XML processing functions. It parses the
information contained in an XML message and
checks whether it can be considered as well-formed
and valid. The results of XML parsing should provide
enough support for following XML processing, like
XML query, XML security. The algorithm has two
parts: parsing and validation.
● Parsing
The information contained in an XML message

will be picked up and represented for following
processing. The welled-formedness of the XML

message can be checked at the same time with a tag
stack.

One of the most popular parsing algorithms is Tree
Parsing [3]. It parses the XML message into a tree
structure, in which character strings like element
name, attribute value, are represented by nodes.
Access to the information of XML message is
essentially the same as a tree query. This algorithm
takes much time and memory to create and store the
tree structure.

A memory efficient parsing algorithm is Tokenized
XML Format [4]. This algorithm cuts XML message
into several pieces of character strings with
corresponding information stored in memory, like
“element content”, “attribute name”, etc. It is
optimized by using a Code Table, which is efficient
for memory usage and XML query. But this algorithm
is difficult to use for security processing since it alters
the XML message.

Another parsing algorithm is Non-Extractive
Parsing [5]. This algorithm records a two-tuple
integer array for each character string in XML
message: one tuple for offset of the string, the other
for length of the string. It is efficient for the memory
usage and XML query, but does not well support
XML security processing. Because the offsets in the
parsing results are not enough to manipulate XML
message for insert and replacement.

All of the three parsing algorithms are well
designed but not aiming at the specific XML security
processing, i.e. XML encryption and XML signature.
It parses the whole XML message, some parts of
which may not even be used in the application.
● Validation
XML schema was approved as a W3C

Recommendation on May 2nd, 2001 [2]. The validity
of an XML message should be checked according to
associated schema. An XML schema should be
preprocessed into a data structure, which can be a tree
structure [6] or a graph based on finite state automata
[7]. The system will take the XML message as input
and go through the schema tree or graph to check its
validity.

SAX and DOM are two most popular

programming interfaces for XML parsing. They are
constructed using the algorithms described above.

SAX (Simple API for XML) [8] is an event-based
parser, which raises events when it encounters the
start or end tags. It processes XML message like a
pipeline at a fast speed, but with no structure left in
memory, so the following processing needs to
re-parse the XML message into tree structure for
XML manipulation.

DOM (Document Object Model) [9] is a
tree-model parser, which converts an XML message
to a tree structure in memory. With this parsing
results DOM provides a convenient way for XML

query and manipulation, but it consumes more time
and memory at the same time.

SBH-SAX, proposed in this paper, is based on
SAX. SBH-SAX keeps the schema validation part of
SAX and optimizes the parsing part of it by
introducing security based heuristic information. The
event-based algorithm is designed to leverage the
heuristic information of the following XML security
processing and parses the XML message without
costing redundant processing time and memory space.
The parsing approach has some similarities with the
Non-Extractive Parsing algorithm, for using the offset
of a string, but has a different way to generate and
express the concerned text, which will be signed or
encrypted in the processing.

3. Characteristics of XML Security
System
 Generally speaking, an XML security system
consists of XML parsing with schema validation,
XML signature, XML encryption. They are integrated
to form a XML processing pipeline.
 Figure 1 shows the work flow of XML signature or
encryption. We note that two steps of the whole
process require support from the parser, as shaded
blocks in the figure, namely the “Get the plain text”
step and “Operate XML message” step. Information
required in these steps are concerned text to be signed,
concerned text to be encrypted, insert position of
signature element, and replacement position of
encryption element.

 XML Message

Signature/
Encryption

Base64 encode

Operate
 XML Message

Get the plain
text

Add into the
template

Output

Template parser

Preprocessing

XML Sign/Enc
template

Figure 1: Work flow of signature or encryption.

 DOM parser has considerable heavy workload for
security processing, as mentioned in section 2.
Obviously, a security-focused parser does not have to
get all information as DOM does. Base on the
observation, we proposed our parsing algorithm –
SBH-SAX.

Table 1: Offset values stored in memory

4. Security Based Heuristic SAX
(SBH-SAX)

SBH-SAX is designed to enhance the overall
performance of XML security system including XML
parsing, XML signature and encryption. The basic
idea of SBH-SAX is that those and only those texts
that are necessary for the following security
processing should be parsed and maintained
according to the specific security policy of an
application. Two improvements are introduced into
SAX: heuristic automata and offset. The paths of
concerned texts, which are indicated by XPath [10]
language, will be preprocessed into heuristic
automata based on the security policy. By running the
heuristic automata we can get the offsets of
concerned texts in order to manipulate XML message
in security processing.

4.1 Algorithm Explained by an Example
 To illustrate the SBH-SAX algorithm proposed in
this paper, an example of XML message is used for
illustration. Figure 2 shows the XML message and its
tree structure.

Figure 2: An XML message and its tree structure.

The security policy specifies that the concerned
text to be signed and the concerned text to be
encrypted are same, which are “/class/roster” in
XPath. It means that element “roster” of root element
“class”, including its child elements and contents,
should be all signed first and then encrypted. We
assume the signature is in the form of enveloped,
which means that the signature element should be
added into the XML message as last child of the root
element.

Both systems, with either SAX or DOM, have the
same process to conduct this security processing.
They first parse the original XML message into a tree
structure shown in Figure 2 and then search the tree
according to the path “/class/roster” to get the
sub-tree of concerned text. Then the sub-tree is
changed into text in XML format, which will be
signed and encrypted to get the cipher texts. After the
element “Signature” has been added to the tree and
the element “EncryptedData” has replaced the
element “roster”, the systems outputs the tree in XML
format.
 In system with SBH-SAX, the path “/class/roster”
is preprocessed into an automaton. In fact, five
automata in this form are merged into one, named
heuristic automata, which can generate five offsets
shown in Table 1.

Heuristic automata embedded in SAX processes
the XML message in pipeline and store values of
necessary offsets in memory for following security
processing, where some manipulations on character
strings generate the output message.

4.2 Heuristic Information Processing
Heuristic information processing compiles security

policy described in XPath language into heuristic
automata, in order to find the concerned text to be
signed or encrypted. This preprocessing work is
designed based on the observation that most of the
security policies are invariant in run-time security
processing of a specific XML based service, and can
be established when the connection is being set up.
Therefore, the heuristic automata can be generated
before processing XML messages of this connection.

Finding the concerned text can be considered as
regular expression pattern matching in XML. Tree
automata theory can be applied to handle it [11, 12].
However, we observe that XML security processing
at network gateway position does not employee all
features of the XPath language, and most of the
security policies aim at only the structural part of
XML message, namely the element level. Therefore,
SBH-SAX only needs to support simple XPath in
form of “/aaa/bbb”, which can be preprocessed more
efficiently in speed and memory usage. In addition
the heuristic automata should output the offsets of
some end positions of elements. We use “/aaa/\bbb”
to denote the path of end of element “bbb” and add
character string “</bbb>” to the heuristic automata in
order to get the corresponding offset.

Actually there are five heuristic automata to
generate five required offsets. We can merge them
into one, which is show in Figure 3 with signature
beginning “/class/roster”, signature end
“/class/\roster”, encryption beginning “/class/road”,
encryption end “/class/\road” and signature insert
“/\class”. The heuristic automata are running to filter
the XML message after checking its
welled-formedness.

Figure 3: Merged heuristic automata

Using the example in section 4.1, which is shown

in Figure 2, we describe how the heuristic automata
work. XML message is input to the automata as a
stream beginning from the state “start”. There is a
goto function g, which maps a pair consisting of a

state and an input symbol into a state or the message
fail. For example, g(start, <) = 1, g(1, c) = 2, g(1, x) =
fail, g(state “end” in parent node, >) = state “start” in
child node. The failure function f is going to the state
“start” of current level. But if there is no node to be
matched in this level, which is to say all states “end”
have been accessed, then f(state “end”) = state “start”
in parent node. The failure function can be very
simple because the welled-formedness check is
performed first using SAX. If the XML message is
well-formed, the automata can work well; otherwise,
the parser will have reported an error and stop
processing. When the “end” state of the leaf node is
reached, a match is found and the output function is
used to record the offset

The following algorithm shown in Figure 4
summarizes the behavior of heuristic automata.

Figure 4: Algorithm of heuristic automata.

There are three exceptions in XML messages we

must handle in the heuristic automata, which are not
shown in Figure 4 for simplicity of expression. They
are as follows:

a. <xxx yyy="<zzz>">. When <zzz> is equal to
some string to be matched, the automata will go to a
wrong state. The solution is to stop the automata
when a quotation mark appears, and to start it when
another quotation mark comes in.

b. <xxx sss="yyy">. When there is space after the
element name “xxx”, which means it is not followed
by “>”, the automata will not go to the state “end”.
The solution is that we can add character space “ ” to
the automata, which is shown as “□” in Figure 3.

c. <xxx sss="yyy"/>. When the element ends
without “</xxx>”, the automata cannot find the end
of the element. Here a stimulator is created, shown at
the top right corner of Figure 3. When a shaded state
in the figure is reached, its corresponding stimulator
is activated. The stimulator then reads the XML
stream as well. When it ends with “stimulate”, the
end of the element is found. The automata will output
an offset and close the corresponding branch by
assigning 1 to the access sign.

4.3 Information Expression with Offset
When the concerned texts are found by heuristic

automata, offsets are used to indicate their positions
in XML message instead of parsing them out. The
message and the offsets are maintained to support the
following security processing, which is faster and
consumes less memory for information storage than
parsing all messages into DOM tree.

An example is shown in Table 1, section 4.1, in
which all five necessary items are listed. Each item
has a corresponding heuristic automaton. The five
heuristic automata are merged into one as described
in section 4.2. With these offsets, the XML message
for security processing can be effectively handled
through the manipulation on the character strings.

Offset is used instead of the complicated DOM tree.
Although not as flexible as DOM tree, it is sufficient
for text locating and efficient for security processing.

5. Implementation and Experiment
Some experiments were carried out in such a

SBH-SAX implementation system and compared
with other XML security systems using different
parsers, including SAX and DOM. The impacts on
processing speed are evaluated with experimental
data on three factors: the size of concerned text, the
proportion of concerned text to whole XML message,
and the level of XPath language. Memory usages of
these three systems are also analyzed.

The hardware platform used in our experiments is
IXP425 with embedded 533 MHz XScale core, and
64 MB memory [13]. The software platform is based
on snapgear-3.3.0. We use Xerces-c-2.6.0 from
Apache XML Project to implement SAX and DOM
parsers and use NPE (Network Processing Engine) B
in IXP425 to accelerate signature and encryption.

5.1 Conditions of the Experiments
The experiments are conducted under the

following set up and configuration.
Firstly, the XML messages are generated manually

according to different experimental targets. The
performances are measured by overall processing
time per message, including XML parsing, signature

and encryption. The values are calculated by the
average of results from three test trails.

Secondly, the concerned texts are the text to be
signed and the text to be encrypted. For simplicity of
construction, the signature and encryption are applied
to the same text in the experiments. Then we can
make unified adjustment to size of the concerned text.

Finally the signature algorithm used in the
experiments is HMAC-SHA1. It is actually a MAC
(Message Authentication Codes) algorithm, which
cannot provide non-repudiatability. The encryption
algorithm is 3DES. The keys are preshared, which
means that keys are allocated and known by both
sender and receiver in advance.

5.2 Impact of Size of the Concerned Text
The performances of systems with SBH-SAX,

SAX and DOM are shown in Figure 5. The
proportion of concerned text to whole XML message
is fixed as 1:1, which actually means that nearly the
whole XML message should be signed and encrypted.
The XPath has two levels as “/aaa/bbb”. The size of
the concerned text varies from 1KB to 100KB, which
is denoted by the horizontal axis. The processing time
in milliseconds per XML message is denoted by the
vertical axis.

0
200
400
600
800

1000

1200
1400
1600
1800
2000

pr
oc

es
si

ng
 ti

m
e

pe
r m

es
sa

ge
 (m

s)

1K 5K 20K 100K

size of concerned text

SAX DOM SBH-SAX

Figure 5: Performance of different sizes.

From the figure we can see that system with

SBH-SAX has the least processing time, in other
words, the best performance. Compared to the system
with DOM, the next to the best performer, system
with SBH-SAX has reduced the processing time by
more than 50%, which means that the processing
speed is twice as fast. As the size of XML message
increases, the time saved by SBH-SAX is more
significant. It can be seen from the time proportion of
SBH-SAX to DOM, which decreases from 49.6% to
38.5%. The reason is that there is more time used in
format transformation in DOM parser as the size of
concerned text increases, and SBH-SAX parser has
no such operation.

5.3 Impact of Proportion of Concerned
Text to Whole XML Message

The performances of systems with SBH-SAX,
SAX and DOM are shown in Figure 6. The size of
concerned text is fixed as 1KB. The XPath has two
levels as “/aaa/bbb”. The proportion varies from
100% to 12.5%, which is denoted by the horizontal
axis.

0

20

40

60

80

100

120

140

160

pr
oc

es
si

ng
 ti

m
e

pe
r m

es
sa

ge
 (m

s)

100% 50% 25% 12.50%

proportion

SAX DOM SBH-SAX

Figure 6: Performance of different proportions.

There is processing time wasted in systems with

SAX and DOM to parse the unconcerned text into
DOM tree. SBH-SAX is designed to avoid this
unnecessary information processing. The time saved
by SBH-SAX increases from 20.3ms to 54.4ms per
message along with reduced proportion, representing
the benefit brought by the optimization with security
based heuristic.

5.4 Impact of Level of XPath Language
The performances of systems with SBH-SAX,

SAX and DOM are shown in Figure 7. The size of
concerned text is fixed as 1KB. The proportion is
fixed as 50%. The level of XPath varies from 2 to 5,
which is denoted by the horizontal axis. It means that
the form of XPath varies from “/aaa/bbb” to
“/aaa/bbb/ccc/ddd/eee”.

0

10

20

30

40

50

60

70

80

pr
oc

es
si

ng
 ti

m
e

pe
r m

es
sa

ge
 (m

s)

2 3 4 5

level

SAX DOM SBH-SAX

Figure 7: Performance of different levels.

As the level of XPath increases, the processing
time does not increase significantly. The time saved
by SBH-SAX is nearly constant, because the query
time of XML message only takes a small ratio of the
whole XML processing and the impacts of level
increase on these three systems are nearly the same. It
means a more complicated search of the DOM tree in
systems with SAX and DOM, while at the same time
there are more states to be matched in heuristic
automata of the system with SBH-SAX.

5.5 Memory Usage
Multiplying factor is a metric to measure the

memory usage of XML parsing algorithm, which is
the size of the memory usage divided by the size of
the XML message itself. The multiplying factor of
DOM varies from 5 to 10 for different XML
messages [14]. For SBH-SAX, the multiplying factor
varies according to the complexity of the heuristic
automata and the size of the XML message. The
offsets can be neglected, which are no more than 20
Bytes.

The above discussion is about one XML message
and one security policy. It is hard to evaluate which
of the two, DOM and SBH-SAX, is better in memory
usage. But in most of the cases for security
processing, which have lots of XML message based
on the same security policy, or not too many policies,
SBH-SAX is proved to be more memory efficient
than DOM for two main reasons.

Firstly, the heuristic automata can be shared by
different XML messages based on the same security
policy. So if we have 5KB heuristic automata which
can be shared by 100 XML messages in 1KB being
processed. The multiplying factor is (100+5)/100 =
1.05, which is much smaller than DOM (above 5).
The essential reason is that the memory usage of data
structure in SBH-SAX is unrelated to the size of
XML message. It is decided by the security policy,
which is relatively invariant in a specific service.

Secondly, most of the XPaths describing security
policy are not too long, so the corresponding heuristic
automata will not be too big in size. We observe that
in most of the security processing cases the heuristic
automata are less than 5KB and the XML message
size varies significantly, from 1KB to more than 1MB
(for some XML messages carrying data). This
reduces the multiplying factor of SBH-SAX too.

So in most cases with a relatively invariant security
policy, simple XPath and bigger XML message, the
memory usage of SBH-SAX is much less than DOM,
and the multiplying factor is nearly 1.

5.6 Discussions
We conduct the experiments of processing time in

three ways, different sizes of concerned texts,

different proportions, and different XPath levels. The
results of these dedicated tests validate the essential
features of SBH-SAX algorithm that enables the
better performance of the system with it.

1. SBH-SAX is optimized by reduction of the
unnecessary text processing. This feature is achieved
through heuristic automata. As the proportion of
unnecessary text increases, the reduction of
processing time is becoming relatively more.

2. SBH-SAX is also optimized by simplification of
the concerned text representation. This feature is
achieved through offset method. As the size of
concerned data increases, the simplification method
shows better and better performance in both
processing speed and memory usage.

Although SBH-SAX has faster processing speed,
its memory usage is not always less than DOM. If the
size of XML message is small or the security policy
is complicated, SBH-SAX could require more
memory than DOM. However in most cases, it
requires less memory. Essentially it depends on the
size of heuristic automata of SBH-SAX and the XML
messages being processed.

6 Conclusion and Future Work
Previous XML security systems are not efficient

for security processing in both speed and memory.
The reason is that they process unconcerned texts and
store them in memory in a complicated way.

SBH-SAX is an XML parser based on SAX,
processing XML message in pipeline. It is better used
in a specific security system, which has security
policy set beforehand. The heuristic security policy is
utilized to form heuristic automata as a searching
engine. Only concerned texts are processed and
stored in memory by offsets. Experimental results
show that, system with SBH-SAX requires the least
memory usage in most security processing cases, and
also has above twice processing speed.

Future work can be conducted to optimize the
SBH-SAX algorithm by compressing the heuristic
automata or utilizing more heuristic information. The
algorithm can be also applied to other XML
applications, which have a requirement of
manipulation on XML messages in a way set
beforehand.

Acknowledgement
The author would like to thank Mr. Quan Huang

for his help in the IXP425 based implementation.
Thanks also due to colleagues at the Network
Security Lab of Research Institute of Information
Technology, Tsinghua University, for their generous
suggestions and encouragement.

References
1. J. Bloomberg and R. Schmelzer, “A Guide to

Securing XML and Web Services,” White Paper
of Zapthink LLC, Jan 2004.

2. W3C XML Schema,
http://www.w3.org/XML/Schema.

3. Y. Papakonstantinou and V. Vianu, “Incremental
Validation of XML Documents,” In Proc. of 9th
International Conference on Database Theory
(ICDT), 2003.

4. B. Nag, “Acceleration Techniques for XML
Processors,” In Proc. of XML 2004, 2004.

5. J. Zhang, “Non-Extractive Parsing for XML,”
http://www.xml.com.

6. M. Murata, D. Lee, and M. Mani, “Taxonomy of
XML Schema Languages using Formal
Language Theory,” In Proceedings of 2001
Extreme Markup Languages Conference, 2001.

7. N. Wang, P.S. Housel, G. Zhang, and M. Franz,
“An Efficient XML Schema Typing System,”
Technical Report of UC Irvine, 2003.

8. SAX Project, http://www.saxproject.org/.
9. W3C DOM, http://www.w3.org/DOM/.
10. W3C XPath, http://www.w3.org/TR/xpath.
11. M. Murata, “Transformation of Documents and

Schemas by Patterns and Contextual
Conditions,” In Proc. of 3rd International
Workshop on Principles of Document Processing
(PODP), 1996, volume 1293 of LNCS, pages
153-169, Springer-Verlag, 1997.

12. A. Neumann and H. Seidl, “Locating Matches of
Tree Patterns in Forests,” In Proc. of 18th
Conference on the Foundations of Software
Technology and Theoretical Computer Science
(FSTTCS), 1998, volume 1530 of LNCS, pages
134-145, Springer-Verlag, 1998.

13. “Intel IXP425 Network Processor,” Product Brief
of Intel,
http://www.intel.com/design/network/prodbrf/27
905104.pdf

14. http://vtd-xml.sourceforge.net/technical/4.html

	1. Introduction
	2. Previous Work
	3. Characteristics of XML Security System
	
	
	4. Security Based Heuristic SAX (SBH-SAX)
	4.1 Algorithm Explained by an Example
	4.2 Heuristic Information Processing
	4.3 Information Expression with Offset
	5. Implementation and Experiment
	5.1 Conditions of the Experiments
	5.2 Impact of Size of the Concerned Text
	5.3 Impact of Proportion of Concerned Text to Whole XML Message
	5.4 Impact of Level of XPath Language
	5.5 Memory Usage
	5.6 Discussions

	6 Conclusion and Future Work
	Acknowledgement
	References

