
TSINGHUA SCIENCE AND TECHNOLOGY
IS SN l l 1 0 0 7 - 0 2 1 4 l l 0 3 / 2 1 l l p p 1 9 - 2 8
Volume 14, Number 1, February 2009

Architecture-Aware Session Lookup Design for Inline Deep Inspection
on Network Processors*

XU Bo ()1,2, HE Fei ()1,2, XUE Yibo ()2,3, LI Jun ()2,3,**

1. Department of Automation, Tsinghua University, Beijing 100084, China;
2. Research Institute of Information Technology (RIIT), Tsinghua University, Beijing 100084, China;

3. Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, China

Abstract: Today’s firewalls and security gateways are required to not only block unauthorized accesses by

authenticating packet headers, but also inspect flow payloads against malicious intrusions. Deep inspection

emerges as a seamless integration of packet classification for access control and pattern matching for intru-

sion prevention. The two function blocks are linked together via well-designed session lookup schemes. This

paper presents an architecture-aware session lookup scheme for deep inspection on network processors

(NPs). Test results show that the proposed session data structure and integration approach can achieve the

OC-48 line rate (2.5 Gbps) with inline stateful content inspection on the Intel IXP2850 NP. This work

provides an insight into application design and implementation on NPs and principles for performance

tuning of NP-based programming such as data allocation, task partitioning, latency hiding, and thread

synchronization.

Key words: session lookup; deep inspection; network processor; performance optimization

Introduction

Traditional firewalls are designed to protect local net-
works from unauthorized access according to access
control lists (ACLs). However, with the emergence of
stateful inspection in recent decades, various imple-
mentations of stateful session maintenance strategies
have been developed to achieve high-speed session
creation, lookup, and teardown inside the security
appliances. Nowadays, security gateways are taking
charge of not only blocking malicious attackers
by verifying packet headers, but also scanning flow

payloads against deliberate intrusions. These require-
ments have stimulated the research on deep inspection,
which seamlessly integrates packet classification for
access control and pattern matching for intrusion pre-
vention through a session lookup strategy.

With the rapid increase of network bandwidth, gen-
eral purpose processors (GPPs) are becoming more and
more incompetent to catch up with the performance
requirement for the categorization of incoming and
outgoing packets into corresponding network flows at
the OC-48 speed or higher. In addition, with the
ever-changing network environments and the
newly-emerging types of attacks, the long cycle and
high cost of ASIC research and development makes it
infeasible to meet the time-to-market demands of to-
day’s network appliances. Consequently, network
processors (NPs) are becoming extremely attractive
alternatives in high-end security gateway design.

NPs are anticipated to provide the same high

 Received: 2008-03-26; revised: 2008-10-14

* Supported by the Basic Research Foundation of Tsinghua National
Laboratory for Information Science and Technology (TNList) and
the National High-Tech Research and Development (863) Program
of China (No. 2007AA01Z468)

** To whom correspondence should be addressed.
E-mail: junl@tsinghua.edu.cn; Tel: 86-10-62796400

 Tsinghua Science and Technology, February 2009, 14(1): 19-28

20

performance as ASICs and the time-to-market advan-
tage of GPPs. The main characteristics of NPs are the
highly optimized hardware architecture for high speed
network computing and packet processing, the distrib-
uted, multiprocessor, multithreaded architectures, and
the programming flexibility. In recent years, many in-
tegrated circuit companies, such as Intel[1], AMCC[2],
Freescale[3], and Agere[4], have developed their own
programmable NPs. Cavium[5] and RMI[6] have also
paid much attention on NPs with their relatively new
multiple MIPS core solutions.

This paper focuses on NP-based high performance
inline stateful deep inspection, which is the dominant
function block in intrusion prevention systems (IPSs).
This requires well-designed session data structures
along with efficient implementation on NPs. The main
challenges of this research include:

(1) Secure stateful processing The session table
should support the security mechanisms to guarantee
secure stateful processing. TCP validations including
three-way handshake flag checking and sequence
number and acknowledgement number checking
should be used to verify the legitimacy of packets and
flows to eliminate illegal packets or flows. Moreover,
the session table should be designed with consideration
of out-of-order packets and reserve memory for unor-
dered packets.

(2) Flow-level deep inspection Today’s network
intrusions are more difficult to detect due to the
ever-complicated attack modes spanning across pack-
ets. The evasion attack is quite dangerous since its
signature is not contained in a single packet but di-
vided into several segments and placed in two or more
consecutive packets of the same flow. The signature is
reconstructed when the packets reach the victim. Thus,
interim security devices cannot catch it by packet-level
intrusion detection. The only way to detect evasion
attacks is flow-level deep inspection, which scans ma-
licious signatures against the flow content rather than
the payload of individual packets.

(3) Efficient implementation on NPs Although
NPs provide an excellent candidate for network proc-
essing, programming on multi-core, multithreaded NPs
is a big challenge because experience with general
purpose multi-processing programming is not directly
applicable to such system-on-chip (SoC) architectures.
For example, latency hiding is an important issue when

programming on micro-engines (MEs), and mutual
exclusion operations must be considered when more
than two MEs are applying to access the same memory
address. In addition, the implementation should utilize
the characteristics of the NP platform to achieve high
performance.

This work investigates architecture-aware session
design on NPs, and provides an instance of implemen-
tation to exploit the parallelism of the multi-core, mul-
tithreaded NP. The main contributions of this paper
include:

(1) Architecture-aware session data structure de-
sign A well-designed session data structure is pro-
posed to support TCP validation and inline stateful
deep inspection. The scheme provides fast-path im-
plementation of stateful session lookup and flow-level
deep inspection, as well as slow-path unordered packet
buffering and TCP reassembly. Moreover, the design
takes advantage of the NP characteristics to achieve an
inline deep inspection speed of 2.5 Gbps.

(2) Performance optimization on NPs This paper
gives an example of how to efficiently implement ap-
plications on NPs and investigates the main program-
ming issues: memory space reduction, data allocation,
task partitioning, latency hiding, and thread synchro-
nization, which have drastic performance impacts on
NP-based application implementations.

(3) Mechanism for integrating inline content in-
spection By buffering unordered packets in flows
and reassembling them, flow-level inline content in-
spection is realized based on single packet payload
inspection. According to a previous observation, the
proportion of unordered flows is less than 3%[7], so
there are only a few flows that need buffers to store
unordered packets. Besides, each flow engages a buffer
caching the last characters of the previous packet to
combine the flow contents. The buffer size is typically
determined by the length of the longest signature.
Consequently, the flow-level content inspection can
achieve an inline processing speed of 2.5 Gbps with
modest memory storage.

1 Related Work

Researchers have been trying hard to improve the per-
formance of deep inspection based on FPGAs/ASICs.
Some have achieved the OC-48 rate for intrusion de-
tection, but not on an NP platform.

XU Bo () et al Architecture-Aware Session Lookup Design for Inline Deep Inspection ... 21

Schuehler and Lockwood[8] took advantage of FPGA
to implement stateful flow tracking, TCP stream reas-
sembly, context storage, and flow manipulation ser-
vices in 2004. They designed a circuit capable of
monitoring bidirectional TCP flows at OC-48 data rate.
A TCP/IP flow monitoring system called TCP-splitter
was also implemented based on reconfigurable hard-
ware for analyzing and processing TCP/IP flows at
OC-48 line rate[9].

Dharmapurikar et al.[10] developed a technique based
on Bloom filters to detect predefined signatures in the
packet payload. With the state-of-the-art FPGAs, the
scheme can support 10 000 strings at the OC-48 line
rate. Moscola et al.[11] designed another con-
tent-scanning module for an Internet firewall using
finite state machines (FSMs), and it was also imple-
mented on FPGA and reached the OC-48 line speed.

However, the FPGA-based solutions suffer badly
from hardware inflexibility. Any change in data struc-
tures or signatures requires recompilation, regeneration,
and replacement of the circuits on FPGA platforms. In
contrast, the powerful computing ability and the high
flexibility of NPs leverage the advantages of GPP and
FPGA. If the architecture characteristics can be effec-
tively exploited, a high performance inline stateful
deep inspection system could be realized on NPs.

Some researchers have focused on NP-based fire-
wall design and implementation. Shen et al.[12] pro-
posed an optimized firewall design based on the Intel
IXP 2400 NP. They designed a framework for stateful
firewall systems, and optimized the access control list
and status session table creation and lookup. The fire-
wall system achieves the OC-48 line speed using
hardware implementations.

Zhong et al.[13] presented a comprehensive
IPv4/IPv6 firewall system based on NPs. They intro-
duced the firmware and software structures of the syn-
thetic firewall system, invoking the multithread char-
acteristics of the Intel IXP 2400 NP. The system is be-
lieved to be adaptable to the next generation Internet.

Although these previous works have achieved the
OC-48 line speed, they are at most stateful firewall
systems rather than deep inspection systems with inline
stateful content inspection. The demand for high per-
formance deep inspection greatly motivates this
research.

2 Architecture-Aware Session Design

The session design aims to achieve deep inspection on
NPs, with packet classification for access control and
pattern matching for intrusion prevention into a seam-
less integration. This objective poses two main chal-
lenges: (1) the integrated system has a tighter per-
formance budget for each single packet to traverse
through the session table; (2) the integration with
inline content inspection raises the demand for session
entries to store the out-of-order flag, cache the unor-
dered packets, and store the current characters of each
flow. Hence, the session data structure is of great im-
portance to inline deep inspection, and its design
should take advantage of the parallelism of the
multi-core, multithreaded NPs, while consider the mu-
tual exclusion of memory accesses in different MEs.
Session data structure includes two components:
session entry data structure and session table data
structure.

2.1 Session entry data structure

The session entry data structure is the data structure of
each session entry. The session entry data structure
designed in this paper is illustrated in Table 1. The total
structure size is 72 bytes. LW is short for long word,
with each long word 4 bytes in length. The session
entry data structure can be segmented into three parts.

Part 1 includes LW0 to LW3 where the higher 16
bits of LW0 indicate the next session pointer of the
session entry, while the lower 16 bits of LW0 are used
to store the IP protocol, classification policy, IDS flag,
and the mutual exclusion (mutex) lock for avoiding
access collisions between threads of the MEs. Once a
thread accesses the session entry data structure, the
mutex lock is set true so that no other thread can access
the same session entry. Concurrent read operations by
different threads do not need to be excluded since they
do not change the memory data. LW1 to LW3 store the
four-tuple header information of the flow.

Part 2 from LW4 to LW13 maintains all the neces-
sary information for the upstream and downstream
flows of the same connection. The upstream represents
the flow from the originating client to the replying
server while the downstream represents the flow in the
opposite direction. The upstream or downstream con-
nection information includes the sequence number, the

 Tsinghua Science and Technology, February 2009, 14(1): 19-28

22

Table 1 Session data structure

LW Bits Size Field description
0 31:16 16 Next session pointer
0 15:15 1 Mutex Lock
0 14:12 3 IDS flag
0 11:8 4 Classification policy
0 7:0 8 Protocol
1 31:0 32 Source IP address
2 31:0 32 Destination IP address
3 31:16 16 Source port
3 15:0 16 Destination port
4 31:0 32 Upstream Seq No.
5 31:0 32 Upstream Ack No.
6 31:16 16 Upstream code bits
6 15:0 16 Upstream win size
7 31:0 32 Upstream time stamp
8 31:0 32 Upstream session length
9 31:0 32 Downstream Seq No.

10 31:0 32 Downstream Ack No.
11 31:16 32 Downstream code bits
11 15:0 32 Downstream win size
12 31:0 32 Downstream time stamp
13 31:0 32 Downstream session length
14 31:31 1 Upstream out-of-order flag
14 30:24 7 Upstream out-of-order No.
14 23:0 24 Upstream buffer head pointer
15 31:0 32 Upstream joint buffer address
16 31:31 1 Downstream out-of-order flag
16 30:24 7 Downstream out-of-order No.
16 23:0 24 Downstream buffer head pointer
17 31:0 32 Downstream joint buffer address

acknowledge sequence number, the TCP code bits, the
windows size, the time stamp, and the session traffic
length. These fields are reserved to do TCP validation
and check the packet ordering.

Part 3 from LW14 to LW17 enables the session to
deal with out-of-order flow packets as well as inline
stateful content inspection. Bit 31 of LW14 indicates
whether there are unordered packets in upstream flow.
Bits 30-24 count the unordered packet number while
bits 23-0 store the header pointer of the buffer that
caches the out-of-order packets. Based on prior statis-
tics[7], less than 5% of the out-of-order flows have
more than one hole. Therefore, we only cache the
flows with one hole and set a threshold of unordered
packets number in one flow. LW15 indicates the ad-
dress of the joint buffer which stores the last characters
of the previous packet. These characters are combined
with the coming packet payload for flow-level content
inspection. The joint buffer is placed in scratchpad to
accelerate access. The size of the joint buffer should be
adjusted according to the longest length of signatures.
LW16 to LW17 indicate the out-of-order buffer address
and the joint buffer address for the downstream flow.

The dedicated session entry data structure design fa-
cilitates inline deep inspection based on stateful packet
processing and single packet payload inspection.

2.2 Session table data structure

The session table data structure defines how the ses-
sion entries are organized. The conventional hash table
is modified to allow dynamic link lists in our imple-
mentation as shown in Fig. 1. Furthermore, a memory

Fig. 1 Hash table data structure

XU Bo () et al Architecture-Aware Session Lookup Design for Inline Deep Inspection ... 23

ring is designed in this paper, as shown in Fig. 2, to
facilitate the insertion and deletion of the dynamic ses-
sion entries.

Fig. 2 Memory ring for dynamic allocation

As shown in Fig. 1, the left column of the hash table
is an array called the fixed session table, which stores
the header entry of each hash link list. The mutex lock
in this session entry is the access token for the whole
link list. The session entries linked behind the pointers
are dynamically allocated when there are collisions. A
memory block-named the dynamic session table is re-
served for these dynamic allocations and repeals and
an indicator-named the session allocation flag is used
to maintain the allocation and release of the dynamic
session entries.

Assuming a load factor of 1/2, with 100K (K=1024)
simultaneous sessions at the same time, a total of 200K
session entries are required for the fixed session table.
In addition, 100K session entries are reserved for dy-
namic entry allocations. The load factor is defined
by n/m, where m is the total number of buckets in the
hash table and n is the maximum number of buckets
that are simultaneously occupied. As a result, the total

memory used for the hash table will be (200K 100K)
72 8 bits 172.8 Mbit , which can be stored in SRAM
on the Intel IXP2850 NP.

3 Implementation on Network
Processors

Network processors, beneficial from their programma-
ble architectures, are emerging as attractive candidates
for network processing and will gradually be widely
used for applications in network appliances such as
switches, firewalls, and security gateways. Being
highly optimized for fast network computing and
packet processing, NPs are capable of hiding memory
access latencies to attain high processing rates typi-
cally by the distributed, multiprocessor, multithreaded
architectures. In this paper, the Intel IXP2850 NP is
chosen as the implementation platform.

3.1 Intel IXP2850 NP and processing stages

Figure 3 illustrates the components of the Intel
IXP2850 NP, which include 1 XScale core, 16 MEs, 4
SRAM controllers, 3 DRAM controllers, and
high-speed bus interfaces. The XScale core is a general
purpose 32-bit RISC processor, which initializes and
manages the MEs and handles higher layer network
processing tasks. Each ME has eight hardware-assisted
execution threads and 640 words single-cycle access
local memory. There is no cache on the MEs. Each ME
uses the shared buses to access off-chip SRAM and

Fig. 3 Intel IXP2850 hardware blocks

 Tsinghua Science and Technology, February 2009, 14(1): 19-28

24

DRAM banks. The average access latency for SRAM
is about 150 cycles and that for DRAM is about 300
cycles. The session prototype is implemented with
inline content inspection with assistance of the IXA
SDK4.0 Workbench and simulated on a cycle-accurate
simulator. In the following, the packet processing
stages and hardware design issues in the implementa-
tion of the session prototype are discussed for achiev-
ing the high speed of OC-48.

The session prototype utilizes six packet processing
stages (PPSs). First, the packet receive PPS receives
the Ethernet packets from the MSF RBUF and

reassembles the RBUF data into one or more packet
buffers. Then, the session lookup PPS with the inline
content inspection is evoked along with a bypassing
session update PPS to update corresponding fields in
the session data structure. After that, the IPv4 packets
are forwarded to the packet scheduling PPS to protect
the order and finally the packets are transmitted
through the CSIX fabric with a queue manager PPS
that enqueues and dequeues the packets. The process-
ing stages are shown in Fig. 4 and the pseudo-code for
the session processing PPS is shown in Fig. 5.

Fig. 4 NP processing stages

Fig. 5 Session processing PPS pseudo-code

3.2 NP-based design principles

Since the session prototype is implemented on a
multi-core, multithreaded NP, the programming needs
to be architecture-aware to take advantage of the
hardware characteristics. For instance, to hide memory
access latencies, fine-grained interactions are used to
connect tasks on the same ME. Furthermore, the NP
needs to process packets in real time, which makes the
performance budget for single packet processing rather
tight. To achieve the OC-48 line rate, at most 228 ME
clock cycles are allowed on the Intel IXP2850 NP to
process a minimal IPv4 packet. With such a rigid re-
striction, the data-path programming on the multi-core,
multithreaded NPs must consider the following
aspects:

(1) Primary parallel programming issues, such as
data allocation and task partitioning, to minimize
memory access latencies;

(2) Hardware architecture specific factors that have
crucial impact on performance, such as instruction se-
lection and intrinsic function invoking;

PPS Session_Lookup_Pps(void)
{
 for (;;)
 {

dlNextBlock = Dl_Source();
dlNextBlock == Ether_Decap();
/* Session Lookup */
hashKey = Hash (ipv4TcpHdr);
while (1)
{

 If (0 == atomic_test_and_set(mutex_lock))
 {
 session_exist = Check_Session_LinkList_Exist(hashKey);
 if (! Session_exist)
 Session_Create(currentSessionPtr, ipv4TcpHdr);
 else
 {
 while (1)
 {
 If (Match_Ipv4TcpHdr(currentSessionPtr,

ipv4TcpHdr))
 Session_Update(currentSessionPtr, ipv4TcpHdr);
 else

{
 currentSessionPtr->nextSessionPtr =

Session_Alloc();
 Session_Create (currentSessionPtr->nextSessionPtr,

 Ipv4TcpHdr);
}

}
 }
 atomic_clear (mutex_lock);

}
}
dlNextBlock == Ipv4_Forward();
Dl_Sink();
}

}

XU Bo () et al Architecture-Aware Session Lookup Design for Inline Deep Inspection ... 25

(3) Thread-level parallelism for hiding memory ac-
cess latencies;

(4) Thread synchronization and mutual exclusion for
coordinating potential parallelism between threads;

(5) Limitations of on-chip local memory or control
store for the code size, and the register numbers allo-
cated for each thread.

The benefits from these optimization strategies may
vary from a few cycles to hundreds of cycles. For ex-
ample, reallocating data from DRAM to SRAM on the
Intel IXP2850 can save nearly 150 clock cycles per
memory access. Besides, if two memory accesses are
scheduled in consecutive cycles, the issuing cycles of
the second memory access can be completely hidden.
Through deliberate application design and appropriate
hardware mapping from high-level decisions on data
allocation and task partitioning down to low-level de-
cisions such as instruction selection and scheduling,
high performance can be achieved on NPs. The ex-
traordinary hardware characteristics of the NPs must
be excavated to obtain the performance gain. Detailed
experiments of the optimization techniques will be
discussed in Section 4.2.

4 Simulation and Performance
Analysis

To evaluate the performance of the session prototype
proposed in this paper, we set a series of experiments
that mainly focused on the session lookup performance
with inline stateful content inspection and the per-
formance impact of the architecture-aware optimiza-
tion decisions, which provide insight into program-
ming on the multi-core, multithreaded NPs.

4.1 Session lookup performance evaluation

Since the objective is to achieve high performance ses-
sion lookup with inline stateful content inspection, the
performance was evaluated on three aspects: (1) ses-
sion creation speed that reflects the ability of the ses-
sion prototype to meet the requests for creating new
concurrent sessions; (2) session lookup speed without
content inspection that reflects the performance of flow
classification; and (3) session lookup speed with inline
stateful content inspection, which provides the overall
performance of the session prototype with deep in-
spection enabled.

4.1.1 Experiment setup
The flow traces were real-life packets collected at the
edge firewall of the Research Institute of Information
Technology, Tsinghua University. The four-tuple
packet header information was used to generate hash
keys with CRC Hash selected for this implementation.
Thus, with a load factor of 1/2, the hash collision rate
is 10.68% in the tests. Moreover, if 100K concurrent
sessions are to be supported, 200K session entries
should be reserved in the fixed session table and an-
other 100K session entries should be reserved in the
dynamic session table, organized in memory rings.
Thus, a total of 172.8M (M=10242) memory is needed.

The hash table data structure is allocated in SRAM
with the simulation platform being the Intel IXP2850
NP with the IXA SDK4.0 Workbench.

The session update PPS is responsible for eliminat-
ing out-of-date sessions, which ensures the renewing
of the session entries. Referring to some industrial
products, the session timeout interval was set to 30 s.

The session lookup speed with inline stateful content
inspection was evaluated using the recursive shift in-
dexing algorithm[14] as the pattern matching algorithm
in the session lookup PPS, due to its higher matching
speed compared with other pattern string matching
algorithms. The 2835 intrusion signatures used in the
tests are seized from Snort 2.6[15], the well-known open
source IDS. Besides, the red traffic and orange traffic
archives on the Snort website were used to generate the
packet payloads for the flows. Thus, the tests simulate
real-life circumstances, with real signatures in the traf-
fic payload. Moreover, to achieve stateful content in-
spection, joint buffers are hired in session table for
each live flow. The joint buffers were allocated in
scratchpad in our experiments, in order to accelerate
the memory accesses at the buffer content switches.
Generally, one scratchpad access needs 60 clock cycles
while the average access latency for SRAM is 150 cy-
cles and for DRAM is 300 cycles.
4.1.2 Experimental results
Table 2 shows the memory requirements for the ses-
sion data structure, which show that the memory oc-
cupation is proportional to the session size m, i.e., the
number of buckets. If the number of supported con-
current sessions is k, then for the load factor of 1/2, m
equals 2k. In our implementation, m entries were re-
served in the fixed session table and m/2 entries were

 Tsinghua Science and Technology, February 2009, 14(1): 19-28

26

reserved in the dynamic session table. The total mem-
ory size was (2k + k) multiplied by the size of one ses-
sion entry, which is 72 bytes in this design.

Table 2 Memory occupation of session table structure

Concurrent session number Memory (KB)
 10 000 17 280
 100 000 172 800
 500 000 864 000
1 000 000 1 728 000

Figure 6 shows the session creation rate for the ses-

sion prototype. Aiming at being placed at edge net-
works as security gateways, the prototype is designed
to support a large number of concurrent sessions. With
real-life flow packets, the flow rate was about 14.5M
connections per second (14.5 Mcps) with the load fac-
tor of 1/2. Moreover, the time performance scales well
as the number of concurrent sessions increases, indi-
cating that the hash function time performance is
mostly influenced by the load factor.

Fig. 6 Session creation performance

Figure 7 compares the session lookup performance
with and without inline content inspection. The proto-
type achieves a lookup speed of 7.5 Gbps without con-
tent inspection with all the TCP states tracked and
verified in the session data structure. A simple version
of Layer 3 IP validation and Layer 4 TCP validation is
synthesized in the implementation, including payload
length checking, sequence/acknowledgement number
checking, and TCP code bits checking. It is believed a
complete protocol validation via stateful trace tracking
can be performed based on this platform. Besides, the
session lookup time scalability indicates that the sys-
tem can support more concurrent sessions.

Figure 7 also shows the session lookup rate with
inline stateful content inspection. The recursive shift

Fig. 7 Session lookup performance

indexing algorithm reduces unnecessary comparisons
via recursive shifting. It shows that when embedded in
the session lookup stage, the algorithm reaches a proc-
essing speed higher than the OC-48 line rate, which is
an appealing result on NPs.

4.2 Architecture-aware design issues

4.2.1 Data allocation
Like many other NPs, the Intel IXP2850 has a rich
memory hierarchy including local memory, scratchpad,
SRAM, and DRAM. For the session prototype, the
allocation of the session table structure greatly affects
the session creation and lookup speeds. Meanwhile, for
the content inspection algorithm, the allocation of the
preprocessing data structures also drastically influ-
ences the signature matching speed.

To evaluate the memory distribution impacts, we
tested four data allocation schemes on the session
lookup performance with inline content inspection.
The session table size was set to 100K entries and ex-
perimental results are shown in Table 3.

Table 3 Lookup rate on various data allocations

 SRAM Hybrid-1 Hybrid-2 DRAM
2 MEs 1.97G 1.86G 1.23G 1.14G
4 MEs 3.90G 3.75G 2.47G 2.35G
8 MEs 7.85G 7.58G 4.79G 4.63G

Note: G=10243

In Table 3, the SRAM scheme places both the fixed
session table and the dynamic session table in SRAM
while the DRAM scheme places both tables in DRAM.
The Hybrid-1 scheme places the fixed session table in
SRAM and the dynamic session table in DRAM, while
the Hybrid-2 scheme places the fixed session table in
DRAM and the dynamic session table in SRAM. The
results show that placing data in SRAM gives better

XU Bo () et al Architecture-Aware Session Lookup Design for Inline Deep Inspection ... 27

performance than in DRAM. Thus, NP programs
should allocate data in faster memory banks as much
as possible. However, the faster memory banks are
always smaller in size so programmers must balance
the memory allocation verses the overall performance.
4.2.2 Task partitioning
The IXP2850 NP has 16 MEs in total, which raises a
question as to how to distribute the computation power.
Generally, the computing resources of MEs should be
divided according to two principles: (1) the different
functions of the microblocks; and (2) the performance
budget and overhead of the microblocks. The session
prototype has six PPSs. The 16 MEs are distributed as
follows: 2 for the packet receive PPS, 8 for the session
lookup PPS, 2 for the session update PPS, 1 for the
packet scheduling PPS, 1 for the queue manager PPS,
and 2 for the CSIX transmit PPS.

Tests showed that the session lookup PPS is the bot-
tleneck that intensively limits the overall throughput.
The results for various task partitioning strategies in-
cluding multi-processing and context-pipelining are
shown in Table 4. The context-pipelining is not suit-
able for the session prototype due to the dynamic na-
ture of the workload.

Table 4 Lookup rate under different task partitioning
schemes

 Multi-processing Context-pipelining
2 MEs 1.97G
4 MEs 3.90G
6 MEs 5.93G 2.11G
8 MEs 7.85G 2.01G

4.2.3 Latency hiding
Hiding memory latencies is the key issue in achieving
high performance applications. The memory access
latencies are hidden typically by overlapping the
memory access with the arithmetic computations in the
same thread. The microengineC compiler provides a
switch to turn latency hiding optimizations on or off.
Thus, the compiler can schedule ALU instructions into
the delay slots of a conditional branch instruction and a
memory access instruction. When using microcode,
programmers should be conscious of hiding memory
latencies, though the assembler also has its own opti-
mization options. In Fig. 5, line 8 is for calculating the
hash key while line 11 is for writing the SRAM to set
the mutex lock. These two instructions can run in

parallel so that the hash key computation is hidden
completely by the memory write operation. There are
more instances in the real code.
4.2.4 Thread synchronization
Thread synchronization is a typical problem that pro-
grammers face on NPs due to their multi-core and
multithreaded architectures. Different threads on the
same ME or different MEs may compete for the shar-
ing resources such as SRAM channels, or even the
same SRAM entry addresses when there are collisions
in the hash function. Therefore, atomic read and write
operations on SRAM are engaged in this implementa-
tion. The mutex locking is needed for ensuring the
logical correctness of the application. However, it
brings a 6%-10% overhead according to the test results
listed in Table 5. The session lookup without inline
content inspection is taken in this test.

Table 5 Thread synchronization overhead

 With mutex Without mutex Overhead (%)
2 MEs 1.97G 2.13G 8.1
4 MEs 3.90G 4.30G 10.3
6 MEs 5.93G 6.42G 8.3
8 MEs 7.85G 8.37G 6.6

5 Conclusions and Future Work

Current firewalls and security gateways not only block
unauthorized accesses by inspecting packet headers,
but also inspect flow contents against malicious intru-
sions, which significantly motivate the research on
deep inspection. Deep inspection aims at combining
packet classification for access control and pattern
matching for intrusion prevention into a seamless inte-
gration. This paper proposed a well-designed session
lookup scheme for inline stateful content inspection
and implemented it efficiently on the IXP2850 NP
platform. With the dedicated session data structure and
integration approach, the OC-48 line rate stateful inline
content inspection is achieved. By means of excavating
the principles on NP-based performance tuning such as
data allocation, task partitioning, latency hiding, and
thread synchronization, we realized an architec-
ture-aware session design to promote the performance
of the integration system and provide an insight into
application design and implementation on NP. Future
work will be conducted to implement high level deep
inspection such as Layer 7 protocol analysis and Web

 Tsinghua Science and Technology, February 2009, 14(1): 19-28

28

content filtering. Moreover, security mechanisms such
as TCP proxy and anti-DoS are within our future re-
search interests.

Acknowledgements

The authors would like to acknowledge Qi Yaxuan, Yu Jian-
ming, and Zhou Xin for their suggestions and help. Thanks also
to all of our other colleagues in the Network Security Lab for
their support and advice.

References

[1] Intel, IXP2XXX Product Line of Network Processor,
http://www.intel.com/design/network/products/npfamily/ix
p2xxx.htm, 2008.

[2] AMCC, Network Processor, https://www.amcc.com/
MyAMCC/jsp/public/browse/controller.jsp?networkLevel=
COMM&superFamily=NETP, 2008.

[3] Freescale, C-Port Network Processors, http://www.frees-
cale.com/webapp/sps/site/homepage.jsp?nodeId=02VS01D
FTQ3126, 2008.

[4] Agere, Network Processor, http://www.agere.com/tele-
com/network_processors.html, 2008.

[5] Cavium, http://www.caviurm.com/, 2008.
[6] RMI, http://www.razamicroelectronics.com/, 2008.
[7] Dharmapurikar S, Paxson V. Robust TCP stream reassem-

bly in the presence of adversaries. In: Proc. of the 14th
Conference on USENIX Security Symposium. Baltimore,
Maryland, USA, 2005.

[8] Schuehler D V, Lockwood J W. A modular system for
FPGA-based TCP flow processing in high-speed networks.
In: Proc. of the 14th International Conference on Field
Programmable Logic and Application. Leuven, Belgium,
2004.

[9] Schuehler D V, Lockwood J W. TCP-splitter: A TCP/IP
flow monitor in reconfigurable hardware. In: Proc. of the
10th Symposium on High Performance Interconnects.
Stanford University, California, USA, 2002.

[10] Dharmapurikar S, Krishnamurthy P, Sproull T, LockWood
J. Deep packet inspection using parallel bloom filters. In:
Proc. of the 11th Symposium on High Performance Inter-
connects. Stanford University, California, USA, 2003.

[11] Moscola J, Lockwood J, Loui R P, Pachos M. Implementa-
tion of a content-scanning module for an internet firewall.
In: Proc. of the 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM). Napa, California, 2003.

[12] Shen J, Zhou X S, Zhang F, Yu Z Y. Optimized design and
research of firewall based on network processor. Computer
Engineering, 2007, 33(10): 172-174. (in Chinese).

[13] Zhong T, Liu Y, Li Z J, Qin Z G. Research of a comprehen-
sive IPv4/IPv6 firewall system based on network processor.
Journal of Communications, 2006, 27(2): 14-20.
(in Chinese).

[14] Xu B, Zhou X, Li J. Recursive shift indexing: A fast
multi-pattern string matching algorithm. In: Proc. of the
4th International Conference on Applied Cryptography and
Network Security (ACNS). Singapore: Springer-Verlag,
2006.

[15] http://www.snort.org/, 2008.

