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Why from Packet to Flow?
Increasing sophistication of applications

Stateful inspection firewalls
Deep inspection in IDS/IPS

Continual growth of network bandwidth
OC192 or higher link speed
Millions of concurrent connections

Requirement for holistic defense
Against complex and blended network threats
Integrated security features in unified security 
architecture
Unified Threat Management (UTM)



Features and Bottlenecks
Packet Classification

High-speed with modest memory

Stateful Inspection
Large number of connections
Order-preserving

Deep Inspection
Enormous signatures
Various signature characteristics



Novel Algorithms (1)
Packet classification algorithm (AggreCuts)

Aggregation Cuttings
Multi-dim range match

Worst-case bounded and adjustable
Limited decision tree depth 

No linear search

Efficient memory storage
Space aggregation with bitmap

Support different memory hierarchies



Packet Classification Algorithms
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Space Aggregation
Space Aggregation



Decision-tree
Data-structure



AggreCuts vs. HiCuts
Performance Evaluation

Memory Usage:
an order of magnitude less

Memory Access: 
3~8 times less

Throughput on IXP2850:
3~5 times faster



Novel Algorithms (2)
Stateful inspection algorithm (SigHash)

Signature based hashing
Support large concurrent connections

Efficient memory usage

High speed TCP handshakes

Per-flow packet order preserving
External Packet order preserving

Internal Packet order preserving



Signature-based Hash
Signature-based 
Hashing

m signatures for m 
different states with 
same hash value

Resolving collision 
in SRAM (fast, 
word-oriented)

Storing states in 
DRAM (large, burst-
oriented)



SigHash Performance
Throughput

10Gbps
(SRAM+DRAM)

8Gbps 
(DRAM only)

Connections
10M on IXP2850

Collision
Less than 1%
Depends on different 
load factors



Handshake-separated Hash
Handshake-
separated Hash 
(IntelliHash)

Process handshake 
packets in SRAM, 
data packets in 
DRAM, sharing the 
same hash value
Speedup session 
creation
Enhance anti-DoS 
capability



IntelliHash Procedure
Handshake packets 
processing
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IntelliHash
Performance 
Evaluation

Handshake packets 
processing speed

8.5G (IntelliHash)

6.5G (DirectHash)

Session Creation 
Rate

Up to 2M 
connections per 
second (IntelliHash)
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Per-flow Packet Ordering
Packet Order-preserving 

Typically, only required between packets on the same 
flow. 

External Packet Order-preserving (EPO)
Sufficient for processing packets at network layer.
Fine-grained workload distribution (packet-level)
Need locking

Internal Packet Order-preserving (IPO)
Required by applications that process packets at 
semantic levels.
Coarse-grained workload distribution (flow-level)
No need for locking



Per-flow Packet Ordering
External Packet Order-preserving (EPO)

Ordered-thread Execution
Ordered critical section to read the packet handles off 
the scratch ring
The threads then process the packets, which may get 
out of order during packet processing
Another ordered critical section to write the packet 
handles to the next stage

Mutual Exclusion by Atomic Operation
Packets belong to the same flow may be allocated to 
different threads to process
Mutual exclusion can be implemented by locking
SRAM atomic instructions 



Per-flow Packet Ordering
Internal Packet Order-preserving (IPO)

SRAM Q-Array

Workload Allocation by CRC Hashing on Headers



Per-flow Packet Ordering
Performance 
Evaluation

Throughput
EPO is faster, 10Gbps

IPO has linear speed 
up, 7Gbps

Workload 
Allocation

Hashing via On-chip 
CRC

Nearly balanced 
workload



Novel Algorithms (3)
RSI (Recursive Shift Indexing)

Reduce the number of useless matching

Pro: trade-off space with time
Directly using four-character block to create the BLT will 
use memory up to 2564 → 4 GB



RSI Data Structure
Bitmaps are 
used for 
preprocessing 
and deleted 
after that



RSI Temporal Performance
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RSI Spatial Performance
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Break the Real Bottleneck
Current version of Clam-AV

The basic signatures are handled by BMEXT that uses the last 3 
characters of a signature to generate shifts

Large dataset characteristics
ClamAV: 78k basic rules

Our proposal: hybrid algorithms
DFA for short signatures: DFA-based algorithm 
implemented on fast on-chip memory

Space efficient 
High performance (5.5G vs 1.2G on Octeon) 

HASH for long signatures: Hash-based algorithm with 
larger shifts than BMEXT

Search with shifts/skips: i.e. MRSI



DFA Performance Limit

DFA size = 100KB, Len=512Byte
5.5Gbps on Octeon 3860

DFA size = 100MB, Len=512Byte
1.2Gbps on Octeon 3860



Statistics of ClamAV Signatures

Idx
Tota

Number
l Average

Length
Min 

Length
Len<9 

Num
0 29611 67.5 10 0
1 46954 123.7 4 8
2 164 106.8 28 0
3 1402 110.7 14 0
4 355 46.6 17 0
5 0 n/a n/a 0
6 15 105.1 17 0

Large scale signature set

Longer average length

Very few short signatures



MRSI
Use three BLTs

Increase the probability of getting leap
Omit Phase 2 in original RSI data structure

Solve memory occupation expansion
Improve preprocessing speed



MRSI Performance

MRSI vs. BMEXT: Scanning Speed MRSI vs. BMEXT: Memory Usage



MRSI Performance

MRSI vs. BMEXT: Scalability MRSI vs. BMEXT: Performance under Attacks



MRSI Performance in AV

Real System Performance on Clam-AV



Summary

Analyze the real problem
Packet classification
Stateful Inspection
Deep Inspection

Propose new algorithms
Hardware aware
Time-space tradeoff

Break the real bottleneck
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http://security.riit.tsinghua.edu.cn
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