Fast and Smoothed
Packet Classification

Recent advancement of research partnership
with V. Prasanna and S.-H. Teng

Jun Li & Yibo Xue
with contributions from our students Yaxuan Qi,
Jeffrey Fong, Xiaoqi Ren, et al.

Outline

* Background

* HyperSplit Algorithm

* Architecture for FPGA Implementation
* Evaluation with Smoothed Analysis

* Future Work

4 27
Outline

* Background

N/ 2/

Packet Classification Problem

To identify and
associate each

Forwarding engine

Packet Classification ACTION

d3avaH |

packet to a specific :
rule 4 =S|
] o : Rule 1 Deny .
® May match multiple |5 @ |[Reee e ||
r‘LI|€S Inco=ming E Rule N Drop E
Packet feedee—e—————— s
® Used for:
. Field 1 (sIP) Field 2 (dPort) Field F Action
N Rou-hng (protocol)
Rule 1 166.111.72.50/21 80 UDP Deny
| FW, IDS/ IP S, &AV Rule2 166.168.3.0/24 53 TCP Accept
mB&TE ieN 0,000/ 065535 .Y Dop

® OpenFlow & SDN

Qs

Theoretical Complexity

#® Point location problem

i

® Very high complexity

11

01

Y

00
L>X 00 01 10 11

______ i

___Fg____f5__

H-Trie H-Tree S-Trie S-Tree
d=1 time o) ©(logn) ow) ©(logn)
space On W) O(n * logn) On W) O(n * logn)
451 time (W h O(log?~In) O(d *W) 0(d * logn)
space O(n* Wi h O(n * log?~n) O(n* dW) O(n* dlogn)

Performance in Practice

THEORETICAL VS. PRACTICAL COMPLEXITY FOR REAL-LIFE RULES

non-over ranges # non-over # non-over # non-over # non-over # non-over # non-over

Rule Sets # rules in each field ranges in sIP ranges in dIP ranges in sPT ranges in dPT rectangles rectangles
(theoretical) (practical) (practical) (practical) (practical) (theoretical) (practical)

FW1 269 539 100 111 23 77 8.44 x 1010 1.97 x 107
FW1-100 92 185 19 45 20 48 1.17 x 10° 8.21 x 10°
FW1-1K 791 1583 221 314 23 75 6.28 x 1012 1.20 x 108
FW1-5K 4653 9307 3429 5251 23 77 7.50 x 10%° 3.19 x 10%°
FW1-10K 9311 18623 12 1.20 x 10V 1.71 x 10
ACL1 752 1505 _ . 5 1 3 1 O 5.13 x 102 9.67 x 10
ACL1-100 98 197 WSt Case " " X 1.51 x 10° 4.03 x 10°
ACL1-1K 916 1833 . . 6 1.13 x 10™3 1.32 x 107
ACL1-5K | 4415 8831 pl"aCtlcaI . 9 . 67X1 O 6.08 X 1015 2.42 x 108
ACL1-10K | 9603 19207 1.36 x 1017 1.90 x 10°
IPC1 1550 3101 9.25 x 10*3 3.40 x 108
IPC1-100 99 199 1.57 x 10° 9.49 x 10°
IPC1-1K 938 1877 559 796 49 78 1.24 x 103 1.70 x 10°
IPC1-5K 4460 8921 886 2125 59 93 6.33 x 10 1.03 x 100
IPC1-10K 9037 18075 2377 4604 59 94 1.07 x 10Y7 6.07 x 1010

Note: sIP, dIP, sPT and dPT are source IP, destination IP, source Port and destination Port; FW, ACL, IPC are firewall policies, access control lists, and IP chain rules

® Few applications reach the worst case bound
#® Real-life rule sets have geometrical redundancy

Progress of Joint Research

® Efficient Algorithms
m Exploiting real-life rule set redundancy
m HyperSplit Algorithm (Infocom)

® Fast Speed

m Using SRAM-based solution on FPGA
m 100Gbps Throughput (FPT)

® Smoothed Analysis

m Introducing Sampling-based Smoothed Analysis
m Practical evaluation (submitted)

Outline

* HyperSplit Algorithm

Q5
HyperSplit

® Memory-efficient packet classification
algorithm

m Uses 10% of the memory that other
comparable algorithms requires

® Optimized k-d tree data structure
#Uses heuristics to select the most

efficient splitting point on a specific
field

Priority Field-X Field-Y

1 00~01 0000

2 00~01 00~11
3 10~10 00~11
4 11-11 11-11
5 11-11 00~11

00 01

10

11

Lv-1

Lv-1 Lv-2

Lv-1 Lv-2

Lv-3

Memory Access

Memory Access: HyperSplit-1 vs. HiCuts-1 i Memory Access: HyperSplit-1 vs. HSM
60
M HiCuts-1 (wst) HiCuts-1 (avg) M HS-1 (wst) HS-1 (avg) WHSM HHS-1 (wst) HS-1 (avg)

50

memory access (# of 64bit word)

10 |

memory access (# of 64bit word)

Memory Access: HyperSplit-8 vs. HiCuts-8 . .
70 B HiCuts-8 (wst) HiCuts-8 (avg) M HS-8 (wst) HS-8 (avg) u Hyperspllt_l VS . HlCUtS_ 1

* = 50~80% less access

= HyperSplit-8 vs. HiCuts-8
= 10~30% less access

= HyperSplit-1 vs. HSM
= 20~50% less access

40 4. . ——

30 O D .

20 + AR AR

10 AR AR

memory access (# of 64bit word)

Q*
‘ \¢ N \'\

N o O N

S > K4 3

Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, Packet classification algorithms:
from theory to practice, INFOCOM, pp. 648-656, 2009.

memory usage (KB)

memory usage (KB)

1.00E+07

1.00E+06

1.00E+05

1.00E+04

1.00E+03

1.00E+02

1.00E+01

1.00E+00

1.00E+07

1.00E+06

1.00E+05

1.00E+04

1.00E+03

1.00E+02 -

1.00E+01 -~

1.00E+00 -

Memory Usage

Memory Usage: HyperSplit vs. HiCut

M HiCuts-1 HiCuts-8 B HS-1 HS-8
\ » & X * \ ® & X 3 N ® & X g
& \\3@ \,\\ (}.\fo \\\Q (S O 4\"'\ é\fo \\Q ™ \,\Q (:\'\ 3 \\“
Y L3 L Y Q K R Q & N N =)

Memory Usage: HyperSplit vs. HSM

W HSM mHS-1 HS-8

= HyperSplit-1 vs. HiCuts-1

= 1~2 orders less memory
= HyperSplit-8 vs. HiCuts-8

= 1~2 orders less memory
= HyperSplit-1 vs. HSM

= 1~2 orders less memory

Preprocessing Time

1.00E+08

Preprocessing Time: HyperSplit vs. HSM and HiCuts

B HiCuts-1

HiCuts-8 ® HSM M HS-1 HS-8

1.00E+07

» 1.00E+06

[any
o
o
m
+
o
(S,]

1.00E+04
1.00E+03
1.00E+02

preprocessing time (m

1.00E+01 -

1.00E+00 -

= HyperSp!
= HyperSp!

1t-1 vs. HiCuts-1: 1~2 orders less time
1t-8 vs. HiCuts-8: About 1 orders less time

= HyperSp!

it-1 vs. HSM: 1~4 orders less time

Qs
Outline

* Architecture for FPGA Implementation

Existing Solutions ... %
SRAM Based TCAM Based
¢ Advantage: # Advantage
: m Speed
" Price # Disadvantage
= (generally) # of Rules .I P(i o g
@ Disadvantage m Power consumption

m Chip size
m Range to Prefix Conversion

m Speed

W. Jiang and V K. Prasanna, Field-split parallel architecture
for high performance multi-match packet classification
using FPGAs, SPAA, pp. 648-656, 2009.

Qs
Challenges & Goals

® Memory Usage

m Needs to be memory efficient that can
support large rule sets

®High Performance
m Requires high throughput and
deterministic performance
®On-the-fly update

m To allow rules to be changed and updated
without downtime

72

Qs

INPUT PACKET

~ =
STAGE 1

~ =
STAGE 2

~~

STAGE 3

=~

STAGE 4

~~

MATCHED RULE

4 L7

Hardware Implementation

STAGE n

packet_'out

packet_in node_in found_in
. | i)
dP_siP_dArt sPt Prt fieli_value
W S N, N, field D | next_adar
I IS A A Y
\ MUX / | 0
| S
||
CMP | CMP
ADD 1
| L
A MUX / j
T
block RAM R
g

|
node _out

R
™
found out

Q5
Architecture Optimization (1)

® Node-merging: Pupelme Depth Reduction

--
.......
¢¢¢¢

@addr0
%Sﬁ (" @addr0)
d1.d2 d3
o v1v2.v3

@addrl [@addr1+1 _ addrl
di,vi di,vi
addr2 addr3

@addr2 |@addr2+1 @addr3 |@addr3+1 @addrl [@addrl+1[@addrl+2[{@addrl+3
childl child2 childl child2 childl | child2 | child3 | child4

4 Algorithm Evaluation (1)

® Node-merging Optimization

30 1.00E+03
- B w/omerge U w/ merge Hw/omerge Ww/ merge

20 1.00E+02
= —_—
=]
B =
= x
= @
o o

@ 10 £ 1.00E+01
- >
o
> E
L]
E

0 1.00E+00

Rule set =acll_100 acll_1K acll 5K acll_10K Rule set acll_100 acll 1K acll_SK acll_10K
Tree heights with and without node-merging Memory usage with and without node-merging

* Reduce tree height (pipeline depth) by
almost 50%!
* Minimal memory overhead

Architecture Optimization (2)

#® Leaf-pushing: Controlled BRAM Allocation

m Sizes of BRAM on each stage needs to be
predetermined

m Different rule sets will result in different
memory usage per stage

m Limits the size of a certain stage by pushing
leafs to lower levels of the pipeline

#® Leaf-pushing Optimization

20000
18000 Wileafnodes
16000 M #non-leaf nodes
14000
o 12000
S
E 10000
w8000
o
T 6000
=]
E aooo
=
R -
0 o
treedepth ¢ 7 8 g 10 11 12

Nodes distribution without leaf pushing

20000
18000
16000
14000
12000
10000

6000
4000
2000

0

number of nodes

W #leafnodes

M #non-leafnodes

— —

2000

E

treedepth & 7 8 9 10 11 12

Nodes distribution with leaf pushing

= rchitecture Optimization (3)

Pipeline-1 Pipeline-2

@ Dual Pipeline

m Take advantage of
dual-port BRAM

m Double the
throughput
without increasing
memory usage

Pipeline-1

node_in

|

MNode
Logic

\ |
| pkt_out nede out | node_out pkt out

i Pipeline-2

i
| node_in pktin
|

Qs
Test Setup

® Tested with a publicly available rulesets from
Washington University
m Used the ACL 100, 1K, 5K, 10K rulesets

Design is implemented on a Xilinx Virtex-6
m Model: VC6VSX475T

m Containing 7,640Kb Distributed RAM and
38,304Kb Block RAM

m Using Xilinx ISE 11.5 ool

<@ FPGA Performance

FPGA performance and resource utilization

Rules Max Max Tree #slices #RAMs
Clock Thrupt depth used ./ used /
(MHz) (Gbps) available available
acll 100 139.1 142 7 444/37440 10/516
acll 1K 134.0 137 11 602/37440 18/516
acll 10K 115.4 118 12 747/37440 103/516

Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li and V. Prasanna, Multi-
dimensional packet classification on FPGA: 100 Gbps and beyond, FPT,
pp. 241-248, 2010.

Q5
FPGA Comparison

Comparison with FPGA-based approaches

Approaches Max Max Jor acll 10K

Zrules Thrupt Pipeline #slices #RAMs
(Gbps) depth used used

Our approach 50K 142 12 747 103
HyperCuts on 10K 128 20 10307 407

FPGA [Jiang]
HyperCuts

10K 7.22 - - -

SimEliﬁﬁl || !]Q| —

Comparison with multi-core based approaches

Approacihes Max Throughput (Gbps)
Our approach 142
HyperSplit on OCTEON [(Q1] 6.4
RFC on IXP2850 [[in 10

Conclusion

® FPGA provides a flexible and excellent
solution to the packet classification problem

® HyperSplit algorithm is suitable to hardware
implementation with an efficient mapping

m optimizations used to reduce tree length,
constraint the memory usage of each stage, and
improve performance

® Consume less resource than other FPGA-
based solutions and much faster than
multicore based solutions

Qs
Outline

* Evaluation with Smoothed Analysis

Current Algorithm Evaluation

#® Worst-case Evaluation:

m Use the worst-case performance to evaluate
the practical performance

Drawbacks

m may be defined in a contrived and extreme
circumstance

® may provide a significantly pessimistic
evaluation result

Current Algorithm Evaluation

Average-case Evaluation:

m Measures the expected performance of an
algorithm over a pre-defined distribution of the
inputs

® Drawbacks
m may vary greatly from distribution to distribution

m is usually difficult o model the 'practical’
distribution of inputs in complex applications

m tend to result in an overly optimistic evaluation

For complicate network algorithms, worst-case and
average-case analyses cannot reveal practical performance!

H VS /220

New Algorithm Evaluation Method

250 250,

= Worst case

150. 150

100 100

50

Smoothed Analysis

5 Ve
o] [4
B AN
3 oy 1
0)
P, e O

A e
0 (/’ S
0 0 20 10 0

"= » * Jverage case L

50,

Not Practical! x More Accurate!

H VS /220

~ New Algorithm Evaluation Method
® Smoothed Analysis: 1

max(& g(MA (x+og)))
First Use: -

m shadow-vertex simplex

0.5

algorithm : o

05 -0.5

m worst-case complexity: exponential

smoothed complexity: polynomial

D. Spielman and S. Teng, Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time, Journal of the
ACM (JACM), vol. 51, no. 3, pp. 385-463, 2004.

s Sampling-based SA (SSA)

® To facilitate analysis for COMPLICATE
algorithms in COMPLEX environment-...
m Aim:
Simplified while maintaining Accuracy
m Method:
Sampling-based method (SSA)

m Formula:
max, (€, (M,(x+5g)))

Qs
SSA Framework

® STEPI: Inputs Generation
m gather Nworse cases and constitute set W
® STEP2: Sampling
m sample in the neighborhood of each instance x
in W
® STEP3: Calculate Results

m calculate expectations of result set for each x

m obtain the maximum of all the expectations as
SSA result

2 oA vs. SSA

#® Divergences
m Smoothing “"each input” vs. "local maximums”
® "not sampling” vs. "sampling”

® SA and SSA reach ALMOST THE SAME
evaluation results!

m With proper parameter selection

= e.g., choose enough cases into the particular set, with
a high enough sampling rate

Q5
Case Study

® Two algorithms for Packet
Classification Problem
m Computational Geometry Algorithm (CG)
m HyperSplit Algorithm (HS)

®Evaluate and compare worst-case,
average-case, and SSA performances

Case Study : Memory Usage

@ Memory Usage (KB):
CG 14061 1769.01
HS 7606 763.24

Worst-case Performance : Bad!]
} Conflict!

Average-case Performance: Good!

(CG) before SSA (CG) after SSA .= Q)

® SSA Conclusion
m Two algorithms both

= hardly to be entrapped into a worse
case "plateau”

@ Corresponding to the great
practical performance results

.....
Application Application

Case Study : Tree Depth

® Tree Depth:

CG 28 24.12

HS 29 21.59

Worst-case Performance : CG > HS } Conflict!

Average-case Performance: CG < HS

Q5
Case Study : Tree Depth

%CG) before SSA - (CQ) after SSA = Q)
#® SSA Conclusion

m Both algorithms

= only have worse-case "peaks” rather
than worse-case "plateaus”.

m C6 wins HS in speed narrowly

= based on the contour line in speed

= at cost of memory usage

Applicaton . Application

Conclusions

#® SSA reveals PRACTICAL, CLOSE-TO-
REAL PERFORMANCE

® SSA can enhance existing benchmark
generator

#®"Fast algorithms, smoothed analysis, and
hardness results”

X.Ren, Y. Qi, B. Yang, J. Li, and S.-H. Teng,
Sampling-based smoothed analysis for network
algorithm evaluation, (submitted)

Outline

* Future Work

Qs
Future Work

#® Regular Expression Matching algorithmic
study

® Novel "explosion free" algorithm

® Many-core and FPGA: architecture and
parallel processing

® Sampling-based Smoothed Analysis: further
empirical validation and evaluation

Y. Qi, K. Wang, J. Fong, Y. Xue, J. Li, W, Jiang, and V.
Prasanna, FEACAN: front-end acceleration for content-
aware network processing, INFOCOM, pp. 2114 - 2122, 2011.

Thank you and
Questions?

