

Fast and Smoothed Packet Classification

Recent advancement of research partnership with V. Prasanna and S.-H. Teng

Jun Li & Yibo Xue

with contributions from our students Yaxuan Qi, Jeffrey Fong, Xiaoqi Ren, et al.

Outline

- Background
- HyperSplit Algorithm
- Architecture for FPGA Implementation
- Evaluation with Smoothed Analysis
- Future Work

Outline

- Background
- HyperSplit Algorithm
- Architecture for FPGA Implementation
- Evaluation with Smoothed Analysis
- Future Work

Packet Classification Problem

- To identify and associate each packet to a specific rule
- May match multiple rules
- Used for:
 - Routing
 - FW, IDS/IPS, &AV
 - LB & TE
 - OpenFlow & SDN

	Field 1 (sIP)	Field 2 (dPort)	 Field F (protocol)	Action
Rule 1	166.111.72.50/21	80	 UDP	Deny
Rule 2	166.168.3.0/24	53	 TCP	Accept
Rule N	0.0.0.0/0	0~65535	 ANY	Drop

Point location problem

Very high complexity

					p(3,	3)
	11	 			r_4 (r_5)	
	10	 -		7	70	
	01	- K	2	F3	1 ² 5	
Y	00	<i>I</i>	1 2)			
	→ X	00	01	10	11	

		H-Trie	H-Tree	S-Trie	S-Tree
d_1	time	$\Theta(W)$	$\Theta(\log n)$	$\Theta(W)$	$\Theta(\log n)$
d=1	space	$\Theta(n * W)$	$\Theta(n * \log n)$	$\Theta(n * W)$	$\Theta(n * \log n)$
d> 1	time	$\Theta(W^{d-1})$	$\Theta(\log^{d-1}n)$	$\Theta(d*W)$	$\Theta(d * \log n)$
d>1	space	$\Theta(n * W^{d-1})$	$\Theta(n * \log^{d-1} n)$	$\Theta(n^d * dW)$	$\Theta(n^d * d \log n)$

Performance in Practice

THEORETICAL VS. PRACTICAL COMPLEXITY FOR REAL-LIFE RULES

Rule Sets	# rules	# non-over ranş in each field (theoretical)	ranges in sIP	# non-over ranges in dIP (practical)	# non-over ranges in sPT (practical)	# non-over ranges in dPT (practical)	# non-over rectangles (the oretical)	# non-over rectangles (practical)
FW1	269	539	100	111	23	77	8.44×10^{10}	1.97×10^{7}
FW1-100	92	185	19	45	20	48	1.17×10^{9}	8.21×10^{5}
FW1-1K	791	1583	221	314	23	75	6.28×10^{12}	1.20×10^{8}
FW1-5K	4653	9307	3429	5251	23	77	7.50×10^{15}	3.19×10^{10}
FW1-10K	9311	18623					1.20×10^{17}	1.71×10^{11}
ACL1	752	1505	wst-case	<u> -</u> ・ ち	√1∩ 12		$\sim 5.13 \times 10^{12}$	9.67×10^{6}
ACL1-100	98	197	W31-0430	J. J. 10/	X 1 U		1.51×10^{9}	4.03×10^{5}
ACL1-1K	916	1833		- 0 07	406		1.13×10^{13}	1.32×10^{7}
ACL1-5K	4415	8831	practical	I: 9.6/X	(10°)		6.08×10^{15}	2.42×10^{8}
ACL1-10K	9603	19207	J . G. G G G.				1.36×10^{17}	1.90×10^{9}
IPC1	1550	3101					9.25×10^{13}	3.40×10^{8}
IPC1-100	99	199					1.57×10^{9}	9.49×10^{6}
IPC1-1K	938	1877	559	796	49	78	1.24×10^{13}	1.70×10^{9}
IPC1-5K	4460	8921	886	2125	59	93	6.33×10^{15}	1.03×10^{10}
IPC1-10K	9037	18075	2377	4604	59	94	1.07×10^{17}	6.07×10^{10}

Note: sIP, dIP, sPT and dPT are source IP, destination IP, source Port and destination Port; FW, ACL, IPC are firewall policies, access control lists, and IP chain rules

- Few applications reach the worst case bound
- Real-life rule sets have geometrical redundancy

Progress of Joint Research

- Efficient Algorithms
 - Exploiting real-life rule set redundancy
 - HyperSplit Algorithm (Infocom)
- Fast Speed
 - Using SRAM-based solution on FPGA
 - 100Gbps Throughput (FPT)
- Smoothed Analysis
 - Introducing Sampling-based Smoothed Analysis
 - Practical evaluation (submitted)

Outline

- Background
- HyperSplit Algorithm
- Architecture for FPGA Implementation
- Evaluation with Smoothed Analysis
- Future Work

HyperSplit

- Memory-efficient packet classification algorithm
 - Uses 10% of the memory that other comparable algorithms requires
- Optimized k-d tree data structure
- Uses heuristics to select the most efficient splitting point on a specific field

Example

Rule	Priority	Field-X	Field-Y
R1	1	00~01	00~00
R2	2	00~01	$00 \sim 11$
R3	3	10~10	00~11
R4	4	11~11	11~11
R5	5	11~11	00~11

Example

Example

Memory Access

- HyperSplit-1 vs. HiCuts-1
 - 50~80% less access
- HyperSplit-8 vs. HiCuts-8
 - 10~30% less access
- HyperSplit-1 vs. HSM
 - 20~50% less access

Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, Packet classification algorithms: from theory to practice, INFOCOM, pp. 648-656, 2009.

Memory Usage

- HyperSplit-1 vs. HiCuts-1
 - 1~2 orders less memory
- HyperSplit-8 vs. HiCuts-8
 - 1~2 orders less memory
- HyperSplit-1 vs. HSM
 - 1~2 orders less memory

Preprocessing Time

- HyperSplit-1 vs. HiCuts-1: 1~2 orders less time
- HyperSplit-8 vs. HiCuts-8: About 1 orders less time
- HyperSplit-1 vs. HSM: 1~4 orders less time

Outline

- Background
- HyperSplit Algorithm
- Architecture for FPGA Implementation
- Evaluation with Smoothed Analysis
- Future Work

Existing Solutions

SRAM Based

- Advantage:
 - Price
 - (generally) # of Rules
- Disadvantage
 - Speed

TCAM Based

- Advantage
 - Speed
- Disadvantage
 - Price
 - Power consumption
 - Chip size
 - Range to Prefix Conversion

W. Jiang and V.K. Prasanna, Field-split parallel architecture for high performance multi-match packet classification using FPGAs, SPAA, pp. 648-656, 2009.

Challenges & Goals

- Memory Usage
 - Needs to be memory efficient that can support large rule sets
- High Performance
 - Requires high throughput and deterministic performance
- On-the-fly update
 - To allow rules to be changed and updated without downtime

Mapping Decision Tree into Hardware

Mapping Decision Tree into Hardware

Mapping Decision Tree into Hardware

Architecture Optimization (1)

Node-merging: Pipeline Depth Reduction

@addr0 d1,d2,d3 v1,v2,v3 addr1

@addr2 @addr2+1 child1 child2

@addr3 child1

@addr3+1 child2

@addr1 child1

child2

@addr1+1 @addr1+2 @addr1+3 child3 child4

Algorithm Evaluation (1)

Node-merging Optimization

Tree heights with and without node-merging

- Memory usage with and without node-merging
- Reduce tree height (pipeline depth) by almost 50%!
- Minimal memory overhead

Architecture Optimization (2)

- Leaf-pushing: Controlled BRAM Allocation
 - Sizes of BRAM on each stage needs to be predetermined
 - Different rule sets will result in different memory usage per stage
 - Limits the size of a certain stage by pushing leafs to lower levels of the pipeline

Nodes distribution without leaf pushing

Nodes distribution with leaf pushing

Dual Pipeline

- Take advantage of dual-port BRAM
- Double the throughput without increasing memory usage

Test Setup

- Tested with a publicly available rulesets from Washington University
 - Used the ACL 100, 1K, 5K, 10K rulesets
- Design is implemented on a Xilinx Virtex-6
 - Model: VC6VSX475T
 - Containing 7,640Kb Distributed RAM and 38,304Kb Block RAM
 - Using Xilinx ISE 11.5 tool

FPGA Performance

FPGA performance and resource utilization

Rules	Max Clock (MHz)	Max Thrupt (Gbps)	Tree depth	#slices used / available	#RAMs used / available
acl1_100	139.1	142	7	444/37440	10/516
acl1_1K	134.0	137	11	602/37440	18/516
acl1 10K	115.4	118	12	747/37440	103/516

Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li and V. Prasanna, Multi-dimensional packet classification on FPGA: 100 Gbps and beyond, FPT, pp. 241-248, 2010.

FPGA Comparison

Comparison with FPGA-based approaches

Approaches	Max	Max	for acl1_10E		K
	#rules	Thrupt (Gbps)	Pipeline depth	#slices used	#RAMs used
Our approach	50K	142	12	747	103
HyperCuts on FPGA [Jiang]	10K	128	20	10307	407
HyperCuts Simplified [Luo]	10K	7.22			

Comparison with multi-core based approaches

Approaches	Max Throughput (Gbps)			
Our approach	142			
HyperSplit on OCTEON [Qi]	6.4			
RFC on IXP2850 [Liu]	10			

Conclusion

- FPGA provides a flexible and excellent solution to the packet classification problem
- HyperSplit algorithm is suitable to hardware implementation with an efficient mapping
 - optimizations used to reduce tree length, constraint the memory usage of each stage, and improve performance
- Consume less resource than other FPGAbased solutions and much faster than multicore based solutions

Outline

- Background
- HyperSplit Algorithm
- Architecture for FPGA Implementation
- Evaluation with Smoothed Analysis
- Future Work

- Worst-case Evaluation:
 - Use the worst-case performance to evaluate the practical performance
- Drawbacks
 - may be defined in a contrived and extreme circumstance
 - may provide a significantly pessimistic evaluation result

Current Algorithm Evaluation

- Average-case Evaluation:
 - Measures the expected performance of an algorithm over a pre-defined distribution of the inputs
- Drawbacks
 - may vary greatly from distribution to distribution
 - is usually difficult to model the 'practical' distribution of inputs in complex applications
 - tend to result in an overly optimistic evaluation

For complicate network algorithms, worst-case and average-case analyses cannot reveal practical performance!

New Algorithm Evaluation Method

Not Practical!

More Accurate!

New Algorithm Evaluation Method

$$\max(E_g(M_A(x+\sigma g)))$$

- First Use:
 - shadow-vertex simplex algorithm

- worst-case complexity: exponential smoothed complexity: polynomial
- D. Spielman and S. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time, Journal of the ACM (JACM), vol. 51, no. 3, pp. 385-463, 2004.

SA → Sampling-based SA (SSA)

- To facilitate analysis for COMPLICATE algorithms in COMPLEX environment...
 - Aim:

Simplified while maintaining Accuracy

■ Method:

Sampling-based method (SSA)

■ Formula:

$$\max_{x} (E_{g}(M_{A}(x+\sigma g)))$$

SSA Framework

- STEP1: Inputs Generation
 - \blacksquare gather N worse cases and constitute set W
- ◆ STEP2: Sampling
 - lacksquare sample in the neighborhood of each instance x in W
- STEP3: Calculate Results
 - \blacksquare calculate expectations of result set for each x
 - obtain the maximum of all the expectations as SSA result

SA vs. SSA

- Divergences
 - Smoothing "each input" vs. "local maximums"
 - "not sampling" vs. "sampling"
- SA and SSA reach ALMOST THE SAME evaluation results!
 - With proper parameter selection
 - e.g., choose enough cases into the particular set, with a high enough sampling rate

Case Study

- Two algorithms for Packet

 Classification Problem
 - Computational Geometry Algorithm (CG)
 - HyperSplit Algorithm (HS)
- Evaluate and compare worst-case, average-case, and SSA performances

Case Study: Memory Usage

Memory Usage (KB):

Algorithm	Worst-case	Average-case
CG	14061	1769.01
HS	7606	763.24

Worst-case Performance: Bad!

Average-case Performance: Good!

Conflict!

Case Study: Memory Usage

(CG) before SSA 1.2e+04 1e+04

(CG) after SSA

1e+04 8e+03 6e+03

- Two algorithms both
 - hardly to be entrapped into a worse case "plateau"
- Corresponding to the great practical performance results

Application Application Application

Case Study: Tree Depth

Tree Depth:

Algorithm	Worst-case	Average-case
CG	28	24.12
HS	29	21.59

Worst-case Performance: CG > H5

Average-case Performance: CG < H5

Case Study: Tree Depth

(CG) before SSA

Application

(CG) after SSA

- Both algorithms
 - only have worse-case "peaks" rather than worse-case "plateaus".
- CG wins HS in speed narrowly
 - based on the contour line in speed
 - at cost of memory usage

Conclusions

- SSA reveals PRACTICAL, CLOSE-TO-REAL PERFORMANCE
- SSA can enhance existing benchmark generator
- "Fast algorithms, smoothed analysis, and hardness results"

X. Ren, Y. Qi, B. Yang, J. Li, and S.-H. Teng, Sampling-based smoothed analysis for network algorithm evaluation, (submitted)

Outline

- Background
- HyperSplit Algorithm
- Architecture for FPGA Implementation
- Evaluation with Smoothed Analysis
- Future Work

Future Work

- Regular Expression Matching algorithmic study
- Novel "explosion free" algorithm
- Many-core and FPGA: architecture and parallel processing
- Sampling-based Smoothed Analysis: further empirical validation and evaluation

Y. Qi, K. Wang, J. Fong, Y. Xue, J. Li, W, Jiang, and V. Prasanna, FEACAN: front-end acceleration for content-aware network processing, INFOCOM, pp. 2114 - 2122, 2011.

Thank you and Questions?

SLab, RIIT, Tsinghua Univ