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Trident: Efficient and Practical Software Network Monitoring
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Abstract: Network monitoring is receiving more attention than ever with the need for Self-Driving Network to tackle

increasingly severe network management challenges. Advanced management applications rely on traffic data

analysis, which requires network monitoring to flexibly provide comprehensive traffic characteristics. Moreover, in

virtualized environments, software network monitoring is constrained by available resources and requirements of

cloud operators. This paper proposes Trident, a policy-based network monitoring system at the host. Trident is a

novel monitoring approach, off-path configurable streaming, which offers remote analyzers a fine-grained holistic

view of the network traffic. A novel fast path packet classification algorithm and a corresponding cached flow form

are proposed to improve monitoring efficiency. Evaluated in practical deployment, Trident demonstrates negligi-

ble interference with forwarding and requires no additional software dependencies. Trident has been deployed in

production networks of several Tier-IV datacenters.
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1 Introduction

Network management has been more challenging than
ever as network complexity dramatically increases and
failures become severe and knotty. Following the great
success of Software-Defined Networking, the vision
of Self-Driving Network has been proposed to apply
data-driven modeling and machine learning to traffic
data analysis and closed-loop network automation [1,2].
Figure 1 shows the framework of Self-Driving Network.
Recent works [3–5] start to build network data analyt-
ics platforms and provide logically centralized abstrac-
tion for learning applications. Therein, the first impor-
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Fig. 1 A basic framework of Self-Driving Network

tant step for traffic data analytics is network monitoring
which collects the traffic information.

This paper focuses on software network monitoring
in the data plane. Software network monitoring is part
of software network processing, which runs network
software at end hosts. Software network processing,
such as network virtualization, and network function
virtualization, is a pillar of multi-tenant cloud datacen-
ters. It is flexible to develop new functionality and pro-
grammable model with software network processing.
The combined constraints of cloud virtualization envi-
ronment and traffic data analytics highlight three key
requirements for software network monitoring.

(1) Noninterference. The intention of monitoring is
to facilitate network management not to interfere the
original network delivery, i.e., forwarding, especially



2 Tsinghua Science and Technology, xxxxx 20xx, 2x(x): xxx–xxx

in end hosts which have shared and limited resources
for network processing. Moreover, mixed monitoring
and forwarding logic increases the complexity of opera-
tion and troubleshooting. (2) Comprehensiveness. Self-
Driving Network relies on a comprehensive knowledge
of traffic and also perception algorithms need to work at
different packet granularities from flow-level header to
application-level payload. For example, flow schedul-
ing [6, 7] bases on flow statistics and deep inspection
[8,9] mines and matches payload signature patterns. (3)
High efficiency. Software network processing is both
time and resource consuming. Software network mon-
itoring should be efficient to handle traffic with limited
resources, response traffic status quickly to support fast
control loop, and save network bandwidth due to the in-
creasing traffic volume in cloud datacenters.

Previous works can be categorized into two direc-
tions: (1) direct streaming, which sends original traffic
to remote analyzers from switches by mirroring [10] or
configured forwarding rules [11,12]. (2) local counting,
which runs local algorithms to count traffic and sends
statistics data to collectors, such as, hash-based [13,14],
and sketch-based [15]. Although direct streaming can
provide comprehensive packet information, it suffers
from high resource consumption and interferes with for-
warding, which degrades original forwarding perfor-
mance. On the other hand, local counting improves
monitoring efficiency with careful data structure design,
while it tailors the header structure and fails to support
full packet view. None of the various existing software
monitoring solutions meet all the requirements.

This paper proposes Trident, a novel software net-
work monitoring approach at the host, realizing the non-
interference and comprehensiveness requirements. Tri-
dent integrates the design of off-path monitoring and
configurable streaming. It is decoupled from forward-
ing path and trades the overhead of copying incoming
packets for noninterference. When shortage of CPU re-
sources happens due to competition from forwarding,
Trident adaptively samples traffic to save resources for
forwarding and guarantees its noninterference. Trident
provides full packet view by streaming the monitored
packets and interacts with traffic analyzers flexibly with
policy-oriented programming model. Analyzers can de-
fine desired packets with match-action rules and get
packets at different granularities from header to pay-
load.

The main technical challenge of host monitoring de-
sign with the new approach of off-path configurable

streaming is to realize high efficiency. Trident incor-
porates a wildcard-match fast path to improve average
classification performance. A novel hash-based packet
classification algorithm, Unified Space Search (USS),
and a corresponding cached flow form, uniflow, are pro-
posed. USS maps original flow entries to unified non-
overlapping flow entries, i.e., uniflows, which can be
stored in one hash table. Fitting well with fast-path flow
caching and classification, uniflows and USS achieve
high cache hit rate and near single-hash-lookup speed
with limited memory usage. In addition, a lightweight
compression algorithm is proposed for header delivery,
saving bandwidth usage.

To mitigate the complexity of system deployment in
cloud, Trident adopts widely-used kernel module (the
same interface as tcpdump) and requires no additional
kernel dependencies. It has been deployed in produc-
tion networks of several Tier-IV datacenters and pro-
vides a stronger capability of network traffic analysis.
Currently, Trident implementation monitors 200Kpps
traffic for header delivery consuming at most 0.3 core
of Intel E5 CPU.

The rest of this paper is organized as follows: Section
2 describes the background of network monitoring, re-
lated work, and the motivation of Trident design. Sec-
tion 3 introduces Trident system architecture and de-
scribes the proposed algorithms and Trident modules.
Section 4 presents Trident implementation and current
limitation. Section 5 shows the evaluation. This paper
is closed by conclusion and future work in Section 6.

2 Background

Network monitoring collects traffic data for better un-
derstanding and management of the running networks.
Monitoring tools [17–19] have been embedded within
network elements such as servers, switches, and routers
for several decades. Network monitoring schemes
evolve with the development of programmable network-
ing and datacenter networking. Recent works include
designing expressive monitoring primitives and/or in-
terfaces [4, 5, 14, 20, 21], optimizing algorithm and/or
system [14, 15, 22–25] to improve scalability with
large traffic volume and limited resources, and explor-
ing monitoring supported functionalities such as near-
optimal traffic engineering [26, 27] and network-wide
troubleshooting [24, 25, 28].

Data plane network monitoring has hardware form
(in commodity switches) and software form (at end
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Local Counting Direct Streaming

On-Path
Hash-based: UMON [13], On-path-FCAP [30] Port mirroring: OpenStack Tap-as-a-Service [10]
Sketch-based: On-path-SMON [30] Configured forwarding rules: Open vSwitch [11], VFP [12]

Off-Path
Hash-based: Trumpet [14], Off-path-FCAP [30]

Configured monitoring policies: Trident
Sketch-based: SketchVisor [15], Off-path-SMON [30]

Table 1 Summary of software network monitoring work in the data plane

hosts). Monitoring schemes adopted in hardware and
software are similar. On hardware monitoring, Open-
Sample [29], Planck [27] and Everflow [25] directly
stream data packets to remote analyzers by sampling or
forwarding rules. FlowRadar [22] and OpenSketch se-
ries works [20,21,23] embed optimized hash and sketch
logic into programmable silicons.

Compared to hardware solutions, Software monitor-
ing is more flexible to develop desired functionality
and provide more detailed characteristics of virtual net-
works in cloud. Data plane software network monitor-
ing is designed by two dimensions and falls into four
main categories, as summarized in Table 1. The first
design dimension is whether monitoring is processed on
or off the forwarding path. The second design dimen-
sion is whether monitoring is counting statistics locally
or streaming traffic to remote analyzers directly.

Specifically, FCAP and SMON are designed in both
on-path and off-path forms [30], evaluation of which
shows off-path approaches reduce the forwarding delay
introduced by monitoring. UMON [13] monitors kernel
space traffc with configured flow entries and collects
statistics in user space tables. Trumpet [14] uses hash
tables to monitor network events at Google end hosts.
SketchVisor [15] realizes robust software sketch solu-
tion with augmented fast path and control plane recov-
ery algorithm. OpenStack Tap-as-a-Service [10] uses
the port mirroring method and sends traffic remotely.
Software switches, such as Open vSwitches [11] and
VFP [12], can be used to direct desired traffic with con-
figured forwarding rules in the same way Everflow con-
ducts with hardware switches.

Trident fills in the blank of off-path streaming design,
meeting the software network monitoring requirements
of noninterference and comprehensiveness. Trident re-
alizes off-path processing using the linux shared mem-
ory interface, mmap, the same way as Sketchvisor.
Also, Trident provides policy-based streaming model
for remote analyzers. The policies are in widely-used
match-action form. To meet the high efficiency re-
quirement and improve monitoring policies processing
speed, Trident proposes a novel fast path packet classifi-
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Fig. 2 A TSS algorithm example with a two-field rule set.

cation algorithm USS with a cached flow form uniflow.
Packet classification is an important research topic

and used in various network functions, such as switch,
firewall, and QoS. Classical fast packet classification al-
gorithms are decision-tree-based [31–33], which trades
pre-processing time for compact tree structure and fast
speed. Due to the dynamic rule update requirement in
cloud [11], hash-based packet classification algorithms,
such as Tuple Space Search (TSS) [34] , are adopted as
the fast update feature of hash schemes. A example of
TSS algorithm is shown in Figure 2. TSS groups the
rule set with tuples, i.e., header mask vectors. Rules
with the same tuple can be classified with a hash table,
the key of which is the rule prefix. To classify a packet,
first do AND operation on the packet header and the tu-
ple, then use the result as the key to lookup the tuple
hash table. Assume a hash table lookup/update com-
plexity is O(1), then TSS lookup/update complexity is
O(T ) (to traverse the tuple list, T represents the tuple
number).

As the rule number increases, tuple number, i.e.,
lookup complexity, increases and TSS classification
speed is slower than decision-tree algorithms. Fast path
can be used to increase system average classification
speed. Fast path design is a general cache approach
used in networks. Packets arriving at a network system
will be first classified and executed in fast path. If the
packet is not matched in fast path, it will be classified
in slow path with the complete rule set and a computed
sub-rule will be cached in fast path for the classification
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Fig. 3 The fast and slow path framework.

of subsequent packets. The fast and slow path frame-
work is shown in Figure 3.

Open vSwitch adopts the fast path design and uses
TSS in both slow and fast path. Given that the matched
rule in slow path can not be directly cached into fast
path (if rules with higher priorities exist in slow path
and are not cached, the fast path classification seman-
tic becomes incorrect), Open vSwitch generates wild-
card megaflows into fast path to increase cache hit
rate (comparing to exact match). Megaflows are in
the same prefix/mask form as rules in TSS structure.
When a packet is classified in slow path, a all-zero
mask vector 〈m1,m2, ...,mF 〉 (F represents the field
number) is initiated and executed the AND operation
with each TSS tuple. Then, the cached megaflow
is 〈p1/m1, p1/m2, ..., p1/mF 〉 (〈p1, p2, ..., pF 〉 repre-
sents the arriving packet header). However, due to
the exhaustive AND operations in slow path, megaflow
masks are close to the longest rule masks, resulting in
low wildcard space size, i.e., cache hit rate. Trident pro-
posed uniflows cover larger space than megaflows, im-
proving the fast path cache hit rate.

3 Design

This section starts by providing an overview of Tri-
dent architecture. Then this section describes the Tri-
dent monitoring approach to realize noninterference and
comprehensiveness. Next, how Trident classifies pack-
ets according to monitoring policies is elaborated. Fi-
nally, this section describes how Trident exports desired
traffic data.

3.1 Architecture

Trident is designed with the objective to be an indepen-
dent, lightweight and policy-based programmable mon-
itoring system. Figure 4 shows the architecture of Tri-
dent:
Native kernel space function. The kernel space

Kernel Space

Exporter

Agent

Interfaces

Classifier

Exporter

Classifier

. . .
User Space

Remote ControllerAnalyzer Clusters

Policy

Forwarding 
Path

Ring Buffer

Bytecode

BPF Filter

Fig. 4 The architecture of Trident. Trident does off-path traf-
fic monitoring within the host hypervisor and interacts with the
remote controller and analyzers.

functions is responsible for packet capturing. Same
as tcpdump and wireshark, Trident uses the general
and widely-used interfaces AF PACKET/libpcap and
Berkeley Packet Filter (BPF) [35, 36]. In this way, Tri-
dent provides a mechanism as acceptable as tcpdump,
and therefore alleviates cloud provides’ concern on in-
serting uncertain modules. It pulls packets from kernel
space to user space with a zero-copy ring buffer through
mmap. Moreover, to avoid getting unnecessary (such
as control messages) and redundant (such as bridged
and duplicated interfaces in OpenStack) packets, Tri-
dent does a light pre-filter according to network inter-
face index ifindex using BPF which is configured by
the bytecode loaded from user space.
Single user space process. Trident runs its main func-
tions within a user space process. Regarding pro-
grammability, the process has an agent thread which re-
ceives monitoring policies from the remote controller.
The agent is responsible for updating local policies and
BPF bytecode. Trident process involves classifiers and
exporters which stream desired traffic to remote analyz-
ers for further processing such as statistics, deep inspec-
tion, and so on. On receiving packets from kernel, Tri-
dent executes the corresponding classifier according to
the ifindex, and then exports policy-selected packets.
The design of classifier and exporter will be elaborated
in subsection 3.3 and subsection 3.4.

3.2 Monitoring

Trident proposes a novel monitoring approach, i.e.,
off-path configurable streaming, as categorized in Ta-
ble 1. Compared to other monitoring approaches, Tri-
dent meets the noninterference and comprehensiveness
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requirements. This subsection shows Trident’s monitor-
ing approach in details.
Noninterference. Trident is decoupled from the for-
warding path of network processing, which is responsi-
ble for application traffic delivery. In this way, packet
copying is traded for an independent monitoring pro-
cess. Therefore, Trident can be scheduled to either
share the same core with forwarding or run on a sep-
arate core from forwarding, depending on the cloud
provider’s strategy.

Furthermore, given that current datacenters allocate
limited resources for software network processing, Tri-
dent supports adaptive traffic sampling, making it run
with any workload without interference with forward-
ing resources. Trident can be configured with two kinds
of parameter: the maximum core (i.e., CPU usage) al-
located for Trident and the allocated cores shared with
other network processing. Trident agent reads the con-
figuration and checks the corresponding CPU usage pe-
riodically. By default, Trident monitors every incom-
ing packet. Once CPU usage exceeds the limit, Trident
agent will push a new BPF bytecode with updated sam-
ple ratio to kernel. Current Trident ratio control pol-
icy uses the additive increase multiplicative decrease
(AIMD) strategy as TCP rate control.

Trident supports controller-defined policies which
specify the desired traffic with different header fields
and corresponding actions. Hence, cloud providers can
flexibly steer selected traffic data to destined analyzers
and depict the traffic profile of individual cloud tenant.
The monitoring policies of Trident employ the match-
action model, which is pervasively leveraged by fire-
wall ACLs, OpenFlow, and many other network func-
tions. Current match supports 6 tuples, interface,
src ip, dst ip, src port, dst port, protocol, de-
scribed in prefix/mask format. Trident provides two
actions: (1) header, to send packet header and related
states, such as timestamp, sample ratio (if enabled), etc.
and (2) payload, to send the original packet. Trident
acts as a white-list, thus any unmatched packet will be
omitted by Trident.

3.3 Classifier

Separating monitoring policies from forwarding poli-
cies drives Trident to design a novel scheme for moni-
toring policy classification. Trident adopts the slow and
fast path design to improve average processing speed.
Trident keeps TSS as slow path classification algorithm,
the same as Open vSwtich, given the fast-update and

linear-memory properties of TSS. To tackle the limita-
tions of TSS on slow classification speed and fast-path
low cache hit rate, Trident optimizes the fast path clas-
sifier design. A general hash-based packet classification
algorithm USS is proposed, and then it is applied to fast
path caching and classification.

To elaborate further details about USS, each rule in
policies is referred to as a flow entry. In the view of
computational geometry, an exact flow entry represents
a point in multi-dimension space, and a wildcard flow
entry represents a hyper-rectangle in multi-dimension
space.

USS is hash-based and aims to decrease the time
complexity from TSS O(T ) to the optimal one hash ta-
ble lookup O(1). USS exploits the latent capacity of
non-overlapping flow entries and constructs a kind of
non-overlapping uniflows, which can be classified with
a signle hash table. Therefore, the problem boils down
to transform original flow entries to a specific form of
non-overlapping flow entries, i.e., uniflows, and then
make hashing work on them.
USS construction and lookup. The basic idea of USS
is to align the masks of flow entries to the longest mask
in each field, i.e., to cut flow entries by the longest
mask, and then use the prefixes of transformed flow en-
tries as keys of the hash table. Considering that real-life
flow entries are unevenly distributed and long masks are
co-located [37, 38], USS uses hierarchical and grouped
mask structure to mitigate the space explosion due to
mask alignment. USS data structure construction and
lookup is illustrated with an example shown in Figure 5.

The construction process consists of three stages. (1)
Mask mapping, first cut each field into sub-spaces by
the first X bits (X is a predefined hyper-parameter).
Refer to the first X bits as sub-prefix for conciseness.
Then, store the longest mask of each sub-space in mask
arrays for the mask alignment of next stage. In the
example, IP space is cut by the first 16 bits and port
space is cut by the first 8 bits. Figure 5 (b) uses a 64K-
unit array for IP mask mapping and a 256-unit array
for Port mask. In the sub-space of IP sub-prefix 0.0,
the longest mask is set to 22 instead of global longest
mask 24, thus saving the aligned flow entry number. (2)
Grouped transformation, align the original flow entry
mask in each sub-space, i.e., to cut the flow entry by the
longest mask, and then generate non-overlapping uni-
flows. For example, in the sub-space of IP sub-prefix
1.2, the longest mask is set to 24, and original flow en-
try oF low3 : 〈1.2.2.0/23, 80/16〉 is cut to two trans-
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IP Port Action
oFlow1 0.0.0.0/22 443/16 act1

oFlow2 1.2.3.0/24 22/16 act2

oFlow3 1.2.2.0/23 80/16 act3

oFlow4 1.3.0.0/22 1024/8 act4

IP Port Action
uniflow1 0.0.0.0/22 443/16 act1

uniflow2 1.2.3.0/24 22/16 act2

uniflow3 1.2.2.0/24 80/16 act3

uniflow4 1.2.3.0/24 80/16 act3

uniflow5 1.3.0.0/22 1024/8 act4

Key IP Port
uniflow1-prefixes 0.0.0.0 443
uniflow2-prefixes 1.2.3.0 22
uniflow3-prefixes 1.2.2.0 80
uniflow4-prefixes 1.2.3.0 80
uniflow5-prefixes 1.3.0.0 1024

IP Sub-Prefix Mask
0.0 22
… …

1.2 24
1.3 22
… …

255.255 Null

Port Sub-Prefix Mask
0 16
1 16
… …
4 8
… …

255 Null

(c) Grouped and Transformed uniflows

(a) Original flow entries

(d) Uniflow hash table 

(b) Mask array in each dimension

Bucket
act1

act2

act3

act3

act4

1

2

3

The resulting USS lookup structure

Fig. 5 An example of USS construction process.

formed uniflows uniflow3 : 〈1.2.2.0/24, 80/16〉 and
uniflow4 : 〈1.2.3.0/24, 80/16〉. The grouped and
aligned uniflows are shown in Figure 5 (c). (3) Uni-
flow hashing, finally due to the non-overlapping prop-
erty, the transformed uniflows can be classified within a
single hash table. The hash table keys are the prefixes
of uniflows, and the values are uniflow actions. For
example, uniflow1 : 〈0.0.0.0/22, 443/16〉 in Fig-
ure 5 (c) corresponds to the key uniflow1-prefixes :

〈0.0.0.0, 443〉 in Figure 5 (d). The resulting lookup
data structure composes of the mask arrays and the uni-
flow hash table. The USS construction algorithms are
shown in Appendix A.

During the lookup process, the mask arrays are first
accessed to get the corresponding longest mask in each
field according to the sub-prefixes of the arriving packet
header. Then, the lookup key is computed by an AND
operation of the packet header and field masks. Finally,
use the key to do hash lookup in the uniflow hash ta-
ble and get the matched action. For example, given
the structures in Figure 5 (b) and (d), say, if a packet
p that p.ip = 1.2.2.3 and p.port = 80 arrives, ac-
cording to mask arrays, IP mask of sub-prefix 1.2 is 24
and port mask of sub-prefix 0 is 16. Then the com-
puted key is 〈1.2.2.0, 80〉. The hashed value is act3 in
the bucket of uniflow3-prefixes, and finally p will
be executed with the action act3, which is the action of
original oF low3. The USS lookup algorithm is shown

in Appendix A.
Uniflow caching and fast path USS classification. To
use USS in fast path, first construct mask arrays (Fig-
ure 5 (b)) from the original flow entries and initial an
empty uniflow hash table (Figure 5 (d)). Then, cache
wildcard flow entries into fast path. Instead of the AND
operations done on megaflow mask and each TSS tu-
ple to ensure semantic correctness, uniflows can be di-
rectly cached from slow path to fast path because of the
non-overlapping property of uniflows. Therefore, the
caching process is that when an arriving packet is clas-
sified in slow path, (1) get the longest mask of each field
through the sub-prefix of the packet header, (2) do an
AND operation of field masks and the packet header,
(3) the AND operation result is the uniflow-prefixes
key and the slow path classification result action is the
bucket value, (4) insert the 〈key, value〉 pair into the
fast path hash table. Finally, subsequent packets can be
classified in fast path with normal USS lookup process.
The uniflow caching algorithm is shown in Appendix A.

In general packet classification scenario, USS may
still suffer from the space-consuming problem when the
flow entry distribution is quite spread out. However,
when USS is applied to fast path classification, the prob-
lem is not significant at all due to the fast path cache
property, i.e., dynamically maintaining part of the rule
set instead of complete rule set in slow path. The uni-
flows are generated and cached packet by packet dy-
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namically from the slow path, and when cached uni-
flow number exceeds given fast path maximum uni-
flow cache size, the cache replace approach is adopted.
Therefore, through adopting USS classification and uni-
flow caching, Trident fast path gains the wildcard-match
capability and preserves near-session lookup speed, i.e.,
the number of mapping array accesses plus one uniflow
hash table lookup.

3.4 Exporter

Exporters are responsible to execute policy actions and
deliver monitored traffic data. The exported traffic data
is encapsulated by either UDP or VXLAN header, and
its destination is set to a dispatcher switch. Using the
UDP channel requires a Trident collector process to
parse monitored data in the remote analyzer, while for
private third-party analyzers Trident supports original
packet delivering through the VXLAN channel which
is parsed and decapsulated by dispatcher switches.

Note that modern cloud datacenters leverage tunnel
policies in forwarding virtual switches to realize net-
work virtualization. However, the tunnel policies are
not visible to Trident. This can result in indistinguish-
able VM traffic in analyzers when Trident monitors traf-
fic from more than one VM with the same address but in
different virtual networks. To monitor the original for-
warding traffic, a key observation is that traffic from one
single interface belongs to a virtual network, i.e., en-
capsulated by the same tunnel header. Therefore, mon-
itored traffic can be unambiguously identified through
the combination of host identity and interface identity.
The combined identity is encoded in a self-defined field
over the UDP channel or the VNI field in the VXLAN
channel.

Another adopted approach in exporters is compres-
sion when executing the policy header action. As
header statistics is enabled almost in every monitor-
ing scenario, compressing the transmitted headers can
save a considerable amount of bandwidth. Header com-
pression is a common approach in low-speed-link and
wireless communication fields [39–41]. Recent moni-
toring work NetSight [24] also uses a compression al-
gorithm based on RFC1144 [39]. However, NetSight
leverages the similarity between successive packets in
the same flow, thus having to maintain per-flow states.
Instead, given that traffic from one interface still has a
relatively high similarity, Trident leverages the similar-
ity between packets from the same interface and main-
tains per-interface states, saving states and realizing a

lightweight algorithm.
Trident uses the same difference-based compression

algorithm as NetSight and RFC1144. In details, the first
packet is not compressed, and sender/receiver initials
and maintains a packet state, i.e., values of each header
field, of each interface by the first packet. The subse-
quent packet is compared with the maintained packet,
and only the field value of the subsequent packet which
is different from that of the maintained packet is sent.
Then, the sent field values are updated to the main-
tained packet state. With Trident’s per-interface com-
pression, packets that are not successive while have the
same field can be compressed. For example, for a se-
quence of packets 〈udp, ethernet, icmp, tcp〉, the IP
field of udp, icmp, tcp can be compressed, and the port
field of udp, tcp can be compressed.

4 Implementation

Trident is implemented in Go. Benefit from decou-
pling monitoring and forwarding as well as using gen-
eral interfaces such as AF PACKET, libpcap and Go
packages, Trident can be deployed without additional
dependencies. Trident can be used with hypervisors,
such as Linux KVM and VMware ESXi, and virtual
switches, such as Open vSwitch and VMware vSphere
Distributed Switch. As a lightweight solution for de-
ployment and management, Trident’s bin file is less
than 15MB, and its bootstrap stage takes only 1 sec-
ond. Cloud providers can start to use Trident on all
servers with one single policy to acquire VM traffic
header statistics. For a deeper analysis on specific appli-
cations, cloud providers can enforce fine-grained moni-
toring policies and stream the application traffic to spe-
cific DPI analyzers.

5 Evaluation

Trident implementation is evaluated and analyzed in
a multi-tenant cloud environment. First, Trident fast
path algorithm is evaluated and compared with Open
vSwitch fast path algorithm, then Trident performance
on resource usage at given workload is illustrated, and
the evaluation and analysis of header compression is
shown. Finally, a demo of adaptive sampling for re-
source noninterference is shown.
Experiment setup. The experiments are run on a server
with an 8-core Intel Xeon CPU E5-2650 2.00GHz and
96GB DRAM. Fast path algorithm comparison uses the
public data sets Classbench [42] in packet classifica-
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Rule Set ACL1 100 ACL1 1K ACL1 10K FW1 100 FW1 1K FW 10K
TSS with Megaflow 1 1 1 3 2 2
USS with Uniflow 1 1 1 1 1 1

Table 2 Fast path hash table lookup times compassion on TSS with Megaflow and USS with Uniflow. x in rule set ACL1 x and
FW1 x represents rule size in the set.

Traffic Pattern
Header Statistics Packet Mirroring

Mon Copy Sum Mon Copy Sum
Random-64 12.23% 11.91% 24.14% 58.32% 9.37% 67.69%
Random-512 10.43% 8.72% 19.15% 59.18% 9.83% 69.01%
Random-1024 11.38% 14.15% 25.53% 62.69% 13.28% 75.97%
Random-1458 12.15% 16.21% 28.36% 100% 17.85% 117.85%

CAIDA 14.68% 3.64% 18.32% 55.97% 3.58% 59.55%

Table 3 Trident CPU usage at 200 Kpps packet rate. Random-x traffic pattern represents packet source IP and port are varied
randomly and packet length is set to xB. Mon represents the CPU usage of Trident process. Copy represents the CPU usage of copy
overhead introduced to forwarding path. Sum represents the sum of Mon and Copy.

tion. On system evaluation, the server is configured
as an OpenStack compute node with Linux KVM and
OVS and connect it to a controller server through a
1Gbps NIC and to a TOR switch through two 10Gbps
NICs. Trident is deployed on this server, monitoring the
traffic of virtual interfaces and exporting desired states
to a remote analyzer through the 10Gbps NICs. Traf-
fic is replayed by tcpreplay, including CAIDA Internet
trace [43] and random traces generated by Linux pkt-
gen. A CentOS VM is launched in a virtual network on
this server as the sender, which sends traces to a gate-
way VM in another server through the 10Gbps NICs.
Fast path algorithm. Trident generates uniflows and
classifies uniflows with USS in fast path, while Open
vSwitch generates megaflows and classifies megaflows
with TSS in fast path. Tested slow path rule sets in-
clude Classbench synthesized ACL rules from 100 size
to 10K size and Firewall rules from 100 size to 10K
size. Traces are generated randomly according to the
corresponding rule sets. The experiment fast path flow
entry size, i.e. cache size, is set to 1000 (corresponding
to 1000%, 100%, 10% of slow path rule size 100, 1000,
10K) for both Trident and Open vSwitch.

Fast path hash table lookup times with full cached
flow size are evaluated and shown in Table 2. Although,
TSS needs to classify a group of hash tables, experi-
ments show that hash table lookup times of TSS with
Megaflow is almost as linear as USS with Uniflow. The
reason is that to maintain the semantic consistency of
cached flow entries in fast path and original flow entries
in slow path, generated megaflows need to intersection
slow path tuples, resulting in near one minimal tuple.
Therefore, as shown in Figure 6, the average expressed
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Fig. 6 The average cached flow size of megaflow and uniflow,
representing the fast path caching hit rate. Y-axis is shown in
log scale. On each flow entry, the space size is calculated by
multiplying each field size.

flow size (cache hit rate) of megaflow is serveral order
of magnitude smaller than uniflow. The overhead of lin-
ear hash lookup and high cache hit rate properties of
USS with uniflow is the bounded-memory mask arrays,
which consumes less than 132KB (216 sub-prefixes of
src ip and dst ip, 28 sub-prefixes of src port and
dst port, 24 sub-prefixes of protocol) for any 5-tuple
rule sets.
Resource usage. Trident resource usage on CPU and
memory is evaluated. Trident is configured in two
modes, header statistics with header-action policies
and selective packet mirroring with payload-action
policies. Five types of traces are used, four randomly
generated traces with packet length ranging from 64B
to 1458B and one CAIDA trace stripped payload due to
anonymity.
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Fig. 7 A traffic rate example that Trident monitors and com-
presses header statistics.

Table 3 shows the CPU usage results at 200Kpps
packet rate. Decoupling monitoring from forwarding
adds one-copy overhead to forwarding path. This over-
head is shown in the middle column of each monitoring
mode. The Sum column represents the actual CPU us-
age of Trident. Trident consumes more CPU resources
when mirroring traffic, which is sourced from packet
IO. For large packet length, 1458B, the exported packet
will be encapsulated and fragmented, thus resulting in
higher CPU usage. On memory usage, Trident con-
sumes around 329.6MB memory in no-load condition,
which is mainly from mmap, packet-sending buffers
and fast-path tables. Due to the garbage collection
mechanism of Go, accurate memory usage for random
traces can not be shown. For processing the CAIDA
traces, Trident consumes 336.9MB memory. Trident
increases slight memory consumption while monitoring
traffic due to the wildcard flow caching of fast path.
Header compression. Header compression ratio is
evaluated with CAIDA traces. Figure 7 shows the orig-
inal packet rates of forwarding and after-compression
packet rates of monitoring during 400 seconds. Trident
achieves around 45-to-1 compression ratio on pps. In
quantitative analysis, the compression algorithm gen-
erates 22B∼49B-length headers and assembles these
headers in 1500B-length packets which contains 48B
meta-data. Therefore, the compression ratio is theoreti-
cally ranging from 29-to-1 to 66-to-1. Besides, accord-
ing to the profiling result, the computation overhead of
header compression in the Trident process is 15.94%
(8.52% comparing + 7.42% appending), while 50.66%
computation is from mmap read operation.
Adaptive sampling. How adaptive sampling adjusts of
CPU usage of Trident is shown. The desired CPU usage
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Fig. 8 A demo that Trident can dynamically vary sampling ra-
tio to keep CPU usage at 10%. The sampling ratio here means
dividing the number of monitored packets by the number of for-
warded packets.

is set to 10%. The sent traffic rate is varied between
150Kpps and 250Kpps. Figure 8 shows the results.

6 Discussion

Currently, Trident is limited in two aspects. (1) Over-
head of off-path monitoring. This is due to one-copy
on incoming packets. This introduces additional com-
putation in forwarding path and may also limit moni-
toring throughput. The latest AF PACKET v4 [44], not
merged to kernel main branch yet, is a promising way
to mitigate this overhead, which realizes zero-copy by
mapping DMA packet buffers to user space. (2) Lack
of kernel bypassing [45] support. Current Trident de-
sign is based on kernel IO mode, which can not achieve
10Gbps throughput for 64B packets with one core. As
Go provides DPDK binding operation, future version is
going to integrate the kernel-bypassing IO mode. Be-
sides the limitations and corresponding optimization,
Trident is also going to adapt to standard control pro-
tocol, such as OpenFlow, and more traffic analyzers.

7 Conclusion

Self-driving networks aim to make network manage-
ment simple and intelligent, which depends on data ana-
lytics and closed-loop control, and network monitoring
is a fundamental pillar of the closed-loop network. This
paper proposes Trident, a forwarding-independent sys-
tem for software network monitoring, designed with a
new angle of off-path configurable streaming. Trident
is policy-oriented to support both header statistics and
full packet delivery. Trident realizes negligiable inter-
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ference and high efficiency with novel fast path design,
compression algorithm, and adaptive sampling. Current
Trident implementation processes header statistics of
200Kpps traffic with at most 0.3 core of Intel E5 CPU.

Future work will incorporate zero-copy and kernel
bypassing techniques into Trident and enhance Trident
programming model to adapt to standard control proto-
col, such as OpenFlow, and more traffic analyzers.
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A Appendix

USS construction algorithms contain rule mask align-
ment function, mask array construction function and uni-
flow table construction function.

Algorithm 1 Rule Mask Alignment

Let DIM be the dimension bit number vector, D be the di-
mension number
Execute AlignRule(r, out rs, tr, longest masks, D − 1)
function ALIGNRULE(r, out rs, tr, longest masks, d)

if d = 0 then
tr.action = r.action

out rs.add(deep copy(tr))

return
end if
for i = 1→ 2longest masks[d]−r.mask[d] do

tr.prefix[d] = r.prefix[d] + ((i − 1) <<

(DIM [d]− longest masks[d]))

tr.mask[d] = longest masks[d]

AlignRule(r, out rs, tr, longest masks, d− 1)
end for

end function

Algorithm 2 Mask Array Construction

Let X be the first bit number vector for grouping
function SETMASKARRAY(rs, mask arrays)

Initiate dimension mask array vector mask arrays[D]

for i = 0→ D − 1 do
Allocate memory size 2X[i] for mask arrays[i]

end for
for i = 0→ rs.size− 1 do

for j = 0→ D − 1 do
sub prefix = rs.rule[i].prefix[j] >>

(DIM [j]−X[j])

if rs.rule[i].mask[j] >

mask arrays[j][sub prefix] then
mask arrays[j][sub prefix] =

rs.rule[i].mask[j]

end if
end for

end for
end function
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Algorithm 3 Uniflow Table Construction

function SETUNIFLOWTABLE(rs, mask arrays, table)
Let trs be the transformed uniflows
for i = 0→ rs.size− 1 do

for j = 0→ D − 1 do
sub prefix = rs.rule[i].prefix[j] >>

(DIM [j]−X[j])

longest masks[j] =

mask arrays[j][sub prefix]

end for
AlignRule(rs.rule[i], trs, tr, longest masks, D−1)

end for
for i = 0→ trs.size− 1 do

table.add(trs.rule[i].prefix, trs.rule[i].action)

end for
end function

USS lookup algorithm uses the constructed mask arrays
and uniflow table.

Algorithm 4 USS Lookup

function USSLOOKUP(mask arrays, table, p)
for j = 0→ D − 1 do

sub prefix = p.header[i] >> (DIM [i]−X[i])

mask = mask arrays[j][sub prefix]

key[i] = p.header[i] & ∼ (1 << (DIM [i] −
mask)− 1)

end for
table.lookup(key, action)

return action

end function

Uniflow caches are drived from arriving packets.

Algorithm 5 Uniflow Caching

function UNIFLOWCACHING(fpath mask arrays,
fpath hash table, p, action)

for j = 0→ D − 1 do
sub prefix = p.header[i] >> (DIM [i]−X[i])

mask = fpath mask arrays[j][sub prefix]

key[i] = p.header[i] & ∼ (1 << (DIM [i] −
mask)− 1)

end for
fpath hash table.add(key, action)

end function
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