

 - 1 -

Towards System-level Optimization for High Performance

Unified Threat Management

Yaxuan Qi1, 2, Baohua Yang1, 3, Bo Xu1, 3, Jun Li1, 2

1Research Institute of Information Technology (RIIT), Tsinghua University, Beijing, China
2Tsinghua National Lab for Information Science and Technology, Beijing, China

3Department of Automation, Tsinghua University, Beijing, China
yaxuan@tsinghua.edu.cn

Abstract

To build holistic protection against complex and
blended network threats, multiple security features
need to be integrated into a unified security
architecture, which requires in Unified Threat
Management (UTM). However, most existing UTMs
operate by simply stringing together a number of
security applications working independently without
system level optimization that streamlines processing
flow and leverages shared information and resources
to reach high performance. In this paper, a generic
framework is proposed to optimize the performance of
UTMs at both algorithmic and architectural aspects by
exploring the idea of Integrated Protocol Processing
(IPP). The algorithm proposed in this paper improves
overall protocol processing complexity of ACL and
IDS from (log() log())M NΘ + to (log())M NΘ + .
Experiments on Intel IXP2850 network processor show
that our scheme outperforms existing solutions with
30% increase of throughput.

1. Introduction

Keeping network operations safe and efficient is
more challenging than ever before, and network
security has become one of the most critical issues
facing today’s Internet. Newly-emerging and ever-
changing security issues come up with an alarming fact
that: no organization can immune from security risk
with traditional network security appliance. Because of
the increased sophistication of security threats,
standalone security products are not effective. To build
holistic protection against complex and blended threats,
multiple security features need to be integrated into
unified security architecture, which results in Unified
Threat Management (UTM).

UTM refers to a security appliance as a combination
of hardware, software, and networking technologies
whose primary function is to perform multiple security
functions. According to IDC [1], the official definition
of UTM is: “Products that include multiple security
features integrated into one box. To be included in this
category, an appliance must be able to perform
network firewalling, network intrusion detection and

prevention and gateway anti-virus. All of the
capabilities in the appliance need not be used
concurrently, but the functions must exist inherently in
the appliance.”

The value of UTM platforms is the simplicity and
lower price given its "all-in-one" footprint. Some of the
key benefits of UTMs include [2]:
♦ Cost effectiveness: By reducing the number of

appliances, there is a lower up-front cost as well
as lower management and support costs;

♦ Easy to use: Ideal for enterprises that lack the
technical skills and resources to manage complex
platforms;

♦ Application level gateway: The additional layer
of security that a gateway device provides simply
blocks network threats before they have the
opportunity to enter the internal network.

While UTM solutions provide significant benefits,
the design of many UTM appliances on the market
today is a compromise of performance, functionality,
price and simplicity. These compromises often include
critical functionality such as firewalling and intrusion
prevention, resulting in a product that delivers
mediocre performance, restricted feature sets and
limited scalability. Actually, the practical performance
of a UTM appliance is typically just the performance
of the firewall with the other security applications
disabled or providing minimal functionality. Once
these other security functions, such as IDS/IPS are
enabled, performance can be reduced dramatically.
This is because most of the existing UTMs operate by
simply stringing together a number of security
applications with little real consideration for the
processing implications. These applications typically
work independently of each other and do not leverage
common information and resources. The lack of
information interchange among different security
applications results in:
♦ Redundant packet classification: Because

security applications are commonly deployed in
different independent Packet Processing Engines
(PEs), while at the same time each application
loads the multiple fields of packet header for

 - 2 -

packet classification. Therefore, each packet
header is loaded multiple times from the main
memory and then processed by different PEs.
This redundant packet header manipulation
wastes the limited memory bandwidth and
significantly hampers the overall performance.

♦ Unnecessary deep inspection: Deep inspection
is very time-consuming and often the bottleneck
of a UTM device. If deep inspection performed
against the whole intrusion signature database
were to be applied to every byte of network
traffics, then multi-gigabit speed can be hardly
achieved in practice. In fact, only malicious or
dubious traffic needs to be processed by different
security applications employing deep inspection
functions before being allowed through,
according security policies.

Thus, to reach high UTM performance, security
applications should be integrated so as to effectively
share common information and resources. In this paper,
we propose a generic scheme to optimize the
performance of UTMs at system level by exploring the
idea of Integrated Protocol Processing (IPP). Main
contributions of this paper are:
♦ Integrated protocol processing algorithm:

Because unnecessary deep payload inspection can
be significantly reduced by protocol analysis [3],
we integrate the protocol analysis module of the
time-consuming deep inspection application into
the fast packet and session classification
application to efficiently examine whether a
packet need to take deep inspection. The
algorithm proposed in this paper improves the
complexity of ACL and IDS protocol processing
from (log() log())M NΘ + to (log())M NΘ + ,
where M and N are the size of ACL ruleset and
IDS ruleset.

♦ Network processor implementation: Network
Processors (NPs) have become core processing
components for various Internet routers and
switches because of their high programmability
and optimized network processing capability. We
implement the IPP algorithm on the Intel
IXP2850 [4] network processor to evaluate the
performance of a UTM prototype using integrated
protocol processing. Experimental results show
that our scheme significantly improves the
performance of existing approaches with about
30% increase of throughput.

2. Background and Related Work

The protocol processing part of a network security
application is responsible for the manipulations of
networking protocols. Protocol processing involves

several repeated basic operations, including packet
classification, packet modification, session setup,
session teardown, and statistics gathering. In this paper,
we focus on the multidimensional packet classification
operation, because this part of protocol processing is
the key operation in our system-level integration of
multiple security applications.

2.1. Protocol Processing Problem

Multidimensional packet classification for protocol
processing classifies a packet into corresponding
session according to the multiple fields of its header.
Based on the F fields of the packet header, each rule
specifies a flow that uniquely determines the action
associated to the rule R. A packet P is said to match a
particular rule R, if the ith field of the header of P
satisfies R[i], i∀ . If P matches multiple rules, the
matching rule with the highest priority is returned. It
has been proved that the best bounds for point location
in N non-overlapping F-dimensional hyper-rectangles
are ()NΘ storage with 1(log)F N−Θ search time, or

(log)NΘ search time with ()FNΘ storage in [5].

2.2. Protocol Processing Algorithm
Although the theoretical bounds make it impossible

to design a single algorithm that performs well for all
cases, fortunately, real-life rulesets have some inherent
characteristics that can be exploited to reduce the
complexity both in search time and memory space [6].
A variety of characteristics of real-life rulesets have
been presented and exploited [7-9], and some best-
known algorithms like HiCuts [10], HyperCuts [11],
RFC [12], and HSM [13] achieve encouraging
improvements in packet classification performance.
Generally, these algorithms can be classified into two
categories [6]:
♦ Decision tree search algorithms: HiCuts and

HyperCuts belong to this category using decision
trees for packet search. Generally, decision tree
algorithms require less memory. However, the
complexity of the decision trees often leads to
implicit worst-case bounds and thus cannot ensure
a stable worst-case classification speed.

♦ Parallel search algorithms: RFC and HSM
perform independent parallel searches on indexed
tables; the results of the table searches are
combined in multiple phases to yield the final
classification result. Algorithms using parallel
search are very fast in term of classification speed
while they require comparatively larger memory
to store the crossproducting tables.

In this paper, we choose HSM to be the basis of the
integrated protocol processing scheme, because HSM

 - 3 -

algorithm provides both fast search speed and modest
memory usage compared to other algorithms [13]. The

(log)NΘ search time of HSM provide explicit worst-
case bound, and hence guarantees the protocol
processing speed even with thousands of rules.

3. Integrated Protocol Processing

Protocol processing in UTMs involves repeated
application of several basic operations. These mainly
include packet classification for firewalling and
protocol analysis for intrusion prevention. In order to
get the maximum gain in overall performance, we need
to design the protocol processing applications in a very
efficient manner. However, because each processing
engine need to manipulate multiple fields of packet
header, they have to first load the packet header from
the off-chip memory to local cache and then carry out
modification and classification, and finally write the
new header back into the external memory. Such read-
modify-write operations are very time-consuming, and
hence greatly impede the overall processing speed [14].

In this section, we propose an integrated protocol
processing algorithm that efficiently combines the
protocol processing functionalities of different security
applications such as firewalling and IDS/IPS. Our
algorithm handles multiple independent protocol
processing rulesets by a compact data-structure using a
HSM scheme.

3.1. Independent protocol processing

HSM performs parallel binary searches on
multidimensional packet header, the result of the
binary searches are combined in multiple phases. In the
first phase, F fields of the packet header are segmented
according to unique rule-projection intervals into
multiple sub-spaces that are used to index into multiple
memories (see Figure 1). Sub-spaces associated with
the same rules are then aggregated and labeled with
same sub-space ID (see Figure 2). In subsequent
phases, earlier sub-space IDs obtained from one
dimensional segmentation are recursively
crossproducted with the sub-spaces obtained from
other dimensions (see Figure 3). In the final phase, the
memory yields the action. More detail of HSM can be
found in [13].

3.2. Integrated Protocol Processing

Note that the most time-consuming part of HSM is
the binary search because of its (log)NΘ complexity.
Thus, if we have two independent rulesets, each having
M and N rules respectively, the original HSM
algorithm requires two independent searches for each
ruleset and hence has (log() log())M NΘ + temporal

complexity. To improve the performance of binary
search, the new algorithm should be able to handle
multiple independent rulesets effectively. We propose
to integrate multiple rulesets in the space segmentation
step while remain independent tables for space
aggregation. Specifically, there are two main steps:
♦ Integrated space segmentation: Different from

the original HSM, space segmentation for each
dimension is carried out not only according to
ACL rules but also to the IDS rules. Because 16
bits can support up to 32K rules, we use 16-bit
index for ACL classification and 16-bit for IDS
protocol analysis to store the segmentation
number. The number of segments then increases
from ()MΘ to ()M NΘ + , where M is the
number of ACL rules, and N is the number of IDS
rules. Because the binary search is now taken on

0 5 7 15ACL rule#0

ACL rule#1

ACL0 ACL1ACL0,1

SA#0 SA#1 SA#2

0 9 15
ACL rule#0

ACL rule#1

ACL1ACL0,1

DA#0 DA#1

Figure 1. Space Segmentation. The two-dimensional (4-bit
source address and 4-bit destination address) search space is
segmented in each of the dimension according to two ACL
rules. In each segment, there is a unique set of rules denoted by
different SA# and DA#. SA and DA are segmentation tables of
source and destination IP addresses, respectively.

AMT SA#0 SA#1 SA#2

DA#0 1
(ACL0) 2(ACL1) 3(ACL1)

DA#1 0(N/A) 3(ACL1) 3(ACL1)

Figure 2. Space Aggregation. AMT is the address mapping
table, which aggregates the sub-spaces denoted by the <SA#,
DA#> pairs to a sub-space containing only the rule with the
highest priority. SP and DP are segmentation tables of source
and destination ports, respectively.

PACKET

HEADER

SA

DA

SP

DP

AMT

PMT

PLTx

Figure 3. Hierarchical Space Mapping. AMT, PMT and PLT
are hierarchical cross-producting tables for space aggregation.
An incoming packet first gets indexes by looking up the four
segmentation tables, and then using these indexes to trace the
aggregation tables to yield finally classification result.

 - 4 -

the integrated segmentations, the overall
complexity becomes (log())M NΘ + , which is
much better than (log() log())M NΘ + . Figure 4
illustrates how to implement the integrated
segmentation scheme.

♦ Independent space aggregation: The space
complexity of space aggregation tables are

()FMΘ for M F-dimensional rules [13]. Thus, if
we also integrate space aggregation tables, the
overall space complexity will be (())FM NΘ + .
In practice, such an exponential increase of
memory is not acceptable, so we retain the
independency of each aggregation table and thus
keeps the space complexity to be ()F FM NΘ + .
Because the number of memory accesses to these
aggregation tables is small compared to the binary
search on segmentation tables, the independent
tables for multiple rulesets will not significantly
impact the overall search time. Figure 5 illustrates
the implement action of the independent space
aggregation.

3.3. Summary of Integrated Protocol
Processing

In real-life applications, it is not necessarily for all
traffic to take the time-consuming content filtering, for
intrusion detection/prevention or virus/spam scanning.
For example, in Snort, most rules are set simply for
HOME_NETS, i.e. most clients in HOME_NETS have
the same level of security services. In contrast, IPP
allows administrators to set more elaborate rules at
network layer to have different level of security service
for different hosts and servers in the internal networks.
This potentially reduces a great amount of deep
payload inspection workload while keeps high-level
security for those important servers.

In addition, some security applications such as IDS
and IPS require both range-match for protocol analysis
and pattern-match for signature detection. This makes
the data-structure of each application not consistent
with each other and hence makes the corresponding
implementations have larger code-size to perform more
complicated operations. IPP solves this problem by
separating the range-match codes from the pattern-
match codes: on the one hand, the workload for packet
header manipulation is reduced in each application; on
the other hand, each packet header is loaded only once
to reduce the number of memory accesses to off-chip
memory, which is often the bottleneck of a UTM
device.

4. Integrated Protocol Processing on
Network Processor

Network processors are an emerging class of
programmable processors used for implementation of
packet processing applications in networking systems
such as switches and routers. They are highly
optimized for fast packet processing and I/O operations.
NPs are typically characterized by distributed,
multiprocessor, multithreaded architectures designed
for hiding memory latencies in order to scale up to very
high data rates. In this section, we provide a brief
overview of the hardware architecture of Intel’s
IXP2850 Network Processor, and discuss how to
implement IPP on this platform.

4.1. Intel IXP2850 NP Architecture

The architecture of IXP2850 NP is motivated by the
need to provide a building block for multi-Gbps packet
processing applications. A simplified block diagram of
the Intel IXP2850 network processor is shown in

IDS
rule#1

ACL0 ACL0 ACL0,1 ACL1 ACL1 ACL1 ACL1
IDS0 IDS0 IDS0 IDS1

0 3 5 97 11 13 15

ACL rule#0
ACL rule#1

IDS rule#0

SA#0x
SA#0y

SA#0x
SA#1y

SA#1x
SA#1y

SA#2x
SA#1y

SA#2x
SA#0y

SA#2x
SA#2y

SA#2x
SA#0y

ACL0,1 ACL0,1 ACL0,1 ACL1 ACL1 ACL1
IDS0 IDS0,1 IDS0,1 IDS0

0 3 1197 13 15

ACL rule#0
ACL rule#1

IDS rule#1

IDS rule#0

DA#0x
DA#0y

DA#0x
DA#1y

DA#0x
DA#2y

DA#1x
DA#2y

DA#1x
DA#1y

DA#1x
DA#0y

Figure 4. Integrated Space Segmentation. The two-dimensional
(4-bit source address and 4-bit destination address) search space is
segmented in each of the dimension according to 2 ACL rules and
2 IDS rules. In each segment, there is two independent unique set
of rules. SA#x and DA#x denote the unique set of ACL rules,
while SA#y and DA#y denote the unique set of IDS rules.

PACKET

HEADER

SA

DA

SP

DP

AMTx

PMTx

AMTy

PMYy

PLTx

PLTy

Figure 5. Independent Space Aggregation. Use #x indexes to
traverse AMTx, PMTx and PLTx table to get the classification
results for the ACL ruleset, which are commonly
ACCEPT/DROP/EXEPTION. Use #y indexes to traverse AMTy,
PMTy and PLTy table to get the finally IDS protocol analysis
results, which may be a pointer to a specified ruleset for deep
payload inspection.

 - 5 -

Figure 6 (curtsey of Intel SDK reference [15]). The
major IXP2850 blocks are:
♦ Intel XScale core: general purpose 32-bit RISC

processor used to initialize and manage the
network processor, and can be used for higher
layer network processing tasks.

♦ Microengines: 32-bit RISC processors optimized
for network packet processing.

♦ DRAM Controllers: DRAM is used for data
buffer storage.

♦ SRAM Controllers: SRAM is used for control
information storage.

♦ PCI Controller: 64-bit PCI I/O bus. PCI can be
used to connect to a Host processor or to attach
PCI-compliant peripheral devices.

♦ Media and Switch Fabric Interface: interface
for network framers and/or Switch Fabric that
contains receive and transmit buffers.

4.2. Implementing Protocol Processing on
IXP2850

The IXP2850 Network Processor receives Ethernet
frames that carry IPv4 datagrams. The frames are
assembled into packets and the Layer-2 (Ethernet)
headers are removed. Then protocol processing
applications are performed. Finally, packets are
segmented into CSIX c-frames and transmitted to the
CSIX fabric. The application design consists of the
following Packet Processing Stages (PPSes) in a
pipeline:
♦ Packet receiving PPS: The PPS reassembles m-

packets one at a time to form the packet in
DRAM. When a packet has been completely
reassembled, it sends the packet to the next PPS
over the communication pipe.

♦ Protocol processing PPS: This PPS includes
main packet processing applications: a) Layer2
Ethernet header de-capsulate module; b) Protocol
processing module, and c) IPv4 header validation
and forwarding. Protocol processing algorithms
are implemented in this PPS.

♦ Packet scheduling PPS: The PPS includes: a)
Processes packet enqueue messages from the
previous PPS; b) Sends cell dequeue messages to
next PPS; c) Calculates the Weighted Random
Early Detection drop probability for each queue.

♦ Queue Manager: The Queue Manager is set up
to enqueue/dequeue packets.

♦ CSIX transmitting PPS: This PPS transmits the
c-frame to the CSIX fabric.

5. Performance Evaluation

To objectively evaluate the performance of the
proposed IPP scheme, we focus on the integration of
two common applications in UTMs: access control in
firewalling and protocol analysis in IDS. We first
evaluate the independent implementation of these two
applications and then compare their performance with
the integrated implementation.

5.1. Rulesets

Our study focuses on real-life rule sets. All the
algorithms are evaluated on real-life firewall and IDS
rules. Firewall rulesets are obtained from large
enterprise networks and major ISPs, named as ACL01
~ ACL07; IDS rules are extracted from Snort2.x and
named as IDS01. All these rules are 5-dimensional
with 32-bit source/destination IP addresses represented
as prefixes, 16-bit source/destination port numbers
represented as ranges, and 8-bit transport layer protocol.
The size of ACL rulesets ranges from 68 to 1945,
while the IDS01 ruleset contains 2835 rules. Each of
the experiments is simulated with a pair of ACL and
IDS rulesets. Because there is only one IDS ruleset
(IDS01), we just list the ACL rulesets to denote
different evaluation experiments. Network traffics are
generated by the development workbench. Each traffic
flow is an IPv4 TCP flow with 64-Byte Ethernet
packets.

5.2. Evaluation Experiments

The most important metric of network processing
algorithms is the worst-case memory access time,
which indicates the temporal complexity. Table 1
shows the number of memory words accessed by the
different two schemes in our comparison: FW+IDS
refers to performing firewalling using ACL rules first,
and then doing lookup against IDS rules; IPP refers to
the proposed Integrated Protocol Processing, which
performs ACL and IDS lookup simultaneously.
Because one memory access in most existing operating
systems and hardware platforms is word-oriented, we

Figure 6. A simplified block diagram of the Intel IXP2850
network processor.

 - 6 -

use the total amount of 32bit-words as the memory
access metric. From Table 1 we see that IPP scheme
saves about 10 memory accesses, i.e. the worst-case
search time of IPP is about 30% faster than that of the
original FW+IDS scheme.

Table 2 shows the memory usage of each evaluation
experiment. The memory usage is the total amount of
memory required to store the lookup tables in Figure 3
and Figure 5. We see from Table 2 that the memory
usage of IPP scheme is nearly the same as the original
FW+IDS scheme. Therefore, the expense to trade
memory for speed is very small. Actually, less than 1%
extra memory is required.

5.3. Performance on Network Processor

To evaluate the hardware performance, we
implement both schemes on Intel IXP2850 network
processor. Microcode assembly was used as our
programming language for its hardware compatibility
and high efficiency. Packets receiving/transmitting and
queuing/scheduling microblocks are implemented
using Intel IXP2xxx SDK 4.0 building blocks. All
these microblocks use 7 of 16 microengines to support
a 10Gbps test bed. Our microcode is implemented in
the protocol processing stage, using 6 microengines
and 48 threads in parallel multiprocessing mode. Table
3 is the throughput measured for each pair of ACL and
IDS rulesets. From this table, we see that the
improvement of throughput is about 1Gbps by our IPP
scheme, i.e. about 30% faster than FW+IDS schemes,
which is in accordance with the worst-case memory
accesses shown in Table 1.

6. Conclusion

To reach high UTM performance, security
applications should be optimized at system-level rather
than simply stringed together a number of security
applications. In this paper, we propose an Integrated
Protocol Processing scheme to resolve the key
problems in existing UTMs: Redundant Packet
Classification and Unnecessary Deep Inspection. The
proposed algorithm improves the overall complexity of
ACL and IDS protocol processing from

(log() log())M NΘ + to (log())M NΘ + . Analysis and
experiments on Intel IXP2850 network processor show
that our scheme outperforms existing algorithms with
about 30% increase of throughput.

7. References
[1] http://www.idc.com/
[2] http://www.itsecurity.com/
[3] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer,
“Dynamic Application-Layer Protocol Analysis for Network
Intrusion Detection,” Proc. of USENIX Security Symposium, 2006.
[4] http://www.intel.com/design/network/products/npfamily/
[5] M.H. Overmars and A.F. van der Stappen, “Range searching and
point location among fat objects,” Journal of Algorithms, 21(3), 1996.
[6] Y. Qi and J. Li, “Performance Evaluation and Improvement of
Algorithmic Approaches for Packet Classification,” Proc. of
International Conference on Networking and Services, 2005.
[7] P. Gupta and N. McKewon, “Algorithms for Packet
Classification,” IEEE Network, March/April, 2001.
[8] D. E. Taylor, “Survey & Taxonomy of Packet Classification
Techniques,” Washington University in Saint-Louis, 2004.
[9] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T.
Campbell, “Directions in Packet Classification for Network
Processors,” Proc. of Second Workshop on Network Processors
(NP2), 2003.
[10] P. Gupta and N. McKeown, “Packet classification using
hierarchical intelligent cuttings,” Proc. of Hot Interconnects, 1999
[11] S. Singh, F. Baboescu, G. Varghese, and J. Wang, "Packet
classification Using Multidimensional Cutting," Proc. of ACM
SIGCOMM, 2003.
[12] P. Gupta and N. McKeown, “Packet classification on multiple
fields,” Proc. ACM SIGCOMM, 1999.
[13] B. Xu, D. Y. Jiang, and J. Li, “HSM: A Fast Packet
Classification Algorithm”, Proc. of the 19th Advanced Information
Networking and Applications (AINA 2005), 2005.
[14] U. R. Naik and P. R. Chandra, “Designing High-performance
Netwoking Applications,” Intel Press, 2004.
[15] Intel IXP2850 Network Processor Hardware Reference Manual.
[16] www.snort.org/

Table 1. Memory Access. (Unit: 32bit-word)
RULESET #RULE FW+IDS IPP
ACL01 68 30 20
ACL02 136 31 22
ACL03 340 34 24
ACL04 500 34 24
ACL05 1,000 36 26
ACL06 1,530 36 26
ACL07 1,945 36 26

Table 2. Memory Usage. (Unit: Byte)

RULESET #RULE FW+IDS IPP
ACL01 68 563,350 563,484
ACL02 136 584,680 584,944
ACL03 340 672,922 673,492
ACL04 500 609,880 610,664
ACL05 1,000 1,002,096 1,003,690
ACL06 1,530 898,422 899,902
ACL07 1,945 937,998 939,586

Table 3. Throughput. (Unit: Gigabits/Second)

RULESET #RULE FW+IDS IPP
ACL01 68 3.72 4.64
ACL02 136 3.55 4.48
ACL03 340 3.37 4.46
ACL04 500 3.28 4.37
ACL05 1,000 3.10 4.03
ACL06 1,530 3.19 4.04
ACL07 1,945 3.16 3.97

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

