
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll13/15llpp422-431 2
Volume 16, Number 4, August 2011

Accelerating Application Identification with Two-Stage Matching
and Pre-Classification*

HE Fei ()1,2, XIANG Fan ()1, SHAO Yiyang ()1,
XUE Yibo ()2,3, LI Jun ()2,3,**

1. Department of Automation, Tsinghua University, Beijing 100084, China;

2. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;
3. Tsinghua National Lab for Information Science and Technology, Beijing 100084, China

Abstract: Modern datacenter and enterprise networks require application identification to enable granular

traffic control that either improves data transfer rates or ensures network security. Providing application visi-

bility as a core network function is challenging due to its performance requirements, including high through-

put, low memory usage, and high identification accuracy. This paper presents a payload-based application

identification method using a signature matching engine utilizing characteristics of the application identifica-

tion. The solution uses two-stage matching and pre-classification to simultaneously improve the throughput

and reduce the memory. Compared to a state-of-the-art common regular expression engine, this matching

engine achieves 38% memory use reduction and triples the throughput. In addition, the solution is orthogo-

nal to most existing optimization techniques for regular expression matching, which means it can be lever-

aged to further increase the performance of other matching algorithms.

Key words: application identification; deep inspection; regular expression; traffic classification

Introduction

Modern datacenter and enterprise networks require
granular traffic control to either improve data transfer
rates or ensure network security. Flow-based policy
control and traffic management are being more and
more widely used in both datacenter and enterprise
networks[1,2]. Application visibility is critical to under-
standing network risks and to achieving flow-based
traffic control in these networks. However, identifying
application-layer protocols is more challenging than
traditional traffic classification based on packet head-
ers (also called packet classification). Application

identification (App-ID) in network devices needs to
meet the high throughput requirement of large net-
works (e.g., 40 Gbps and beyond) and also be able to
scale up with emerging application protocols.

The problem of determining application-layer pro-
tocols of network traffic is known as application iden-
tification or traffic classification at the application
layer. Traditionally network devices depend on well-
known port numbers to identify applications. Port-
based methods were effective since many applications
use IANA registered port numbers (for example,
HTTP traffic uses TCP port 80 and DNS traffic uses
TCP/UDP port 25). However, emerging applications
such as audio and video streaming, file sharing, and
social networks are capable of using non-standard or
dynamic ports, encapsulated inside commonly used
protocols as a means of evading port-based identifica-
tion. Several application identification technologies

Received: 2010-12-23; revised: 2011-06-03

** Supported by the National High-Tech Research and Development
(863) Program of China (No. 2007AA01Z468)

** To whom correspondence should be addressed.
E-mail: junl@tsinghua.edu.cn; Tel: 86-10-62796400

HE Fei () et al. Accelerating Application Identification with Two-Stage …

423

have been recently proposed which can be categorized
into payload-based methods[3,4] and statistical
methods[5-10].

Statistical methods usually use machine learning
techniques to classify the traffic based on flow statis-
tics such as duration, mean packet size or inter-arrival
time. However, statistical methods are known to have
limitations which make them not suitable for practical
usage in production systems. First, statistical methods
are currently not able to provide fine-grained applica-
tion identification. Second, the accuracy of statistical
methods is usually not acceptable for in-line network
devices. Moreover, the statistical characteristics of
traffic on a link may vary with the link usage which
further affects the accuracy of statistical methods. For
these reasons, most production App-ID systems, such
as PaloAlto[11], Juniper[12], and the open source system
L7-filter[13], are based on payload-based methods
which provide fine-grained, accurate results.

Payload-based methods are accurate in most cases
and are similar to other deep inspection (DI) systems,
such as intrusion detection systems, which inspect
packet payload to search against a set of signatures.
However, these methods require more resources (both
computational and memory) since every byte of sev-
eral packets at the beginning of an application session
need to be inspected. Nowadays, these signatures are
usually defined by regular expressions (regexes) for
their expressiveness[13-15]. A rich set of studies[16-19] has
been published that give methods to optimize regular
expression matching. Unfortunately, few solutions can
keep up with the increasing data rates while matching
every packet against hundreds of regular expression
signatures.

To provide application visibility as the core function
of modern networks, the application identification sys-
tem should meet the following requirements:

(1) High throughput: The application identification
system must support wire-speed processing for fine-
grained control or traffic management.

(2) Low memory usage: For high speed application
identification, the data structures need to be deployed
on fast memory (e.g., SRAMs) that has limited capac-
ity due to the high price. Therefore, the memory usage
should be as low as possible.

(3) Identification accuracy: Application identifica-
tion must provide both low false-negative and low

false-positive rates.
This paper focuses on payload-based methods that

are more accurate, and proposing a matching engine
designed to meet both the requirements of high
throughput and low memory usage.

Existing research has mostly focused on common
multiple regular expression matching. However, for
regular expression matching in App-ID systems, if the
App-ID characteristics are taken into account,
high-level optimizations become possible. The paper
uses the App-ID characteristics to divide the problem
space and optimize the expected (common) case. The
proposed two-stage matching engine is able to split the
signature set into smaller sets, and each flow only
needs to match one or two of them. Most existing re-
gex matching algorithms can be used to further in-
crease the performance of the sub-matching procedure
in this solution.

The main contributions of this study include:
(1) A two-stage matching engine is proposed to pro-

vide much higher throughput than a state-of-the-art
multi-DFA matching engine[18]. Evaluations using real
world traces show that the algorithm is up to 3 times
faster than multi-DFA matching.

(2) Group merging algorithms are proposed to opti-
mize the memory usage of the matching engine. The
total memory usage of the algorithm is more than 60%
less than that of multi-DFA matching.

(3) A trace-driven application identification system
is implemented to support evaluations using real world
traces.

1 Payload-Based Application
Identification

1.1 Architecture of a typical payload-based
application identification system

A common architecture of existing payload-based ap-
plication identification systems is illustrated in Fig. 1.
A received packet is first processed in an IP layer
processing module, including IP header parsing, IP
defragmentation, and other IP layer processing. After
the packet header is parsed, several fields of the packet
header (usually 5 tuples, including source address, des-
tination address, transport-layer protocol, source port,
and destination port) are used as a flow identifier
(flow-id) to lookup in the flow table. If the flow that

 Tsinghua Science and Technology, August 2011, 16(4): 422-431

424

the packet belongs to has not been classified, the
packet is sent to a transport layer processing module
for TCP stream reassembly or UDP header checking.
Then, the packet payload is submitted to the matching

engine to search against application signatures. The
signature matching engine is the system bottleneck,
which is to be optimized in this paper.

Fig. 1 Typical payload-based application identification system

1.2 Signature matching engine

Regular expressions are widely used as signatures of
application identification systems, due to their expres-
sive power and flexibility for describing protocol pat-
terns. For example, all protocol signatures in the
L7-filter are written in regular expression. In addition,
in the protocol identification module of the Bro intru-
sion detection system, regular expressions are also
used as its pattern language. Thus, the matching engine
used in application identification is usually a multi-
pattern regular expression matching engine.

High-speed regular expression matching is usually
based on finite automata, either deterministic finite
automaton (DFA) or nondeterministic finite automaton
(NFA). Theoretically, a regular expression of length n
can be compiled into an NFA with O(n) states. When
an m-state NFA is converted into a DFA, it may gener-
ate O(2m) states in the worst case. However, the proc-
essing complexity for each input character is O(1) in a
DFA, but is O(n2) for an NFA. Thus, neither of the
standard FA solutions are feasible for regular expres-
sion matching engines for high speed packet payload
scanning. NFS handles k regular expressions with total
length of kn (k is usually hundreds or even thousands
and n is the average length of the regular expressions)
by either compiling them individually in k automata or
into a single automaton. In either case, O(n) states may

be active concurrently, which reduces performance
with a large number of per-flow states to be maintained.
DFA usually can not compile a large signature set into
a single composite DFA, since the composite DFA
grows exponentially in most cases. Among existing
solutions, the multi-DFA approach proposed by Yu et
al.[18] that controls the number of DFA states by creat-
ing several DFAs based on a grouping approach is the
most used practical approach to deal with hundreds of
signatures.

2 Two-Stage Matching Engine
Framework

2.1 App-ID characteristics

App-ID and IDS are the two most widely used forms
of deep inspection systems. Although the core of DI
system is a regular expression matching engine, they
have some essential differences. The first essential dif-
ference is the matching rate. When processing real
traffic, the IDS system usually finds very few matches.
For example, Sourdis et al.[20] found that over 90 per-
cent of traffic did not match any IDS signature. On the
contrary, almost all the flows match certain signatures
in an App-ID system. The tests on several real traces
(the detailed information is described in Section 4)
shown in Fig. 2 illustrate that about 90% of the flows
match signatures in the L7-filter.

HE Fei () et al. Accelerating Application Identification with Two-Stage …

425

Fig. 2 Matching rate

The second difference is that App-ID signatures
have the characteristic that most signatures are an-
chored, which means the signatures should be matched
only at the start of a flow. Figure 3 shows that around
80% of the signatures in the L7-filter are anchored. A
detailed study of the most popular application-layer
protocols showed that this signature set characteristic
is reasonable. The four classes of Internet applica-
tion-layer protocols are struct-style binary protocols,
IETF-style protocols, structured binary protocols, and
structured text protocols. Most Internet protocols

Fig. 3 L7-filter signatures from 2005-2009

belong to these four classes, and the parsers of these
kinds of protocols need to parse the packets from the
beginning of a flow. Therefore, the majority of
L7-filter signatures are anchored.

2.2 Two-stage matching engine design

An algorithmic solution was then developed to over-
come the large overhead faced by DI matching engines.
The objective of this solution is to reduce the average
number of signatures that packets need to match
against.

Since most packets match certain signatures, the
pre-filter technology widely used in IDS[20,21] is not
suitable for App-ID. To optimize the matching proce-
dure, as much traffic as possible should be matched
using as few resources as possible. Our choice is to
split the matching procedure into two stages. In the
first stage, anchored signatures that can be matched
using fewer resources than non-anchored signatures
are processed, while non-anchored signatures are
processed in the second stage. Figure 2 shows that
60%-80% of real-life traffic can be matched at the first
stage.

Figure 4 gives an outline of the proposed solution.
The reassembled payload of the packets in a flow is
first pre-classified based on m bytes of its prefix and
assigned a group-id. The purpose of the pre-classifier
is to reduce the signatures that a specific payload needs
to match against, so that the group of signatures can be
compiled into one DFA. Then, the reassembled pay-
load is matched against the DFA specified by its
group-id. For the majority of flows, a match is found in
this stage, and no further matching is needed. If the
payload does not match, it will be sent to the next stage
to match against non-anchored signatures.

Fig. 4 Two-stage matching engine

 Tsinghua Science and Technology, August 2011, 16(4): 422-431

426

3 Detailed Design and Optimization
3.1 Prefix-based classification

Anchored signatures should match from the start of the
payload, which means that if the starting characters of
a flow are not accepted by the signatures, then there is
no need to match these signatures. Therefore, the pre-
fixes of the signatures can be used to pre-classify the
flows and narrow the number of signatures that need to
be matched.

The main idea is to separate the signature set into
exclusive groups based on the first m bytes that signa-
tures match. When the reassembled payload of a flow
enters the matching engine, it is pre-classified based on
its first m bytes and only needs to match against a
small group of signatures which accept the prefix.
Since the anchored signatures are divided into exclu-
sive subsets, each flow only needs to be matched
against one subset. Moreover, each subset of anchored
signatures can be compiled into a DFA since the num-
ber of signatures in a subset is much smaller than that
of the entire signature set.

To construct these exclusive subsets, the prefixes of
anchored signatures should first be extracted. A regular
expression consists of four types of components, exact
characters, character classes, wildcards (e.g., dot), and
repetitions. We define the prefix length of an anchored
regular expression as the largest number of
non-wildcard characters from the beginning. For ex-
ample, the prefix length of regex “^[ab]c.*d” is 2. For
a regex that have a prefix length of k, up to k characters
from the beginning of the regex can be used to classify
the payloads.

The width of the pre-classifier is defined as the bytes
used to group the signatures into subsets. The width of
the pre-classifier usually should be the minimum prefix
length of all anchored signatures. If it is longer than the
minimum prefix length, the signatures having a shorter
prefix length will be duplicated in many subsets.
Figure 5 shows the distribution of signatures with dif-
ferent prefix lengths in an L7-filter. The minimum pre-
fix length is one, so we set the width of the pre-classi-
fier to one byte. If the width of the pre-classifier is set
to a number larger than one byte, the signatures are
divided into more fine-grained groups, but there is
more redundancy between these groups, since every
signature with prefix-length one is duplicated.

Fig. 5 Prefix length vs. number of rules

3.2 Group merging

The prefix-based pre-classifier divides m signatures
into several exclusive small groups. The computation
complexity for processing the signatures is then re-
duced from O(k) (k is the number of DFAs in a
multi-DFA solution) to O(1). However, the overall
number of signatures increases after the signatures are
divided into subsets based on their prefixes. When the
pre-classifier width is one byte, the total number of
signatures increases by 160. Character classes in the
prefixes cause duplication of the signatures, which
means that some signatures are duplicated several
times in different groups. For example, the regex
“^[ab]c.*d” should be placed in both the group of pre-
fix “a” and the group of prefix “b”.

Group merging is then used to reduce the signature
duplication. We first provide a formal definition of the
problem: There are k groups of signatures. Signatures
in these groups are selected from a set of m regular
expressions based on the prefixes of the regular ex-
pressions. Several groups can be merged into one,
which means these groups share one DFA. The
group-merging problem discussed in this section is to
find an optimal combination of k groups that results in
the smallest memory usage of all the DFAs compiled
from the merged groups. S(A) is used to denote the
size of the DFA compiled from signature group A.
Then, the gain of merging two groups, say group A and
group B, is S(A) + S(B) – S(AB). In general, this prob-
lem is an NP-hard problem. Although the number of
groups is not large, the calculation of the gain of the
merging two groups, i.e., generating the DFAs of group
A, group B, and the merged group AB, may cost too
much time. Therefore, two heuristic algorithms were
developed to provide fairly good results.

HE Fei () et al. Accelerating Application Identification with Two-Stage …

427

Merging of two groups may have two opposite ef-
fects. On the one hand, the redundancy of same signa-
tures in two groups is removed, but on the other hand,
signatures that do not exist in both groups may cause
the number of states in the DFA of the merged group to
grow exponentially. Following the discussion in Ref.
[18], if there are x wildcards per regex, adding one
more regex into the DFA increases its size by (x+1)
times. For example, adding one regex into the group
that consists of regexs with one wildcard on average
doubles the size of the DFA, thus the gain of merging
is negative. Therefore, a positive merging gain can be
found only if the number of different signatures in the
two groups is not very large. The interaction between
two groups is defined as the number of signatures in
the smaller group that do not exist in the larger one,
which will be used as a heuristic.
Step 1 Subset merging

Two groups assigned in the pre-classifier can share
one DFA if all the signatures in both groups are com-
piled into a single DFA. Through analysis of the
groups of signatures divided based on the prefixes of
signatures, we find that many groups are similar. Even
more, some groups are subsets of other groups, which
means the interaction is zero. Since subset merging
only reduces the total size of all DFAs (actually the
DFA of the subset is removed), the procedure of subset
merging is quite simple. The pseudo-code of the sub-
set-merging algorithm is provided below. Initially, the
list of groups G contains the group of signatures di-
vided based on prefix, and the set of group-ids (de-
noted by gids) contains only one gid. The pseudo-code
of the subset-merging algorithm is presented in Fig. 6.

Algorithm 1 Subset merging

procedure subset_merging (list G= (Gi (set gids, set sigs)))
 for Gi G do
 for Gj G && j > i do
 if interaction(Gi , Gj) == 0 then
 group_merge(Gi , Gj);
 move(G.end(), j);
end

procedure group_merge (group G1 , group G2)
 G1 .gids.add(G2.gid);
 G1 .sigs.add(G2.sigs);
End

Fig. 6 Subset-merging algorithm

Step 2 Selective merging
After subset merging, it is more challenging to

perform further merging. To determine the gain of
merging two groups, the composite DFA of two groups
and the merged group need to be compiled, which is a
time-consuming job. We rely on two heuristics to re-
duce the search space of the optimal solution. Firstly,
according to the analysis above, only the merging of
two groups with small interaction may get a positive
gain of merging. Therefore, we calculate the interac-
tion of two groups in the selective merging stage, and
keep on searching only if the interaction is smaller than
a given threshold. Secondly, as we know, even the in-
teraction of two groups is only one or two, the com-
posite DFA of the merged group may grow exponen-
tially if the average number of wildcards in the regexes
of the groups is over one (since there are no counting
constraints in L7-filters signatures, we only discuss the
wildcards here). Based on this observation, we inspect
the average number of wildcards of the merged groups
before really compiling the composite DFA. If the av-
erage number of wildcards is over one, this combina-
tion of groups is skipped.

In addition to the heuristic-based searching, we also
avoid the recalculating by recording the sizes of every
DFA complied, in order to further reduce the overhead
of calculating the gain of merging.

The pseudo-code of the selective-merging algorithm
is presented in Fig. 7.

Algorithm 2 Selective merging
procedure selective_merging (list G= (Gi (set gids, set sigs)))
 map size;
 for Gi G do
 for Gj G && j > i do
 if interaction(Gi , Gj) < Threshold then
 if avg_wildcards(group_merge(Gi , Gj)) < 1 then
 // lazy compiling
 if size(i) == 0 then
 size(i) = DFA(Gi).size;
 endif
 if size(j) == 0 then
 size(j) = DFA(Gj).size;
 endif

 if size(i) + size(j) > DFA(Gij).size then
 group_merge(Gi , Gj);
 move(G.end(), j);
 endif
 endif //avg_wildcards
 endif // interaction
end

Fig. 7 Selective-merging algorithm

 Tsinghua Science and Technology, August 2011, 16(4): 422-431

428

3.3 Fingerprint-based matching

As discussed in Section 2, only a little fraction of traf-
fic needs to be processed in the non-anchored stage,
and the number of non-anchored signatures is also
small. But we still need a scalable solution to deal with
these regular expressions. In this paper, we employ a
pre-filtering technique similar to the one used in
Snort[20], called fingerprint-based matching, to process
the non-anchored signatures. The fingerprint-based
matching performs multi-string matching on subparts
of the signatures, i.e. fingerprints. When a fingerprint
is matched, a single regular expression matching, ei-
ther DFA-based or NFA-based, is invoked.

For a set of non-anchored signatures, we first extract
the fingerprints of every signature. The fingerprint of a
regex is several fixed sub-strings of the regex. For
regex like “first|second.*third”, the fingerprint may be
“first, second” or “first, third”. The procedure of the
fingerprint extraction is as follows: Regexes are first
split at “ | ” into different parts, and then all fixed
sub-strings in each part are extracted. Finally, the fin-
gerprints of the regexes are selected from these
sub-strings to meet two criteria: (1) the fingerprint for
each signature is unique; (2) if there are multiple sub-
strings for each part of a regex, then the longest one is
selected to improve the efficiency.

After all the fingerprints are extracted, we construct
an Aho-Corasick automaton[22] to perform finger-
print-lookup. When the reassembled payload matches a
certain fingerprint, it is checked against the corre-
sponding regular expression to confirm the match.

4 Performance Evaluation

In this section, we evaluate the effectiveness of our
two-stage matching engine by comparing both the
memory usage and speed of our solution against a
multi-DFA-based matching engine. As discussed in
Section 1, multi-DFA-based solution is the best speed
and memory usage tradeoff in existing solutions.
Compared to the popular multi-DFA-based matching
engine, our matching engine consumes 62% to 86%
less memory. Experiments that use traffic traces from
DEFCON and Tsinghua University networks demon-
strate that our solution increases the throughput of the

App-ID system up to 3 times.

4.1 Experimental setup

We perform all the experiments using two sets of real
world traffic traces. The first set (DEF1, DEF2) is from
the Defcon 9 Capture the Flag contest[23], which con-
tains a large amount of anomalous traffic. The second
set (THU1-THU3) is from a local LAN with about
1000 computers at Tsinghua University. Most packets
in THU traces are normal traffic, which is very differ-
ent from DEF traces. Among all the packets in these
traces, only TCP and UDP packets are processed.

We use the Regular Expression Processor[24] to
compile DFAs from groups of regular expressions. The
code is modified to support generating multi-DFAs in
which the size of each DFA is limited by a threshold.

We implement a trace-driven application identifica-
tion system based on Libnids[25] and L7-filter to test
the performance of our solution in a real App-ID sys-
tem. The system reads packets from traffic traces and
reassembles packets using Libnids and then sends
packets to the matching engine. The signatures used
are from the latest L7-filter released on July 2009.

All the experiments were obtained on a Server with
a Xeon E5504 CPU (4 cores at 2.0 GHz) and 4 GB
DDR3 memory.

4.2 Memory usage comparison

The first part of Table 1 shows the results of compiling
all L7-filter signatures into multiple DFAs. We set the
limit of the number of states in each composite DFA
from 10 000 first. The multi-DFA algorithm generates
11 DFAs and the total number of states is 32 715. We
do not set the limit to a smaller number, because the
algorithm creates more DFAs in that situation, which
results in worse matching performance. When we in-
crease the limit to larger numbers, the algorithm cre-
ates few groups but the total number of states increases.
The number of signature groups can only decrease to 5
for this L7-filter signature set. When we set the limit to
500 000 states, the number of DFAs created is still 5
and the time of compilation needed is about 10 h. For
convenience, these multi-DFA settings are denoted as
multi-DFA_5, Multi-DFA_6, Multi-DFA_8, and
Multi-DFA_11.

HE Fei () et al. Accelerating Application Identification with Two-Stage …

429

Table 1 Memory usage comparison

Algorithm
Composite

DFA state limit
Number of

DFAs
Total number

of states
10 000 11 32 715
20 000 8 54 979
30 000 6 60 699

Multi-DFA

80 000 5 90 802
Initial 62 34 016

After subset
merging 40 25 975 Two-stage

After selective
merging 21 11 448

For our solution, the signature set is divided into 62
groups initially, based on the prefix. The total number
of states for these 62 groups is 34 016, which is only a
little larger than Multi-DFA_11. We apply our group-
merging algorithm to the prefix-based groups. After
performing the subset merging, the number of groups
is reduced to 40 and the total number of states is re-
duced to 25 975 correspondingly. The selective merg-
ing algorithm is performed to further reduce the mem-
ory usage. This heuristic algorithm merges the 40
groups into 21 and successfully reduces the total num-
ber of states to 11 448, almost 67% reduction of mem-
ory usage.

Figure 8 shows the total memory usage of our two-
stage matching scheme and the multi-DFA scheme. For
the multi-DFA scheme, the total memory usage in-
cludes the memory usage of all the composite DFAs.
The memory usage of the two-stage scheme consists of
the memory consumption of all the DFAs in the first
stage, the fingerprint DFA in the second stage, and the
DFAs for every non-anchored signature. For the
L7-filter signature set, the fingerprint DFA consumes
365 KB, while the DFAs for each non-anchored signa-

Fig. 8 Total memory usage

ture use 702 KB. From Fig. 8 we can see that the
memory usage of the proposed two-stage scheme is
only 38.3% of Multi-DFA_11, and 13.8% of
Multi-DFA_5.

4.3 Throughput comparison

Since the difference in the characteristic of traffic may
affect the performance of the algorithms, we test the
performance of these two algorithms in our trace-
driven application identification system using real
world traffic traces. Figure 9 shows the average num-
ber of memory accesses per input character to the
matching engine. The average number of memory ac-
cesses of the two-stage matching is from 2.2 to 2.5 for
different traffic traces. In comparison, the multi-DFA
scheme needs 5-11 memory accesses (2-5 times) per
input characters.

Fig. 9 Memory access comparison

We measure the throughput of these two algorithms
by recording the time needed to process the trace files.
When calculating the throughput, the time for reading
a trace file from the disk is deducted from the process-
ing time. Figure 10 shows the throughput normalized to
that of the Multi-DFA_11. Comparing to Multi-DFA_5,

Fig. 10 Throughput comparison

 Tsinghua Science and Technology, August 2011, 16(4): 422-431

430

the two-stage matching algorithm yields a performance
improvement of 60% to 89%. Also, our algorithm is
2.3 to 3.0 times faster than the Multi-DFA_11. The
differences in the performance improvement are
mainly affected by the percentage of traffic matched in
the first stage.

5 Conclusions

Application identification in network devices is chal-
lenging due to its performance requirements including
high throughput, low memory usage, and identification
accuracy. Existing work on payload-based application
identification mainly focuses on optimizing common
regular expression matching. They do not utilize the
characteristics of application identification that are
different from other deep inspection applications. In
this paper, we propose a matching engine solution to
accelerate application identification by employing
two-stage matching and pre-classification techniques.
Our solution reduces the memory usage and increases
the throughput at the same time. Comparing to the
state-of-the-art common regular expression engine, the
matching engine achieves up to 38% reduction of
memory usage and 3 times throughput increase. In ad-
dition, the proposed solution is orthogonal to most ex-
isting optimization techniques of regular expression
matching, which means we can use these techniques to
further increase performance.

References

[1] Al-Fares M, Radhakrishnan S, Raghavan B, et al. Hedera:
Dynamic flow scheduling for data center networks. In:
Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (NSDI). USA:
USENIX, 2010.

[2] McKeown N, Anderson T, Balakrishnan H, et al. Open-
Flow: Enabling innovation in campus networks. SIG-
COMM Computer Communication Review, 2008, 38(2).

[3] Sen S, Spatscheck O, Wang D. Accurate, scalable
in-network identification of p2p traffic using application
signatures. In: Proceedings of the 13th International Con-
ference on World Wide Web. USA: ACM, 2004: 512-520.

[4] Haffner P, Sen S, Spatscheck O, et al. ACAS: Automated
construction of application signatures. In: Proceedings of
the 2005 ACM SIGCOMM Workshop on Mining Network
Data. USA: ACM, 2005.

[5] Moore A W, Zuev D. Internet traffic classification using
Bayesian analysis techniques. In: Proceedings of the ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems. Canada: ACM, 2005.

[6] Callado A, Kelner J, Sadok D, et al. Better network traffic
identification through the independent combination of
techniques. Journal of Network and Computer Applica-
tions, 2010, 33(4): 433-446.

[7] Bernaille L, Teixeira R, Akodkenou I, et al. Traffic classi-
fication on the fly. SIGCOMM Computer Communication
Review, 2006, 36(2).

[8] Li Zhu, Yuan Ruixi, Guan Xiaohong. Accurate classifica-
tion of the Internet traffic based on the SVM method. In:
Proceedings of IEEE International Conference on Com-
munications (ICC). Scotland: IEEE, 2007: 1373-1378.

[9] Szabo G, Szabo I, Orincsay D. Accurate traffic classifica-
tion. In: Proceedings of IEEE International Symposium on
World of Wireless, Mobile and Multimedia Networks
(WoWMoM). Finland: IEEE, 2007: 1-8.

[10] Zhang Guangxing, Xie Gaogang, Yang Jianhua, et al. Ac-
curate online traffic classification with multi-phases identi-
fication methodology. In: Proceedings of the 5th IEEE
Consumer Communications and Networking Conference
(CCNC). USA: IEEE, 2008: 141-146.

[11] Palo Alto Networks Enterprise Firewall. http://www.pa-
loaltonetworks.com/products/pa4000.html. 2011.1.15.

[12] Juniper SRX Services Gateways. http://www.juniper.
net/au/en/products-services/security/srx-series/.2010.10.15.

[13] L7-filter. http://l7-filter.sourceforge.net. 2010.10.15.
[14] Cisco Adaptive Security Appliance. http://www.cisco.com.
[15] Bro. http://www.bro-ids.org. 2010.10.15.
[16] Kumar S, Dharmapurikar S, Yu F, et al. Algorithms to

accelerate multiple regular expressions matching for deep
packet inspection. ACM SIGCOMM Computer Communi-
cation Review, 2006, 36(4).

[17] Becchi M, Crowley P. An improved algorithm to acceler-
ate regular expression evaluation. In: Proceedings of the
3rd ACM/IEEE Symposium on Architecture for Network-
ing and Communications Systems (ANCS). USA: ACM,
2007: 145-154.

[18] Yu F, Chen Z, Diao Y, et al. Fast and memory-efficient
regular expression matching for deep packet inspection. In:
Proceedings of the 2nd ACM/IEEE Symposium on Archi-
tecture for Networking and Communications Systems
(ANCS). USA: ACM, 2006: 93-102.

[19] Smith R, Estan C, Jha S, et al. Deflating the big bang: Fast
and scalable deep packet inspection with extended finite

HE Fei () et al. Accelerating Application Identification with Two-Stage …

431

automata. ACM SIGCOMM Computer Communication,
2008, 38(4).

[20] Snort. http://www.snort.org. 2010.10.15.
[21] Sourdis I, Dimopoulos V, Pnevmatikatos D, et al. Packet

pre-filtering for network intrusion detection. In: Proceed-
ings of the 2nd ACM/IEEE Symposium on Architecture
for Networking and Communications Systems (ANCS).
USA: ACM, 2006: 183-192.

[22] Aho A V, Corasick M J. Efficient string matching: An aid
to bibliographic search. Communications of the ACM, 1975,
18(6): 333-340.

[23] Group S. Defcon 9 Capture the Flag Data. http://ictf.cs.
ucsb.edu/data/defcon_ctf_09. 2010.11.1.

[24] Michela Becchi. Regular expression processor. http://
regex.wustl.edu/. 2010.11.15.

[25] Libnids. http://libnids.sourceforge.net. 2010.11.15.

