Computer Communications 54 (2014) 97-119

Contents lists available at ScienceDirect

computer

communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Practical regular expression matching free of scalability
and performance barriers

@ CrossMark

Kai Wang *"*, Zhe Fu®P", Xiaohe Hu?, Jun Li>¢

2 Department of Automation, Tsinghua University, Beijing, China
b Research Institute of Information Technology (RIT), Tsinghua University, Beijing, China
“Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, China

ARTICLE INFO ABSTRACT

Article history:

Received 14 March 2014

Received in revised form 3 July 2014
Accepted 10 August 2014

Available online 19 August 2014

Regular expressions (regexes) provide rich expressiveness to specify the signatures of intrusions and are
widely used in contemporary network security systems for signature-based intrusion detection. To per-
form very fast regex matching, deterministic finite automata (DFA) has been the first choice because its
time complexity is constant O(1). Unfortunately, DFA often suffers the well known state explosion prob-
lem and, consequently, tends to require prohibitive memory overhead in practical applications. To
address the problem, a wide variety of DFA compression techniques have been proposed; however,
few can keep up with the ever increasing network traffic bandwidth and regex set complexity. This paper
proposes that the DFA problem is rooted in regexes (rather than in DFA), i.e., semantic overlapping of
regexes, and accordingly presents a complete algorithmic solution PaCC (Partition, Compression, and
Combination), that can transform the given large-scale set of complex regexes into a compact and fast
matching engine using DFA as its core. PaCC fundamentally defuses state explosion for DFA by partition-
ing complex regexes into overlapping-free segments. By exploiting the massive repetitiveness among the
resulting segments, PaCC can further deflate corresponding DFA in terms of the number of states.
Moreover, on the basis of the characteristics of these segments, PaCC takes a tailor-made compression
approach and reduces over 96% of the state transitions for the corresponding DFA. In the final matching
engine, the combination of DFA and a small relation mapping table, built from segments and their syn-
tagmatic relations, respectively, guarantees high performance and semantic equivalence. Experimental
evaluation shows that PaCC produces succinct matching engines with memory usage proportional to
the size of the real-world Snort and Bro regex sets, with speeds of up to 1.7 Gbps per core on a HP
7220 SFF workstation with a 3.40 GHz Intel Core i7-3770.

Keywords:

Regular expression matching
Deterministic finite automata (DFA)
Signature-based intrusion detection

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and it matches any input that contains “AUTH”, then a white space,

and no carriage return character in the following 100 bytes.

Due to their rich expressiveness, regular expressions (regexes)
are flexible for specifying the ever changing signatures of intru-
sions. Hence, contemporary network security systems have
migrated toward signature-based intrusion detection that lever-
ages the full power of regex matching to detect the occurrence of
all signatures (defined as regexes) hiding in packet payloads of
malicious traffic [1-5]. Typically, in the popular Snort intrusion
detection system (IDS) [3], the rule using regex “AUTH\s[\n]{lOO}"
describes the behavior of IMAP authentication overflow attempts,

* Corresponding author at: Department of Automation, Tsinghua University,
Beijing, China.
E-mail addresses: wang-kai09@mails.tsinghua.edu.cn (K. Wang), fu-z13@mails.
tsinghua.edu.cn (Z. Fu), huxh10@mails.tsinghua.edu.cn (X. Hu), junl@tsinghua.edu.
cn (J. Li).

http://dx.doi.org/10.1016/j.comcom.2014.08.005
0140-3664/© 2014 Elsevier B.V. All rights reserved.

Given a set of regexes, they can be compiled into a nondeter-
ministic finite automata (NFA) to perform regex matching [6].
NFA has a succinct data structure, and its size (i.e., number of
states) grows linearly with the size (i.e., number of characters) of
the regex set. However, NFA runs very slowly because it needs to
process a mass of concurrent state transitions for each input char-
acter. Generally, it is necessary to further convert NFA into deter-
ministic finite automata (DFA) [6]. Compared with NFA, DFA
requires only one state transition lookup per input character (i.e.,
O(1) time complexity). Consequently, DFA always run fast and is
the first choice for practical applications. Unfortunately, along with
the increased size of the regex set, DFA often exhibits exponential
growth, i.e., the well known state explosion problem. For example,
the DFA built from the typical regex “AUTH\s[\n]{100}” contains

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2014.08.005&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2014.08.005
mailto:wang-kai09@mails.tsinghua.edu.cn
mailto:fu-z13@mails.tsinghua.edu.cn
mailto:fu-z13@mails.tsinghua.edu.cn
mailto:huxh10@mails.tsinghua.edu.cn
mailto:junl@tsinghua.edu.cn
mailto:junl@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.comcom.2014.08.005
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

98 K. Wang et al./ Computer Communications 54 (2014) 97-119

over 10" states. Therefore, DFA tends to require prohibitive mem-
ory overhead and implementations are significantly limited.

To achieve very fast regex matching in practice, a wide variety
of DFA compression techniques have been proposed: deflating
DFA by regex grouping [7-9], alternative representation [10-13],
hybrid construction [14-17], and transition compression [18-29].
Although these solutions mitigate the DFA problem to some extent,
they still suffer from unscalable algorithms or data structures.
Thus, few solutions can keep up with the ever increasing network
traffic bandwidth and regex set complexity. In addition, with rapid
development of Internet applications, the number of regexes
developed for application-layer intrusions is increasing sharply.
In Snort [3], the total number of rules using regexes has grown
from 1131 (February 2006) to 13,605 (February 2014). Therefore,
overcoming the scalability and performance barriers for practical
regex matching remains challenging.

One can find that the root of the DFA state explosion problem
lies in regexes rather than DFA, because the DFA built from exact
strings does not have this problem [7]. This indicates that directly
deflating DFA is not the best research approach. Differing funda-
mentally from previous work, in this paper, we focus on eliminat-
ing the threat of state explosion at the source, i.e., regexes
themselves, to lay the foundation for constructing scalable DFA.
To this end, we dissect regex syntaxes in depth, and conclude
and prove that the DFA state explosion problem is caused by
semantic overlapping of regexes. Accordingly, we present PaCC
(Partition, Compression, and Combination), a complete algorithmic
solution that transforms the given large scale set of complex regex-
es into a fast and succinct matching engine, using a pair of twinned
DFAs as its core.

Fig. 1 illustrates the PaCC solution in a nutshell. In contrast with
direct DFA deflation, PaCC first partitions all regexes in the given
set into two categories of segments (see the partition procedure
in Fig. 1), where no semantic overlapping exists; consequently,
state explosion never occurs when converting either category of
segments into corresponding DFA. The syntagmatic relations of
the resulting segments are also recorded for final restoration of
the original regexes. Then, PaCC constructs non-explosive DFAs
for the two categories of segments, respectively (see the compila-
tion procedure in Fig. 1). Benefiting from the partition, there can
also be massive repetitiveness among the generated segments;
thus, PaCC can further deflate corresponding DFAs in terms of sig-
nificantly fewer states. Furthermore, on the basis of the twinned
DFAs natures, PaCC adopts a tailor-made compression method to
reduce their redundant state transitions dramatically. Finally, PaCC
relies on its matching engine (see the matching procedure in
Fig. 1), the combination of the two compact DFAs and a small

relation mapping table (RMT), to guarantee the high performance
and semantic equivalence for runtime matching.
In summary, the main contributions of this paper are as follows.

1. The root of DFA state explosion is introduced and proved to be
semantic overlapping of regexes. In addition, for the first time,
quantitative descriptions of the state inflation caused by typical
semantic overlapping are provided to help predict the number
of states for the DFA of corresponding regexes.

2. A complete algorithmic framework, PaCC, which includes parti-
tion, compilation, and matching procedures, is presented.
Differing from previous work, PaCC leverages a predefined par-
tition procedure to defuse the DFA state explosion problem for
the compilation procedure in advance.

3. Against semantic overlapping of regexes, a universal partition
mechanism, which is described briefly in [30], is proposed.
The partition can render the resulting segments free of semantic
overlapping and make them as repetitive as possible; thus, cor-
responding DFAs have equal or even a far smaller number of
states than the NFA built from the original regexes.

4. Against the transition duplication of DFAs, a tailor-made com-
pression approach is designed. The compression can reduce
the size of the DFAs built from the segments by a stable 96%
or greater; thus, the resulting DFAs can be placed completely
in modern CPU last-level cache (LLC) to facilitate speedup of
matching.

5. Against the semantic separation resulting from the partition
procedure, a semantics-equivalent matching engine is pro-
posed. The engine guarantees no false positives or false nega-
tives based on the RMT and achieves fast processing speed
based on the twinned DFAs.

To verify effectiveness of the PaCC solution, our experimental
evaluation uses real-world regex sets (20-2000 regexes) obtained
from open source Snort [3] and Bro [5], as well as synthetic regex
sets (5000 regexes) generated from the public regex processor [31].
The results demonstrate that PaCC outperforms NFA relative to
memory footprint and construction time, and achieves matching
speed that is comparable with DFA at the same time. Compared
with the state-of-the-art and practical solution Hybrid-FA
[14,31], PaCC leads by up to two orders of magnitude in spatial
and temporal performance. In particular, PaCC produces compact
matching engines (2-700KB) for all real-world regex sets
(0.2-500 KB) from Snort and Bro at up to 1.7 Gbps per core on a
HP Z220 SFF workstation with a 3.40 GHz Intel Core i7-3770.

The remainder of this paper is organized as follows. We first
summarize related work in Section 2. In Section 3, we introduce

SG1: FII < >
RE2: CMD=["\n]{ SG2: CMD Non-explosive Compact
RE3: URL=["\n]{3,5}\.COM —(SG3: URL] — Front-end [~ — Front-end [
_DFa | _ora_|
_/\] 2 Input Dat
Regex Set Segment Set] o nput Data
£ -
= B
SGS5: "E=["&]*\.EXE S S
SG6: A=[Mn]/6 < <>
S}ﬁ' ,\7[, n] "(3‘,, Non-explosive Compact RE2 is matched.
Partition » ;((j-; :E-%;Q{JJ' > —» Back-end [P —» Back-end [REL is matched.
Matches
REL: (SG1):(SG5) v < >
RE2: (SG2)-(SG6) . . .
Relation Mapping Table i Matchin;
—RE3: (SG3)-(SG4)-(5G7) [—| | Transform > pping Clomliie Engincg
__/\ (RMD)
Relation Set
F——————— Partition Procedure > k Compilation Procedure > t Matching Procedure ———

Fig. 1. An overview of PaCC solution for handling the exemplified regex set: “FILE=["&]*\.EXE”, “CMD=["\n]{6}", and “URL=["\n]{3,5}\.COM".

K. Wang et al./ Computer Communications 54 (2014) 97-119 929

semantic overlapping of regexes and analyze its influence on DFA
state explosion. In Sections 4-6, we describe the regex partition,
engine compilation and runtime matching procedures of PaCC,
respectively. Experimental results are shown in Section 7, and we
present conclusions in Section 8.

2. Related work

In the past decade, related work in the area of regex matching
has focused on addressing the speed problem of NFA or the mem-
ory problem of DFA. FPGA-based NFA implementation [32-39]
exploits the parallelism of programmable logic arrays to speed
up NFA. However, these approaches encode NFA in hardware log-
ics; thus, the online update requirement is difficult to meet due
to the need to re-synthesize the logics. There are also schemes that
utilize the massive parallel processing power of GPUs to accelerate
NFA [40,41]; however, their performance is limited to the I/O
bandwidth. Thus, the scalability cannot be guaranteed.

Because DFA is fast and requires only a single state of execution,
which reduces the per-flow state maintained due to the packet
multiplexing in network links, it has attracted a considerable
amount of attention. Generally, the related solutions can be cate-
gorized into four directions: regex grouping [7-9], alternative rep-
resentation [10-13], hybrid construction [14-17], and transition
compression [18-29].

Yu et al. [7] first proposed the regex grouping method. This
method uses greedy heuristics to divide the given set of regexes
into the fewest groups where the corresponding DFAs have tolera-
ble state inflation, and runs independent DFA for each group of reg-
exes. This can efficiently trade decreased speed by a factor of tens
for reduced memory by several orders of magnitude. Rohrer et al.
[9] converted the grouping problem into an energy minimization
problem, and employed a simulated annealing algorithm to
improve the spatial and temporal performance tradeoff. Majumder
et al. [8] presented the grouping algorithms to reduce the runtime
cache cost of the DFA corresponding to each group. However, regex
grouping solutions are not scalable in performance because the
number of groups required to avoid state explosion largely
depends on the scale and complexity of the given regex set. Even
more critical, they cannot handle the DFA state explosion problem
caused by a single regex.

Kumar et al. [10] presented history based finite automata
(H-FA), an alternative representation of regexes without incurring
state explosion. H-FA incorporates auxiliary flag/counter variables
to replace the propagated states in DFA, substitutes the variable
calculation for the state transition of the replaced states, and uses
variable values and an active state to track the matching history.
Becchi et al. [11] extended H-FA to Counting-FA, to support regexes
that cause DFA state explosion individually. Smith et al. [42,12]
proposed extended finite automata (XFA), a formal model using
state variables. Compared with H-FA and Counting-FA, XFA has
specific mathematic definition, and its auxiliary variables and
manipulating instructions have unified coding. Thus, it can be sys-
tematically constructed and executed. The alternative representa-
tions achieve good performance in terms of memory space
versus run time tradeoff; however, they are all ad hoc for various
regexes and have no comprehensive construction. Therefore, it is
limited to transform a large scale regex set to general H-FA, or
Counting-FA or XFA with a manageable number of variables and
states.! Besides, in terms of practicability, their construction does
require a prohibitive duration for large scale regex sets.

1 It is not proved that XFA can handle the DFA state explosion problem caused by a
single regex [42]. Note that the regex “\ncmd[A\n]{200}" exemplified for XFA [12]
does not have a state explosion problem (both its NFA and DFA have only 205 states,
while the DFA of “\rcmd[\n]{200}" has over 5 x 10°® states).

Becchi et al. [14] introduced hybrid finite automata (Hybrid-
FA). Hybrid-FA aims to obtain high speed by transforming partial
NFA states (whose NFA-to-DFA conversion will not cause a great
increase in DFA states) to a single head-DFA and prevent state
explosion by retaining other NFA states as a set of tail-NFAs. Liu
et al. [17] designed the dual finite automata (dual FA), which is
similar to Hybrid-FA in fact, but uses a linear finite automata
(LFA) to represent the NFA states causing DFA state explosion
and an extended DFA (EDFA) to represent the remainder. Such
designs are effective when the process concentrates on the DFA
part, but will incur great performance reduction when the process
is enslaved to the NFA/LFA part. Xu et al. [15] presented i-DFA,
which splits all possible combinations of NFA active states into i
subsets to minimize the total number of distinct combinations,
and generates a single i-DFA for each subset. Yang et al. [16] pre-
sented semi-deterministic finite automata (SFA), which uses “state
grouping” heuristics to cluster all NFA states into the fewest sub-
sets where corresponding NFA states have no pair-wise conflicts.
SFA consists of the constituent DFAs (c-DFAs) converted from each
subset of NFA states. Both i-DFA and SFA are good models to find
balanced combination of NFA and DFA; however, the algorithms
used to judge state grouping is so complex that using them to
implement large scale regex matching is infeasible in practice.

Transition compression algorithms [18-29] focus on eliminat-
ing redundant transitions, which are identical inside or among
the states, to reduce the memory consumption of DFA. D?FA pro-
posed by Kumar et al. [19] and A-DFA proposed by Becchi et al.
[21], which can achieve over 90% compression ratio, are the typical
algorithms to remove the duplicated transitions among states by
introducing the default transition. RCDFA proposed by Antonello
et al. [29] is the representative algorithm to compress the consec-
utively identical transitions inside states into the single ranged
transition, with over 97% compression ratio and no additional
memory lookups. The transition compression solutions only work
on the premise that DFA has no state explosion. In addition, their
compression performance is not very stable and fluctuates with
different regex sets.

Although considerable contributions have been made in prior
work, previous solutions still suffer from unscalable algorithms
or data structures, and thus cannot effectively tackle scalability
and performance challenges comprehensively. Distinguished from
prior work, we address the DFA problem from its root by partition,
and thus build a foundation for both linear scalability and high per-
formance. In addition, differing from current transition compres-
sion algorithms, our compression method fully exploits the
features of partition to achieve a stable and high compression ratio.
Table 1 summarizes the brief comparison between previous work
and ours.

3. Regular expression dissection

Motivated by the fact that the DFA built from exact strings does
not exhibit the state explosion problem at all [7], in this section, we
analyze the characteristics of regexes in depth, and discuss the
intrinsic relationship between regex semantics and DFA state
explosion.

In advance, to make the textual description of this paper more
clear, the relative notations and terms are listed in Table 2.

3.1. Semantic overlapping

Compared with exact strings, regexes introduce two operators
Kleene closure (*) and alternation (), in addition to the identical
operator concatenation (-). Therefore, they provide an expressive
power that far exceeds exact strings. For example, o* stands for a

100 K. Wang et al./ Computer Communications 54 (2014) 97-119

Table 1
Comprehensive Comparison for prior work and PaCC solution.

Solution Main idea

Space consumption Matching speed

Updating efficiency Scalability Practicality

FPGA-based NFA
implementation
[32-39]

Designing logic blocks to achieve Small, based on
parallel and pipelined NFA NFA
processing

GPU-based NFA
Acceleration [40,41]

Exploiting the parallelism of NFA Small, based on
processing to achieve massive- NFA

thread acceleration

Moderate, due to

Regex grouping [7-9] Trading decreased speed for

reduced space by dividing
to build independent DFAs of each regex group
Alternative representation Replacing the propagated states Small, due to no

[10-13] in DFA with auxiliary variables state explosion
and instructions

Hybrid construction
[14-17]

Constructing the hybrid finite Moderate, due to
automata as a tradeoff between the DFA part
DFA and NFA

Transition compression Eliminating the transition Small for simple

[18-29] duplication inside and among regex sets, due to
states of DFA great compression
ratio
PaCC First defusing DFA state Small, due to no

explosion at its source by
partitioning the regexes, last
representing the partitioned
regexes based on DFA

even less states
than NFA

Fast for simple
regex sets

Fast for simple
regex sets

Moderate, due to Low, due to the
the mitigated state the multiple DFAs DFA construction
regexes into appropriate groups inflation in the DFA running together for every single

Moderate, due to Low, due to the

Moderate, due to Low, due to the

Guaranteed cost
of additional
memory lookups construction time sets

Fast, based on
state explosion and DFA NFA

Low, due to the Limited to the Limited to the updating
requirement for re- number and fan-in/ efficiency
placement-and- fan-out of logic

routing of logics gates

Moderate, Limited to the cost Limited to the I/O
determined by the of context switching bandwidth

memory layout of and synchronization

NFA data structure

Limited to the scale Limited to the

and complexity of unsupported types of
regex sets regexes, for example
regex and pair of “AUTH\s["\n]{100}"
regexes

Limited to the Limited to the

massive complex complexity of regex unsupported types of
instruction algorithms and sets regexes, for example
fetching and data structures “AUTH\s["\n]{100}",
variable “SITE."EXEC”
calculation

Limited to the scale Practical, but may

the NFA part or calculation of pair- and complexity of limited to the
the multiple DFAs wise NFA state regex sets preprocessing
running together conflicts in complexity

preprocessing

Moderate, mainly Limited to the Limited to the premise
relative to the DFA complexity of regex that DFA must be non-
explosive

Scalable, in terms of Practical, due to low
the space complexity
comparable with

NFA and the speed

close to DFA

High, superior to

string with zero or more o characters, and [0.f], i.e., («|f), corre-
sponds to an optional set of characters o and 8.

Based on the two additional operators, regexes can express
¢*, ¢{n}, ${m,n}, and ¢{n, }, where ¢ is the union set of characters
in the alphabet X, and m € Z*,n € Z*, and m < n. In this paper, we
refer to these four types of syntaxes as overlapping factors (OFs).

The regexes used to describe signatures of real-world intrusions
regularly have the form ES; - OF; - ES, - OF, - - - ESg, whereK € Z*,and
ES denotes exact sub-strings (e.g. the regex “AUTH\S[\H]{]OO}").
This is because various attack behaviors or malicious code contain
one or more partial stages or sections, and regexes can use ESs to
denote the independent sub-signatures of each stage or section
while leveraging OFs to specify the logic and position relationship
of the sub-signatures [44]. Obviously, it is just the OFs generate
the flexibility and rich expressiveness required to specify intrusions.
However, according to prior work [14,12] and our analysis, OFs also
produce side effects, i.e., semantic overlapping. Thus, regexes can
cause corresponding DFA to suffer the state explosion problem. In
this paper, we define semantic overlapping as follows:

Definition 1. Semantic overlapping means for given regex set
Sgre, 3 overlapping semantics A, the DFA for Sgz must use additional
state copies to represent A in comparison with corresponding NFA.
Otherwise, it can cause false negatives in regex matching.

A simple regex example to illustrate semantic overlapping is
“ABCD[AD]*EFG", where the OF “[D]*” can cause semantic overlap-
ping coupled with the prefix ES “ABC”, because this regex must be
able to recognize two types of semantics, i.e., whether or not the ES
occurs in the strings which match the OF. For the regular semantics
Ay, it could be the string “ABCDxxxxXXXEFG” (where ‘X’ is any
character except for ‘D’), while for the overlapping semantics A5,

it could be the string “ABCDxxXABCDEFG”. Hence, if 4, cannot be
represented together with Ay, then the valid match of “ABCDEFG”
within A, will be missed.

To keep track of the overlapping semantics, NFA adopts nonde-
terministic transitions for each state, and thus can activate multi-
ple states simultaneously during runtime matching. Unlike NFA,
DFA employs extra duplicated states to represent all overlapping
semantics beforehand, where each state records one milestone to
match possible semantics to keep the deterministic one state tran-
sition per input character. For the above-mentioned example, the
NFA and DFA have 8 and 11 states respectively, and the additional
3 states in the DFA are just added to track the overlapping seman-
tics A5, i.e., the ES “ABC” occurs when the OF “[D]*” is matched.
This indicates that semantic overlapping is the root of DFA state
inflation. In the worst case, it will cause corresponding DFA to
explode.

3.2. Relationship to state explosion

Without loss of generality, and to quantitatively describe the
impact of semantic overlapping on DFA state inflation, six typical
types of regexes with form ES;-OF -ES, are analyzed, where
|ES1| > 0, |ES;| = 0, and all characters in both ES; and ES, are dis-
tinct by default.

3.2.1. Type 1: ES; - ¢" - ES,

Suppose all characters of ES; are included in the character set ¢
of the OF ¢*. The exact number of DFA states F(*) in this type is cal-
culated as follows.

F(") = [ES1] + [ES2| + 1 (1)

K. Wang et al./ Computer Communications 54 (2014) 97-119 101

Table 2
Summary of the prescribed notations and terms.

Notation Explanations

P ASCII character set

o, B The literal characters belonging to the alphabet X

- Concatenation operator in regex, « - 8 is equivalent to the string 8

| Alternation operator in regex, o|f matches either the character « or the character f

* Kleene Closure operator in regex, o«* matches zero or more consecutive o

I Character set operator in regex, [«f] is equivalent to («|f)

{} Counting constraint operator in regex, o{n} matches n consecutive o; a{n, } matches at least n consecutive o; «{m,n} matches m-to-n consecutive o
(meZ'neZ", and m < n)

. Wildcard character in regex, .* matches arbitrary strings with any ASCII character

\ Escape character in regex, \n matches the carriage return character and \. only matches the dot mark

- Anchor symbol in regex, = only matches the first segment o8 of the string ofap; ["f] matches any ASCII character except o and

¢ Character set, including the proper subset (with form [cic; -+ ¢,] or [“cicz - - - ¢], where ¢, € X) and the universal set (wildcard)

A Regex semantics, the strings that the regex can match

I The size of the object, || means the number of characters in Z; [ES| means the length of the exact string (ES)

AY Tags used for regex partition, indicating which segment set the corresponding segment belongs to

F() The exact number of states in minimized DFA [43]

Term Descriptions

PaCCE The final matching engine generated from PaCC

PaCCE-xC PaCCE without executing transition compression for the DFA part

RMT Relation Mapping Table, a part of PaCCE/PaCCE-xC

RE Regex

SG Segment

OF Overlapping Factor, a part of regex only including ¢*, ¢{n}, #{m,n} and ¢{n,}

ES Exact sub-String, a part of regex excluding OF

FDFA Front-end DFA, generated from the segment set containing all the first segments of regexes as well as the unanchored non-first segments

BDFA Back-end DFA, generated from the segment set containing the anchored non-first segments

SC State Cluster in compact FDFA/BDFA

DS Default State of the SC in compact FDFA/BDFA

LS Labeled State of the SC in compact FDFA/BDFA

MT Major Transition of the DS in compact FDFA/BDFA

DT Default Transition of the LS in compact FDFA/BDFA

LT Labeled Transition of the DS or LS in compact FDFA/BDFA

SU State Unit, consisting of a state number and a bitset

In this case, DFA has the same number of states as NFA; thus, no
state inflation occurs. However, if there exists a character « that is
excluded in ¢ (o is the kth character of ESy, and 1 < k < |ES;|), then
F(*) will be changed as follows.

F(*) = |ESi| + |ESz| + k (2)

In this case, the OF ¢* can cause semantic overlapping coupled
with ES;; thus, constant state inflation occurs in corresponding
DFA (e.g. the DFA of the regex “ABCD[D]"'EFG” has 11 states).

3.2.2. Type 2: ES; - ¢{n} - ES>

Suppose all characters of ES; and ES; are included in the ¢ of the
OF ¢{n}. The exact number of DFA states F(n) in this type can be
calculated according to the following formulas.

F(0) = [ES1| + |ES2| + 1 (3)
When 1 < n < |ESy],

Fn)=Fn-1)+n+1 (4)
If |ES| < |ES,|, then when |ES;| < n < |ES,|,

F(n)=F(n—1)+F(n— |ES]) + n — |ES,| (5)
When n > max{|ES:|, |ESz|},

F(n)=F(n—1)+F(n— |ES1]) (6)

Although the explicit solution of F(n) cannot be deduced
directly, it can be calculated via a half-recursion program with via-
ble computational complexity. For example, to calculate F(100),
the values from F(50) to F(50 + |ES;| — 1) could be first calculated

and buffered based on the recursive formulas above. Then the
value F(100) is calculated via the same recursion using the buf-
fered intermediate values as the initial conditions.

For n > |ES;| > |ES:1| = 1, the explicit solution of F(n) can be
derived as follows:

F(n) _ 2n+2 _ 2n—\ESZ\+1 (7)

For the DFA of the regex in this type, the size increases expo-
nentially with n (e.g. the DFA of the regex “AUTH\s[\n]{100}"
contains 10,343,812,679,475 states) because the overlapping
semantics include every combination in which [ES;| fully or
partially occurs at all different places in the string matching the
OF ¢{n}. This is typical exponential state explosion caused by
semantic overlapping.

Formulas 3-6 are valid if the first character in ES, is different
from all characters of ES;, and there are no identical prefixes and
suffixes in ES;. Otherwise, the actual F(n) will be larger than calcu-
lated. By leveraging these formulas, it is easy to predetermine
whether the DFA of a certain regex can be generated with a given
size constraint.?

3.2.3. Type 3: ES; - ¢{m,n} - ES,

Suppose all characters of ES; and ES, are included in the ¢ of the
OF ¢{m,n}, and |ES;| > 1 and |ES,| > 1. The exact number of DFA
states F(m,n) in this type can be calculated using the following
formulas.

2 Interestingly, if |ESj|=2,|ES;| =3, for example “AB.{n}CDE”, then
F(1) = 8,F(2) =13,F(3) =21,..., and such a sequence of F(n) is equivalent to a
Fibonacci Sequence.

102 K. Wang et al./ Computer Communications 54 (2014) 97-119

F(—1,0) = |[ES1| + |ESz| + 1;F(0,1) = |[ESq| + |[ESz| + 4 (8)
When 1 <m+1 < |ESq],

Fimm+1)=Fm-1,m)+m+2 9)
If |[ES1| < |ES;|, then when |ES;| < m+ 1 < |ES,|,

Fim,m+1) =F(m—1,m) +F(m — |ES;]) + m — |ES;| (10)
When m + 1 > max{|ES;|, |ES,|},

Fim,m+1) =Fm—1,m)+4F(m — |[ES;|,m — |[ES;| + 1) (11)
Then

F(m,n) =F(m,m+1) + (|[ES;| + |[ESz|)(n —m — 1) (12)

Like Type 2, Type 3 is another semantic overlapping that can
cause DFA state explosion, and the explicit solution of F(m,n) can
also be calculated via a half-recursion program. Formula 3-6 hold
when the first character in ES; is different from all characters of ES;
and there are no identical suffixes and prefixes in ES;. Otherwise,
the actual F(m,n) will be larger than calculated. From these formu-
las, it can be observed that F(m, n) in Type 3 is not necessarily lar-
ger than F(n) in Type 2 for the same n, although the regex of Type 3
can be divided into n — m + 1 regexes of Type 2 in regex syntaxes
(i.e., regexes from ES; - ¢{m} - ES, to ES; - ¢p{n} - ES;).

3.2.4. Type 4: ES; - ¢{n, } - ES,

Suppose all characters of ES; are included in the ¢ of the OF
¢{n, }. The exact number of DFA states F(n) in this type is calcu-
lated as follows.

F(n) = |[ESi| + [ES;| +n + 1 (13)

In this case, DFA has the same number of states as NFA; there-
fore, no state inflation occurs.> However, if there exists a character o
that is excluded in ¢ (o is the kth character of ES;, and 1 < k < |ESq]),
then F(n) is calculated as follows.

When k < n,

F(n) = |[ESq| + |[ESy| + k(2n — k + 3)/2 (14)
When k > n,

F(n) = |[ES| + |[ES;| + k+n(n+1)/2 (15)

In these two cases, the OF ¢{n, } can cause semantic overlap-
ping coupled with ES;, and thus linear or polynomial state inflation
occurs in corresponding DFA.

3.2.5. Type 5:°ES; - o - p{n} - ES,

Suppose all characters of ES, and the character o are included in
the ¢ of the OF ¢{n}. The exact number of DFA states F(n) in this
type is calculated as follows.

F(n) = [ESi| + (n — [ES;| + 1)(n — |ES;| + 2)/2 — [ES,|? (16)

In regex syntaxes, the first caret indicates that the match of the
regex must be at the start of the string the regex is applied to. Type
5 is also common in real-world regex sets [3,7]. For this type, the
OF o makes the suffix unanchored, and thus the OF ¢{n} can cause
semantic overlapping coupled with ES,. Accordingly, polynomial
state inflation occurs in corresponding DFA (e.g. the DFA of the
regex ‘“"SEARCH\s+[\n]{1024}” in Snort has 525,832 states).

3.2.6. Type 6: p_;(ESk1 - ¢* - ESi2)
Consider n regexes with form ESy; - ¢* - ESi, (1 < k < n), where
all characters of ESy; and ESy, are included by the ¢. Suppose all

3 In fact, the unminimized DFA of the Type 4 regex has more states than F(n) in
Type 2 when the value of n is equal.

first characters of ESy; and ESy, are distinct. Then, the exact number
of DFA states F(n) satisfies the following formula.

F(n)= |2+ i(‘Eskl‘ +[ESia| — 1)| - 2" (17)

k=1

Although the regexes of Type 1 cannot lead to exponential
state explosion individually, they can cause it when compiled into
a composite DFA, because the OF in each regex can cause seman-
tic overlapping together with the ESs in other regexes. In fact,
similar to Type 6, regexes in previous types can also cause seman-
tic overlapping with each other, which results in greater state
increase.

3.3. Life conditions

Previous quantitative analysis shows that semantic overlapping
is the origin of DFA state explosion, and an OF is a necessary con-
dition to produce semantic overlapping. However, it is not the suf-
ficient condition.

A common regex with form ES; - OF - ES, can be expressed in the
equivalent form ESy; - ESy, - OF; - OF; - ES,;, where ES; = ESyq - ESqa,
OF = OF; - OF,, and ES; > 0, and OF; and OF, are not null. For OF
¢*, it can be denoted ¢*-¢*; for OF ¢{n}, it can be denoted
¢{k} - ¢p{n—k} (0<k<n); for OF ¢{m,n}, it can be denoted
o{k}-p{m—k,n—k} (0<k<m); for OF ¢{n,}, it can be
denoted ¢{k} - ¢{n —k,} (0 < k < n). Then, we provide Theorem 1.

Theorem 1. For a regex ES;-OF-ES,, if 3 ES;; c OF;, and 3
ES, ¢ OF,, where o € ESy, and ES,, consists of countless o, then the
regex has semantic overlapping.

Proof. Construct the NFA for ES;; - ESy; - OF; - OF, - ES, (Fig. 2(a)).
ES;1 c OF, (i.e., ES;; can match OF,); thus, in the NFA, states 0, 1,
and 3 can be activated simultaneously when ES;; occurs in the
string that matches OF,. Another regular case is when only states
0 and 3 are active. In addition, due to ES, ¢ OF,, the next-hop state
set of {0,1,3} must be different from that of {0,3}. This makes the
two state sets {0,1,3} and {0,3} not equivalent; thus, they cannot
be merged in the final minimized DFA. Consequently, the exhaus-
tive result of all possible active state sets in NFA are {0}, {0,1},
{0,2}, {0,3}, {0,1,3}, {0,4}, and {0,5}, and corresponding DFA have
the additional state (state 6) corresponding to {0,1,3}. In this situ-
ation, the OF; coupled with ES;; makes the regex fall into semantic
overlapping, and thus corresponding DFA must use extra states to
record the overlapping semantics in which ES;; occurs in the string
that matches OF;. O

For a pair of regexes, one containing an OF has the form
ESi; - OF; - ES13, where ES;; > 0, and the other containing no OF
has the form ES,, i.e., ESy; - ESy;. Thus, we formulate Theorem 2.

Theorem 2. For two regexes ES1; - OF - ES1, and ES,, if 3 ES,; C OF,
then the two regexes have semantic overlapping.

Proof. Construct the NFA for ES;;-OF-ES;; and ES,;-ES,
(Fig. 2(b)). ESz1 C OF; thus, in the NFA, states 0, 2, and 4 can be acti-
vated simultaneously when ES,; occurs in the string that matches
OF. Another regular case is when only states 0 and 2 are active. In
addition, the next-hop state set of {0,2,4} could correspond to the
match of either of the two regexes; thus, it must be different from
the next-hop state set of {0,2}, which only corresponds to one
regex match. In other words, the two state sets {0,2,4} and {0,2}
are not equivalent and cannot be merged in the final minimized
DFA. Consequently, the exhaustive result of all possible active state

K. Wang et al./ Computer Communications 54 (2014) 97-119 103
ES ES OF; OF: ES,
NFA all@ LN ® 50 N 2 (3 6)
Active 10} 10, 1} 10,2} 10,3} 10, 4} {0, 5}
state set {0 1 3}
ESy
ES), :ii ES\, OF, - ES}, OF, ES,
DFA elsep(0)———>(1 > >3 r@—@®
ES)»
ESy P OF, - ES,

(a) For a single regex

ES; OF, ES;
NFA ali((0 L (3 =3
ES, C ES»
Active {0} {0, 1} {0,2} {0,3}
state set {0,2,4}
{0, 4} {0, 5}
ESn

ES, W OF - ESy;
DFA e/se% 0 (1 (3
ESy

ES»
ES»

b2
O>——@®

(b) For a pair of regexes

ESy

Fig. 2. Schematics of NFA vs. DFA corresponding to semantic overlapping.

sets are {0}, {0,1}, {0,2}, {0,2,4}, {0,3}, {0,4}, and {0,5}, and corre-
sponding DFA have the additional state (state 6) corresponding to
{0,2,4}. In this situation, the OF coupled with ES,; makes the two
regexes produce semantic overlapping; thus, corresponding DFA
must use extra states to record the overlapping semantics in which
ES,; occurs in the string that matches OF. O

In fact, Theorem 2 equally applies to the situation when the
regex containing OF is anchored, i.e.,’ESy; - OF; - ESy,. The proof is
similar to the above.

3.4. Removal

Theorems 1 and 2 indicate that, if 2 ES c OF, then semantic
overlapping cannot occur in regexes. Thus, excluding the first char-
acter o of the ES from the character set ¢ of the OF, i.e., & ¢ ¢, can
remove semantic overlapping. For example, for the regex
“AUTH\S[AA\D]{IOO}", its DFA has the same number of states (i.e.,
106) as NFA. In this manner, the overlapping semantics of the
original regexes are sacrificed by rewriting the OF in exchange
for non-explosive DFA.

Similarly, anchoring could also help a regex eliminate semantic
overlapping at the cost of the loss of semantics because, for an
anchored regex with form “ES; - OF - ES,, its ES; and OF match
respective strings only once. Thus, it is not necessary to recognize
the semantics even if ES; occurs in the strings that match the OF.
An intuitive example is the regex “"AUTH\s["A\n]{100}" whose
DFA only has 107 states.

Although these two methods are not acceptable for exact
matching, we are motivated to consider that first removing seman-
tic overlapping to defuse DFA, and after the non-explosive DFA is
built, the complete semantics of original regexes are restored. For
this purpose, we present PaCC, which first partitions regexes to

separate overlapping semantics, compiles them into compact
DFA, and then combines the separated semantics.

4. Partition procedure

Here, we introduce the partition procedure in PaCC. The goal of
partitioning is to split the original regexes with semantic overlap-
ping into overlapping-free regex segments so that the DFA for the
resulting segments never suffer the state explosion problem. To
achieve this goal, a universal partition mechanism is proposed.
The partition procedure produces two segment sets and one rela-
tion set based on the original regex set.

4.1. Definition
First, regex partition is formally defined as follows.

Definition 2. Regex partition is an operation that splits any
complete regex into one or more literal segments in sequence,
and guarantees that:

. Each segment is a correct regex in legal syntaxes.

. Each pair of neighbor segments is originally concatenated in the
complete regex in terms of syntaxes and semantics.

3. Each segment is anchored by adding a caret at its beginning,

with the exception of the first segment of the complete regex.

N =

This definition determines the essential premise for performing
segmentation of regexes, without respect to its effect against
semantic overlapping. Above all, the first item ensures that the
derived segments can be compiled validly as the original regexes.

104 K. Wang et al./ Computer Communications 54 (2014) 97-119
Case 1 ES) P* g, ES, OF, ESp ES, OF: g,
or-a: © > @ (0? 1 3 ® O)— ®
ES; ES; ES,
Case 2: ES, D{n} ES, <:> > @
OF = &{n} © 1 2 ® Case 1: ESy-OF;ES}, vs. “ES; Case 1: AES, OFESy, vs. "ES, OFyESj (OF = &%)
Case 3: ES; Dim}p o DOnm) ESi ESi» OF, ES, ES) OF, OF; ES;
or-oimm © ! @ ® © \lr 2 4 ® © ! 2 3 @®
ESji2 OF; ESp ESp
Case 4: ES; D{n} @q’* @ 5 @ @
OF = &{n,} ® 2O, . Case 2: “ES;;-OFES, vs. “ES;;-OF;ES, Case 2: “ES; OFES;, vs. "ES OF;ESj, (OF = ®{})

(a) For Principle 2

(b) For Principle 3

(c) For Principle 4

Fig. 3. Schematic NFA corresponding to overlapping-free anchored segments that obey the given principles.

For example, the regex “AUTH\S[A\n]{loo}" cannot be divided into
the segments “AUTH\s[A\n]" and “{100}” because “[A\n]{100}"
corresponds to an atomic regex literally.

The second item limits that the partition must be at the posi-
tions of the concatenation operator, whose anteroposterior seg-
ments are concatenated in semantics. This facilitates restoration
of the complete regex simply by uniformly concatenating the cor-
responding segments in sequence. According to this, the regex
“AB."CD|EF."GH", i.e., “AB."CD|EF."GH", cannot be split into the seg-
ments “AB”, “."CD|EF”, and “."GH” because they are concatenated
only in syntaxes, but not in semantics. When these segments are
re-concatenated, they actually correspond to a different regex
“AB.*(CD|EF).“GH". Thus, for such a regex with alternation (whose
priority is lower than concatenation), the partition should first
rewrite the regex into multiple alternated sub-regexes with identi-
cal regex ID, and then enforce partition for each sub-regex.

The last item introduces the anchors for the non-first segments
to satisfy that the match of each of these segments must start
exactly at the end of the match of its anterior segment. For exam-
ple, “AUTH\S[A\n]{]OO}" can be split into “AUTH”, “\s", and
“A[A\n]{IOO}". In particular, “AB."CD” may be partitioned into
“AB” and “CD”, where “CD” is simplified from “~.*CD” because
“anchored dot-star” is equivalent to “unanchored” in regex syntax.

Based on Definition 2, if a regex is split into only one segment,
then the segment is just the regex itself. In other words, the parti-
tion is at the end of the regex. Hence, for regexes without semantic
overlapping, partitioning each of them into one segment is accept-
able. For those having semantic overlapping, it is necessary to
partition them into at least two segments. Because the regexes
with semantic overlapping must have OFs, two types of segments
could result from the partition; one is just ES and has no OF, and
the other still has OFs. It is known that ESs are not problematic;
therefore, the partition is required to ensure that the segments
with OFs are free of semantic overlapping.

4.2. Principles for overlapping-free partition

According to the analysis presented in Section 3.4, semantic
overlapping of a regex could be removed if the regex is anchored.
Fortunately, the non-first segments resulting from the partition
must be anchored. Therefore, the OFs should naturally be kept in
the anchored non-first segments. Note that even if anchored, the
special OF .* can render its subsequent segment unanchored;
hence, it should always be kept at the start of segments because
“anchored dot-star” is equivalent to “unanchored”. In addition,
its corresponding segments should be uniformly regarded as the
unanchored non-first segments and, accordingly, cannot have
OFs. Similarly, the special OF .{n,} should be changed into
An} -~ first, where the latter .* should be treated in the same
manner.

However, the extended Theorem 2 indicates that, for arbitrary
regexes having OFs, regardless of whether they are anchored or
unanchored, they are very likely to cause semantic overlapping

with the unanchored regexes. This means it is necessary to catego-
rize the partition-derived segments into two sets. Consequently,
the primacy principle is as follows.

Principle 1. A given set of regexes should be partitioned into at most
two sets of segments, where one contains all the first segments of
regexes as well as the unanchored non-first segments derived from the
OFs .* and .{n, }, and the other contains all the rest, i.e., the anchored
non-first segments. Moreover, all OFs except for .* and .{n,} are kept
in the latter set of segments.

For the former set of segments, because they have no OF, it is
certain that there is no semantic overlapping. For the latter,
although its segments are anchored, two more principles must be
followed for the partition to guarantee that no semantic overlap-
ping occurs.

4.2.1. Free of intra-segment overlapping
The principle for the intra-segment overlapping free partition is
as follows.

Principle 2. For each anchored segment that contains OFs, it should
satisfy the form “ES; - OF - ES,, where |ES;| > O, and if OF is ¢* or
¢{n}, then |ES,| > 0. Else, if OF is ¢{m,n} or ¢{n, }, then |ES,| = 0.

Principle 2 only prescribes the criteria for the anchored seg-
ments with OFs because those without OF, namely “ES, never
cause overlapping.

To explain the validity of Principle 2, for each type of OF, corre-
sponding NFA of "ES; - OF -ES, is constructed (Fig. 3). Differing
from Fig. 2(a), there is no self-loop transition in the initial state
(i.e., state 0) of the NFA for an anchor regex. Therefore, regardless
of the empty set, for OF ¢* (Case 1), the NFA can only activate state
sets {0}, {1}, and {1,2} if ES, c OF (or {0}, {1}, and {2} if ES, ¢ OF).
For OF ¢{n} (Case 2), the NFA can only activate {0}, {1}, {2}, and {3}.
For OF ¢{m,n} (Case 3) or ¢{n, } (Case 4), because there is no suffix
ES, the number of possible active state sets in the NFA is the same
as the number of NFA states.

In summary, when Principle 2 is obeyed, the anchored seg-
ments have no overlapping individually.

4.2.2. Free of inter-segment overlapping
Given the premise of Principle 2, the principle for the inter-
segment overlapping free partition is as follows.

Principle 3. For each pair of anchored segments that satisfy Principle
2 and respectively have the form “ES;; - OF; - ESp and "ES;; - OF; - ESp,
each pair should satisfy |ES;;| > 0, |ESj1| > 0, and 3 k <= min{|ES;|,
|ESj1}, for the kth character o in ES; and the kth character § in
ESH ,o0#E .

The anchored segments without OF have no intra-segment
overlapping. In addition, they also do not have overlapping with
the anchored segments satisfying Principle 2.

K. Wang et al./ Computer Communications 54 (2014) 97-119 105

In the NFA of the segments “ES;; - OF; - ESp and “ES; (Fig. 3(b),
(Case 1), if A ESjy = ESi, then any of states 1, 3, and 5 cannot be
activated simultaneously with any of states 2 and 4. In addition,
Principle 2 is satisfied; thus, states 1, 3, or 5 cannot be active
together at the same time (neither can states 2 or 4). Consequently,
it is conclusively shown that no overlapping exists. Similarly, if
3ESj = ESiy, then the NFA can possibly activate {0}, {1,2}, {3},
{3,4}, and {5} when ESj; C OF; (or {0}, {1,2}, {3}, {4}, and {5} when
ESj; ¢ OF;). Therefore, it is verified that the anchored segments
without OF never lead to overlapping.

For the anchored segments with OFs, if Principle 3 is satisfied,
then the corresponding NFA built from any two of them is shown
in Fig. 3(b) (Case 2). Because the kth characters in ES;; and ESj
are different, ES;, # ESj1» (both start with the k characters), then
similar to Case 1, any of states 2, 4, and 6 cannot be simultaneously
activated with any of states 3, 5, and 7. Principle 2 is obeyed; thus,
states 2, 4, or 6 cannot be active at the same time (neither can
states 3, 5, or 7). Consequently, it is conclusively shown that no
overlapping exists.

In summary, based on the partition following Principles 2 and 3,
anchored non-first segments in the same set will have no internal
overlapping, and will cause no external overlapping with each
other. Thus, they are ensured to have no semantic overlapping as
a whole.

4.3. Principle for compressive partition

The partition determined by Principles 2 and 3 can result in DFA
having states equal to those of NFA for regexes. However, the fol-
lowing principle can relax the criteria of Principle 3 and further
render DFA smaller than NFA in terms of the number of states.

Principle 4. For each pair of anchored segments that satisfies
Principles 2 and 3, and the segments have the form “ES;; - OF; - ESj,
and "ESj; - OF; - ESp, they are permitted and required to satisfy
ESiy = ES;jy if OF; is equivalent to OF;.

Here, we consider that two OFs are equivalent if their character
set ¢ is identical and, their type is the same (i.e., is either ¢
or is ¢{}). According to Principle 4, the NFA of the
segments “ES; - OF; - ES;; and “ESj; - OF; - ESp, is shown in Fig. 3(c).
For OF; = OF; = ¢~ (Case 1), the NFA can only activate the same
number of state sets as the number of NFA states; thus, no extra
states are required by corresponding DFA. Likewise, for equivalent
OF; and OFj, which are not ¢* (Case 2), the segments also have no
semantic overlapping (analogous to Case 1, Fig. 3(b)).

Three conclusions can be drawn about the effect of state defla-
tion. First, in Cases 1 and 2, the states corresponding to the prefix
ESs are reduced because they are identical and their states can be
merged. Second, in Case 1, if the suffix ESs are the same, their
repetitive states can also be merged. Third, in Case 2, for the OFs
¢{m}, ¢p{nz,n3}, and ¢{ns,}, the states will be max{n;,ns,ns},
rather than n; +n3 +n4 due to the reduction of repetitiveness.
For example, for the set of segments “AAX[A\n]{64}ABCD",
“ABX[A\n]{48,72}", “ACY[A\r]*ABCDEFGA", and “ADY[A\r]*ABCDEFGB",
its DFA has 166 states. In contrast, when their prefix ESs are
changed into “X”, “X”, “Y”, and “Y”, respectively, which satisfies
Principle 4, then the DFA will only have 89 states. Thus, the
reduced number of states is 2 +7 + 64 + 4 = 77.

4.4. Principle-driven universal mechanism
As a whole, based on Principles 1-4, the universal partition

requires that each segment is either a segment without an OF
or is an anchored segment with a prefix ES and only one OF.

Table 3
Universal partition for different types of OFs.

OF type Partition positions (a: add to set 1, ¥: add to set 2)
* -+ ESpre ™. - ESqyp - --

An,} -+ ESpre1 VESprez - {n} A~ - ESqyp -+

(b* e Esprel vAESpreZ : (/)* . Essuf e

‘i’{n} T Esprel vAESprez . d’{”} N Essuf T

‘i’{m: n} e Esprel vAESpreZ . ¢{m n}’ Essu[e

‘7){"‘: } e EsprelvAESpreZ . ¢{n: }v Essuf e

In addition, the prefixes tend to be identical for equivalent OFs
or are distinct. In fact, these principles introduce the guidelines
for the writer of the signatures of intrusions to design parti-
tion-friendly regexes. In summary, Table 3 shows the partition
positions for different types of OFs. In Table 3, the A means
the subsequent segment should be added into segment set 1,
and the V¥ corresponds to segment set 2. Besides, the ESp..
(the suffix of ES,.) for each OF should obey Principles 3 and 4.
To obtain the qualified ES,.; for every requested OF, the trie tree
is leveraged in the partition decision to find the best partition
position.

As Fig. 4 shows, the OFs whose prefix ESs have already been
found will be inserted into the trie tree. According to Principles
3 and 4, there cannot be more than one gray node in any path
from the root to the leaf in the trie tree. In other words, each
prefix ES must correspond to a leaf node. To determine the par-
tition position for a new OF, its prefix ES will be traversed from
the tail to the head (the first three trees in Fig. 4). If the end
node (denoted as gray) for the tested ESp., is not a leaf or is
the leaf of a gray node, then the tested ES,., is unqualified.
Otherwise, if the end node is a present leaf node, then the new
OF should be compared with the existing OF to determine
whether they are equivalent. If they are equivalent, then the
new OF is qualified and can be added into the trie tree. If the
end node is the leaf of a non-gray node, the tested ES,.; is
different from all present prefix ESs and can be partitioned with
certainty. The last tree in Fig. 4 shows the determined ESp., for
the exemplified OF.

For the prefix ESs with at least k characters, the probability that
they are identical is (|Z*(1/|Z|)2)k =1/|Z|. If k =2 and || = 256,
then 1/256% ~ 0.0015%. Therefore, it is easy to find a qualified pre-
fix ES that obeys Principle 3 for each OF. Furthermore, in real-world
regex sets, the OFs mainly concentrate on a small number of non-
equivalent types. For example, in Snort [3], there are fewer than 50
non-equivalent OFs, even though the total number of these OFs
exceeds 5000 and the percentage of the number of the maximum
six OFs is over 95%. In addition, the prefixes of most of the equiv-
alent OFs are identical, which allows the partition to benefit from
Principle 4. For example, in Snort, the OF “[A\r\n]*” often has the
prefix “\x3a”, and the OF “[\n]{n}” commonly has the prefix
“\s”. If neither of the two principles can be satisfied for some prefix
ESs, the remaining state inflation, which maybe linear, is still insig-
nificant compared with the exponential state explosion before
regex partition.

In consideration of the final performance, the partition should
generate a minimum number of segments to satisfy Principles 1-4.
Therefore, in practice, there cannot be two adjacent segments both
of which are ESs in their original regex. Further, for the OFs whose
|¢| is small, such as “\s”, “\d”, their partition is ignored because
they rarely lead to semantic overlapping according to Theorems
1 and 2 (at the expense of potential little state inflation).
Hence, the common regex ‘“SEARCH\s+[\n]{1024})" in Type 5
can be partitioned into “ASEARCH\S*" and “A\S[A\n]{1024}" to
remove semantic overlapping.

106 K. Wang et al./ Computer Communications 54 (2014) 97-119

4.5. Overall procedure

Algorithm 1. Partition Procedure

Input: Regex Set Sgg.
Output: Segment Sets Ssg; and Ssc,, Relation Set Rsg.
Function:

1: for all RE € Sgr do

2: RE.rewrite_if_necessary(RE.regex_id);

3: end for

4: for all RE < Sgg do

5: for all OF < RE do

6: if OF == * || OF == .{n, } then

7: if OF == .{n,} then

8: RE.replace_of(OF, .{n}.*);

9: end if

10: RE.insert_tag(RE.get_head_position(.*), a);
11: else

12: if OF == ¢{m,n} || OF == ¢{n, } then

13: RE.insert_tag(RE.get_tail_position(OF), ¥);
14: end if

15: Ses.insert(OF, RE.get_entire_prefix_es(OF), RE);
16: end if

17: end for

18: RE.remove_tag_if present(RE.end());

19: end for

20: for all ES € S5 do

21: Ses.count_for_equivalent_of(Sgs.of_num, ES.OF);
22: end for

23: __sort(Sgs.begin(), Sgs.end(), Sgs.of_num, descending);
24: for all ES € Sgs do

25: ESprer = __get_best_es_via_trie_tree(ES.OF, ES.ESpre);
26: ES.RE.insert_tag(ES.RE.get_head_position(ESpre), ¥);
27: end for

28: for all RE € Sg: do

29: TAGpegin = RE.begin();

30: for all TAG,pg € RE && TAGeng # TAGpegin dO

31: Ss[0].push_back(RE.partition(TAGpegin, TAGenq), RE);
32: TAGpegin = TAGeng;

33: end for

34: Ssc[1].push_back(RE.partition(TAGpegin, RE.end()), RE);
35: end for

36: forall0<i<1do

37: for all SG € Sgli] do

38: if SG.TAGpegin ==V then

39: segment_id = Ssgp.get_avail_segment_id(SG);
40: Ssca.insert(segment_id, __anchor(SG));

41: else

42: segment_id = Sgc;.get_avail_segment_id(SG);
43: if SG.TAGpegin == A then

44: Ssc1.insert(segment_id, __anchor(SG));

45: else

46: Ssc1.insert(segment_id, SG);

47: end if

48: end if

49: Rsc.append(SG.RE.regex_id, segment_id);

50: end for

51: end for

The pseudo code of the partition procedure is shown in
Algorithm 1. In this algorithm, step 2 aims to rewrite the special
regex into the alternative sub-regexes with the same regex ID
(i.e., REregex_id) to meet the prerequisites of partition.

Steps 20-23 guarantees that most OFs that are equivalent are
always prioritized in step 25 to satisfy both Principles 3 and 4.
Steps 36-51 label each generated segment with a unique segment
ID (i.e., segment_id), and based on the ID, the syntagmatic relations
of these segments can be recorded as a relation set.

There are often many equivalent segments that, can be merged
even though they are distinctive by default. For any two segments
SGx; and SGy,, where SGy, is the ith segment in regex X that has [
segments, and SGy, is the jth segment in regex Y that has J seg-
ments, we consider that SGx, and SGy, are equivalent if they satisfy
the following.

l.i<Ilj<],andi=j;
2. V k < max(i,j), SGx, = SGy,;
3. SGx,,, and SGy,, belong to the same segment set.

For example, for the two regexes “AB.“CD.“EF” and “AB.*CD.*GH”,
their identical segments “CD” (and “AB”) are equivalent and can
be merged into one segment because the remaining segments will
correspond to a complete regex “AB."CD.*(EF|GH)”, which is equal
to the original regexes. Therefore, the segment merger based on
the equivalency (step 39/42 in Algorithm 1) will greatly reduce
the number of segments and improve the final performance.

The overall partition result for the exemplified regex set has
been shown in Fig. 1. It is evident that the partition maintains
the full semantics of the original regexes in the segment sets and
relation set, but has already eliminated the semantic overlapping.

5. Compilation procedure

The foundation for scalability is built on the partition procedure
described in Section 4. In this section, two sets of overlapping-free
segments are constructed as non-explosive DFAs, respectively. The
relationships of the segments are also transformed into a small
index array, i.e.,, RMT. Although the state redundancy has been
removed from the two resulting DFAs, the huge transition redun-
dancy still exists due to the nature of the partition-derived seg-
ments, and thus are further reduced by an effective compression
approach. Finally, a succinct matching engine can be obtained in
PaCC by combining the compact DFAs and RMT.

5.1. Construction and transformation

In the construction step, two sets of segments are directly com-
piled into corresponding DFAs, i.e., Front-end DFA and Back-end
DFA, using parse tree, Thompson construction, NFA reduction, sub-
set construction and DFA minimization [6] consecutively. As Fig. 5
displays, each match state (denoted by underlined digit) in the two
DFAs corresponds to the occurrence of segments rather than regex-
es. For example, the match of segment SG1 occurs when state 7 is
activated. The state number of Back-end DFA starts from 10, rather
than 0. This is used to distinguish Back-end DFA states from Front-
end DFA states.

The total number of states in two DFAs is only 29, which is over
an order of magnitude less than the inflated DFA (with 362 states)
of the original regex set and even less than the linear NFA (with 35
states). The theoretical size of two DFAs is (N + Nppra) - | 2]
log, (Nrpra + Nppra) bits, where Neppsa and Nppea are the number of
states in Front-end DFA and Back-end DFA, respectively. As there
is no state explosion and less state redundancy,
Nepra + Nppra < Nge - Lgg, where Nge is the number of regexes, and
Lgg is the average length of regexes.

In the transformation step, the relation set is translated into a
two-dimensional RMT indexed through the segment ID. Each row
of entries in the RMT corresponds to the related information of

K. Wang et al./ Computer Communications 54 (2014) 97-119 107

DCCAB:-OFs-ABCD

DCCAB:-OF;-ABCD

OF;

DCCAB-OF;-ABCD DCY*CAB-OFs-ABCD

OF;

Fig. 4. Leveraging trie tree to search the best prefix ES for every OF in the given set of regexes.

the indexed segment. Here, SG,., denotes the anterior segment of
the inquired segment, RE,z, denotes the complete regex to which
the inquired segment corresponds, and STATE . is the initial state
of the DFA where the posterior segment of the inquired segment
exists. For example, segment SG4 indexes the 4th line of the
RMT; the anterior segment is denoted as SG3, and its complete cor-
responding regex is null because it is not a tail segment. The pos-
terior segment (SG7) should be matched from state 10 of Back-
end DFA.

The syntagmatic relations of segments are all maintained in the
RMT. For example, according to the RMT, the anterior segments of
segments SG4 and SG7 are SG3 and SG4, respectively (i.e., segment
SG4/SG7 is at the back of segment SG3/SG4), and segment SG7 cor-
responds to the complete regex RE3. Therefore, RE3 is recoverable
by concatenating SG3, SG4, and SG7 in sequence.

The theoretical size of the RMT is Ns¢ - (10g, (Nsc —Nge) +10g, Nre+
log, (Nepra + 1)) bits, where Ns¢ is the number of segments, and
Nsc < Nge - Lge. It can be easily determined that the size of the
RMT is much smaller than 3/|Z]| of the size of two DFAs. Although
both DFAs and the RMT can be further compressed, their total size
is primarily determined by Ngg - Lg.

5.2. Compression

For a large scale regex set whose Ngg - Lgz > 1,000,000, even
though the DFAs are succinct in terms of states, the number of
states could be over 1,000,000. For this many states, at least 1 GB
memory is required. Therefore, it is necessary to compress the
DFAs further. According to the characters of the segments, there
are a large number of redundancies in the state transitions of the
DFAs that can be comprehensively removed by proper compression.

5.2.1. Transition redundancy

The partition procedure guarantees that all segments in set 1
have no OF, that all segments in set 2 are anchored, and each
segment contains at most one OF. Therefore, Front-end DFA is
construct from the strings, where the primary syntax is

concatenation. In a typical case, a state must be added for each
concatenated character. Except for the state transition correspond-
ing to the significant character, the transitions of each state
consistently fall back to the initial state or the neighbors of the
initial state.

For example, in the Front-end DFA shown in Fig. 6, all states will
transit to states 1, 2, and 3 (the neighbors of state 0) for the char-
acters ‘F’, ‘C’, and ‘U’, respectively, and tend to transit to state O for
any other character. Those distinct transitions, such as the transi-
tion to state 4 in state 1, correspond to the significant characters
in the segments. Therefore, most transitions are identical for all
states in Front-end DFA.

The Back-end DFA is construct from segments where the syn-
taxes contain anchoring and OF as well as concatenation. Anchor-
ing makes almost all states transit to the dead state (which can
only transit to itself for any character, e.g. state 11 in Fig. 5) by
default. For OF ¢, it can produce an intermediate state, where sub-
sequent states (corresponding to the concatenated characters)
transit for the characters in ¢. For OF ¢{}, it can produce a chain
of states, where the transitions corresponding to characters in ¢
will go forward to the next neighbor states. In addition, because
the OFs often have a large ¢, these transitions are primarily identi-
cal inside the corresponding state.

As Fig. 6 shows, the OF “[\&]"” makes states 18, 21, 24, and 26
(including state 15) transit to the self-loop state 15 for any charac-
ter except ‘&’. The OF “[A\n]{6}" makes states 13, 16, 19, 22, 25, and
27 transit to their next states, i.e., states 16, 19, 22, 25, 27, and 28,
respectively, for any character except ‘\n’. Furthermore, anchoring
makes all mismatched transitions transit to the dead state 11. Each
OF will not intersect with the characters or other OFs for the seg-
ments; thus, the states are either very similar (e.g. states 15 and
18) or completely dissimilar (e.g. states 13 and 16).

Thus, in Front-end DFA, the single character in concatenation
invariably brings about the intra-state identity of transitions back
to the initial state, and the inter-state identity of transitions back
to the initial state and the neighbors of the initial state.
Furthermore, in Back-end DFA, the character in concatenation

SGl1: FIL
SG2: CMD
SG3: URL

SGS:
SG6:

SG7: \.COM
l Segment Set

il
OO0

W
U

— L0010

Front-end Non-explosive DFA

AE=[A&]*\.EXE
=["\n]{6}
SG4: A=["n]{3,5}

l Segment Set
_ SGprey
3 SGI - - 10
\. SG2 - - 10
= 313 ["\n . [Mn . [Mn ; [M\n ; [Mn ; [Mn <G4 e - m
\
@—O>@ SG7 SG4

Back-end Non-explosive DFA

REL: (SG1):(SG5)
RE2: (SG2)-(SG6)
RE3: (SG3)-(SG4)-(SG7)

l Relation Set

RErigin STATE ex

SG3 - - 10

SG5 SG1 RE1 -
SG6 SG2 RE2 -

Relation Mapping Table (RMT)

Fig. 5. Construction and transformation for the exemplified two segment sets and the relation set resulting from the partition procedure.

108 K. Wang et al./ Computer Communications 54 (2014) 97-119

C D F I L M R U else
0/0 210 1 OO0 0|03 0
1/1 210 1 4100103 0
2/1 210 1 OO0 |5 |03 0
3/1 210 1 0|0 |0 /|63 0
472 210 1 o710/ 03 0
5/2 2 8 1 o000 /|03 0
6/2 210 1 0|90 /|03 0
7173 210 1 0o 0|03 0
8/3 210 1 0|00 |03 0
9/3 210 1 0|0 /0}0]3 0

Non-explosive Front-end DFA
n & O\ = C E M O X else

10 /0 1111 | 14 | 13 | 11 | 12 | 11 | 11 | 11 | 11

111 I {110 |10 | 1| 11 | 11 | 1| 11 | 11 | 11

12/1 1011 |11 | 15 | 11 | 11 | 11 | 11 | 11 | 11

13/1 11|16 |16 | 16 | 16 | 16 | 16 | 16 | 16 | 16

14/1 11| 10| 10 1| 17 | 10 | 11 | 11 | 11 | 11

1572 15|11 | 18 | IS | IS | IS | IS5 | 15| 15| I5

16 /2 1111919191919 |19 19| 19| 19

17/2 110|101 11| 11| 20 | 11 | 11

18/3 15|11 | 18 | 15 | 15 |21 | 15 | 15| 15 | I5

1973 11 (2222 22|22 |22(22]22]|22)|22

20/3 1T 11 | 11 | 10| 11 | 11 | 23 | 11 | 11 | 11

21/4 15|11 | 18 | IS | IS | IS | 15 | 15| 24 | I5

22 /4 11|25 |25 |25 |25 |25 |25 |25| 25|25

23 /4 11 10| 10 1 | 10 | 10 | 1 | 11 | 11 | 11

24 /5 15|11 | 18 | 15 | 15 | 26 | 15 | 15| 15| I5

25/5 11| 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27

26/6 IS{ 11|18 | 15|15 |15 [15| 15| 15 | 15

271/6 11 |28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28

2877 11| 11| 110 | 11t | 10 | 11 | 11 | 11 | 11 | 11

Non-explosive Back-end DFA

o |c2|r1|us|

*0 1,4

0 | M5

*0 | R6

0 | L7

—

0 | D,8

*0 L9

*0

*0

*0

Compact Front-end DFA

v En

11

11 =15

16 | \n, 11

1 | c17

15 | \n, 11 |\, 18
r 19 \n, 11

11 0,20

*15 E, 21

—

22 \n, 11

11 M, 23

*15 | X, 24

25 | \n, 11

11

*15 | E, 26

27 \n, 11

*15

28 \n, 11

11

Compact Back-end DFA

Fig. 6. Compression for the two non-explosive DFAs (denoted as matrix) resulting from compilation in Fig. 5. (The numbers on the left of the matrix stand for state number
and state depth, e.g. 10/0 means state 10 with depth 0. The numbers, i.e., state transitions in the matrix means the next states the current states will transit to, e.g. for current

state 10 and input character ‘E’, the next-hop state is state 12.)

(with no anterior OF) also results in the intra- and inter-state
identity of transitions back to the dead state. The OF ¢* invariably
introduces the intermediate self-loop state and results in the
intra-state identity of transitions back to this state, as well as the
inter-state identity of transitions back to this state, the neighbor
of this state, and the dead state. In addition, the OF ¢{} leads to
the intra-state identity and the inter-state difference of transitions
going forward to the neighbor in a chain of states.

In fact, all identical transitions caused by the characteristics of
the segments are redundant; thus, a tailor-made compression algo-
rithm is designed to reduce these transitions to compress the DFAs.

5.2.2. Algorithm design
To facilitate the textual description, it is necessary to define the
following terms.

e The transition, which is identical for most characters inside a
state, is the major transition (MT, e.g. the value 15 inside state
15 in the non-explosive Back-end DFA of Fig. 6).

o The states, which have the same MT and share a larger number
of identical transitions than the number of MTs they have, are a
state cluster (SC, e.g. states 15, 18, 21, 24, and 26).

e The state, which has the most MTs and the minimum state
depth [21] in corresponding SC, is the default state (DS, e.g.
state 15 with depth 2).

e The state, which is not the DS in the corresponding SC, is a
labeled state (LS, e.g. state 18).

e The transition of LS, which directs to the DS in the same SC, is
the default transition (DT, e.g. the value 15 inside state 18).

o The transition, which is neither the MT in DS nor the DT in LS, is
a labeled transition (LT, e.g. the value 21 inside state 18).

K. Wang et al./ Computer Communications 54 (2014) 97-119

14 DFA

L 13

109

L4 |M,5|R,6|L7|D,8 E 12 \n, 11 17|\,

0,20

n, 11|M, 23X, 24 |\ E, 26 \n, 11 0l0fo0fo]1

*0 [*0 *0 | *0 | *0 11 16 11

11

olw|w
w

22 11 | *15 *15 28

24

)
2
t

v
IS
9
EN
<

Fig. 7. Matching engine PaCCE for the exemplified regex set: “FILE=[A&]*\.EXE", “CMD=[A\n]{6}", and “URL=[A\n]{3,5}\.COM".

In the compression, the MT is only used to reduce the intra-
state identical transitions of the DFAs, and the DT is employed to
remove inter-state identical transitions. The algorithmic procedure
is as follows.

Step 1: For each state in the DFA:

(A) Calculate the state depth based on breadth-first traversal.

(B) Count the number of identical transitions for each transition
of the state, and compare the counts to determine the MT.

(C) Group the state into the state set where all the states have
the same MT .

Step 2: For each set of states:

(A) Compare the number of MTs and the state depth for each
state to determine the DS and group it into a new SC.

(B) Calculate the number of transitions that are identical to the
DS for each of the remaining states; if the number is larger
than the number of MTs, then group the state into the same
SC as a LS, and set its DT to the DS.

(C) After a round of processing, iteratively execute (A)-(C) for
the remaining states in the set until every state in the set
has a corresponding SC.

Step 3: For each SC:

(A) Reserve only the transitions that are different from the cor-
responding transitions in the DS (as LTs), as well as the
unique DT for each LS.

(B) Reserve only the transitions that are different from MT (as
LTs), as well as a single MT for the DS.

The compact DFAs are shown in Fig. 6. The gray transitions with
no asterisk are MTs, and the corresponding states are all DSs. The
gray transitions with an asterisk are DTs, and the corresponding
states are all LSs. All white transitions are LTs.

In compact Front-end DFA, all states are grouped into one SC
because they have the same MT (e.g. the value 0), and for any pair
of states, the identical transitions between them (the number is
8 or 9) are more than the MTs inside each of them (the number
is 5 or 6). State 0 has the most MTs (i.e., 6) and the minimum state
depth (i.e., 0, denoted by “/0”); thus, it is regarded as the DS.
Except for the LTs (‘C’,2), (‘F,1), and (‘U’,3), only one MT is
retained in state 0. In other states, the DT is set to 0, and the LT
is the transition that differs from the one in state O for the same
character.

In compact Back-end DFA, with the exception of the SC of states
15, 18, 21, 24, and 26, each SC only contains a single state. For
states 10, 11, 12, 14, 17, 20, 23, and 28, they are not grouped into
one SC even though they have the same MT (e.g. the value 11),
because the number of MTs inside each of them is no less than
the number of identical transitions between them.

In both compact Front-end and Back-end DFAs, the average
number of transitions per state is reduced to less than two, and
the compression ratio Reompress 1S (9 x 10 —19)/(9 x 10) =~ 79%
(1Z]=9) and (10 x 19-37)/(10 x 19) ~ 81% (|Z] = 10), respec-

tively. This compression effect only benefits from the characteris-
tics of the segments. In practice, the algorithm can achieve a
consistent 96-99% compression ratio (|| = 256) for the real-world
regex sets.

Because MT, DT, and LT have an extra label (LT has a ASCII char-
acter, and MT and DT have a mark of distinction) compared with
the state transition in the uncompressed DFA, the total size of
the Front-end and Back-end DFAs should be
(Ngpea + Nepra) - |21+ (1 — Reompress) - (1085 (Nrpra + Nppra) + 8) bits.
Suppose Ngpra + Npppa = 65,536 and Reompress = 99%, the memory
usage of the two DFAs before and after the compression will be
32 MB and 492 KB respectively (i.e., reduced by almost two orders
of magnitude).

5.3. Combination

The succinct DFAs (in terms of both states and transitions) are
constructed to match the segments, and a small RMT is established
to maintain the syntagmatic relations of the segments. To restore
the complete regexes, the DFAs and RMT must be combined to
obtain the final matching engine.

On one hand, the state numbers of Front-end and Back-end
DFAs are totally different; thus, these two DFAs can be combined
into a single DFA, as is shown by the DFA part of Fig. 7. For the com-
bined DFA, its first 10 states can be activated with no doubt; how-
ever, for the remaining 19 states, they can be accessed only when
state 10 is initialized.

On the other hand, according to Section 5.1, the RMT is indexed
based on the segment ID; therefore, every match state in the DFA
maintains the ID of the corresponding segment. Thus, using the
segment IDs, the DFA and the RMT are combined. For example,
when state 7 is matched in the DFA, ID 1 of corresponding segment
SG1 will be used to index the entries in the 1st column of the RMT
(note that the RMT is shown vertically in Fig. 7, and zero is used to
denote the null value of RMT entries shown in Fig. 5 in practice).
The arrows in Fig. 7 indicate the index relationship between the
DFA and the RMT.

For the combined matching engine, referred to as PaCCE, the
original regexes can be uniquely restored based on the segments
in the DFA part and the relations in the RMT part. For example, seg-
ments 3 and 4 are the anterior segments of segments 4 and 7,
respectively, and segment 3 is the first segment (due to no anterior
segment). Therefore, segments 3, 4, and 7 correspond to a complete
regex sequentially, i.e., regex 3. Furthermore, according to the
match states of segments 3, 4, and 7 in the DFA, the literal content
of the segments can be derived; thus, the regex 3 can be fully
reassembled.

This reversible procedure verifies that the matching engine pre-
serves the complete semantics of the original regexes, and we can
further use the proper matching algorithm to guarantee no false
positives or false negatives for runtime matching.

110 K. Wang et al./ Computer Communications 54 (2014) 97-119

6. Matching procedure

Algorithm 2. Matching Procedure

Input: Matching Engine PaCCE, Input Content INPUT.

Output: Match Result.

Function:

1: FSU.init(0, 0); BSU.init(BDFA_INIT_STATE, 0);
Qsy.push_back(FSU);

2: for all C € INPUT do

3: for all SU € Qg do

4: SU.state = PaCCE.DFA.take_state_transition(SU.state,
O}

5 if SU state.is_dead state() == true then

6: Qsy.remove(SU); continue;

7 end if

8: if SU.state.is_match_state() == false then

9: continue;

10: end if

11: for all segment_id € SU.state.segment_ids do

12: SR =
PACCE.RMT.get_segment_relation(segment_id);

13: if __get_bit(SU.bitset, SR.SGyrey) == 0 then

14: continue;

15: end if

16: if SR.REyigin # O then

17: __output(*“Regex SR.RE,g, is matched”);
continue;

18: end if

19: if SR.STATEpex: == 0 then

20: __set_bit(FSU.bitset, segment_id);

21: else

22: __set_bit(BSU.bitset, segment_id);

23: end if

24: end for

25: end for

26: if __test_bitset(FSU.bitset) # 0 then

27: Qsy.push_back(FSU); __clear_bitset(FSU.bitset);

28: end if

29: if __test bitset(BSU.bitset) # O then

30: Qsy.push_back(BSU); __clear_bitset(BSU.bitset);

31: end if

32: if Qgy.size() > T then

33: T = Qgy.merge_state_unit();

34: end if

35: end for

In this section, we introduce the runtime processing of the
matching engine PaCCE resulting from the PaCC compilation pro-
cedure to guarantee both semantic equivalence and high speed
for final regex matching.

6.1. Runtime processing mechanism

In the matching engine PaCCE, an original regex is matched only
when all its segments are matched in sequence and in succession.

The matching of each segment is separate in the DFA part. For
the compact DFA, suppose the current state is STATE.,, and the
current input character is C. The matching will first search the
LTs of STATE,, to find the one corresponding to C. If the satisfied
LT exists, then follow it and transit to the next state STATE, .. Else,
if there is a MT (i.e., STATE,,, is DS), then follow it as well and

transit to the next state STATE,.. Else, follow the DT (i.e.,
STATE,,,, is LS, not DS) and first transit to the corresponding DS
STATEs, then continue to search the LTs of STATEqys to find the
one corresponding to C. If the satisfied LT exists, then follow it
and finally transit to the next state STATE,.. Else, follow the MT
(because STATEqs is DS) and finally transit to the next state
STATE.x.. Whenever one input character C is processed, the com-
pact DFA will transit from one state STATE.,, to another state
STATE ;¢x:. If STATE ¢y is a match state, then the corresponding seg-
ments are matched.

The RMT is used to determine whether the matched segment is
in the correct sequence. To be matched, alternated segments
belonging to the same regex should follow the concatenation order
in their original regex. Else, even though these segments are
matched in the DFA part, they will be regarded invalid and ignored
in the RMT part.

It should be noted that the definition of partition requires that
the non-first segments are anchored. This ensures matching suc-
cession; the start of the matching of the posterior segment and
the end of the matching of the anterior segment must be contigu-
ous at the interval, otherwise a false positive could occur.

Based on the above conditions, correct regex matching is guar-
anteed by activating state units to keep track of the current state
number (based on a log,(Nrpra + Nppra)-bit value) and the IDs of
previously matched segments (based on a log,(Nsg — Ngg)-bit bit-
set) during the matching process.

6.2. Overall procedure

Algorithm 2 describes the matching procedure. In this algo-
rithm, only step 4 must be executed for each input character.
Details of this step have been explained in Section 6.1. It is evident
that, in the worst case, at most two state accesses must be exe-
cuted per input character for the compact DFA.

If no new state units are generated at steps 26-31, then the
matching engine is equal to the compact DFA. One can find that
the premise of producing new state units is that none of steps 5,
8, 13, and 16 is satisfied (i.e., step 19-23 must be executed), which
means a dead state cannot be met and a match state must be
accessed where the match should be an eligible match of a non-tail
segment.

6.2.1. Explanation

For step 5, the dead state is actually an endless loop state, which
always exists in the DFA whose corresponding regexes are all
anchored and have no OF .* or .{n,} (i.e., Back-end DFA). Once an
active state unit SU falls into the dead state (i.e., SU.state is equal
to the dead state number), regardless of input character, no addi-
tional segment match can occur for SU, because the SU will never
transit to a match state other than the dead state. Thus, such an
active state unit SU can be removed from the queue Qg; without
affecting the matching procedure. This is the purpose of steps 5-7.

Steps 8-10 mean that, for a non-match state, there is nothing
else to do. However, for a match state, it is necessary to determine
whether the match is eligible for each of its corresponding seg-
ments (note that one match state may correspond to multiple seg-
ments). Hence, at step 12, the segment_id of each matched
segment will be used to index the RMT and fetch the ID SGpy., of
its anterior segment, the ID RE,q;, of its corresponding regex,
and the state STATE,. of its posterior segment. If the expected
anterior segment SGp., has been matched previous to the just
matched segment, then the bit corresponding to SG,r., must be
nonzero in the current SU.bitset; thus, the match is eligible. This
is shown at steps 13-15. Note that, for the first segments, no ante-
rior segments are required.

K. Wang et al./ Computer Communications 54 (2014) 97-119 111

.
c

Ao
=

.

Essa =]

y EEEEEE
EEEE RN

Default trans

New state unit
<State 10, SG2> 30

Dead state unit
<State 11, SG3>

New state unit
<State 10, SG3>

Initial state unit
<State 0, Null>

Valid SG3 match,
Expected SG,e, = Null

Valid SG2 match,
Expected SG,e, = Null

Default trans

8§50

Default trans
950

Invalid SG4 match,
Expected SG,,., = SG3 # SG2

Valid SG6 match,
Expected SG,., = SG2, and RE2 is matched

|
Essal =]

Dead state unit
<State 11, SGI>

Default trans

New state unit
<State 10, SGI> 18— 15

Dead state unit
<State 11, SG2>

Valid SG match,
Expected SG,yey = Null

Valid SG5 match,
Expected SG,., = SG1, and RE! is matched

Default trans

70

Fig. 8. Runtime processing for the matching engine PaCCE in Fig. 7 for the exemplified input: “URL = \nCMD = RUN./FILE = E.T.EXE\n".

For each valid matched segment, whether it corresponds to a
match of a complete regex will be determined at step 16. If the
valid matched segment is the tail segment, i.e., all its anterior seg-
ments have been matched in sequence and in succession, then the
corresponding regex is matched correctly. Steps 16-18 will record
these match results.

If none of steps 5, 8, 13, and 16 is satisfied, new state units will
be activated and processed for the next input character. Note that,
at most two fresh state units will be created for each input charac-
ter even though there are multiple qualified segments. This is
because the new state unit can only has the initial state of either
Front-end DFA or Back-end DFA as its start state, and the difference
in the bitset of the state units can be recorded by setting corre-
sponding bit, as shown at step 19.

Therefore, when all current state units are processed for the
input character C, given that new state unit FSU and/or BSU must
be generated, FSU and/or BSU will be appended to the queue Qgy.
For the next input character C, all the old (excluding the dead)
and new state units will be processed together.

6.2.2. Demonstration

To demonstrate Algorithm 2, we take Fig. 8 as example. The ini-
tial state unit FSU in Qg consists of state number 0 and bitset 0000
(i.e., 4-bit bitset, because there are 4 non-tail segments).

For input “URL”, segment SG3 is matched in the DFA, then its ID
3 is used to index the 3rd entry in the RMT, where no anterior seg-
ment is required (anterior segment ID is 0). Thus, this match is
valid, and a new state unit with state number 10 and bitset 0100

(the 3rd bit is set) is generated and then processed in parallel with
the original state unit after then. Next, for input “=\n”, one state
unit enters the dead state 11; thus, it is removed. For the other
state unit, one can find that it follows the path 9 — (0) - 0— 0
to do state transition, where the first transition from state 9 to
DS 0 is an extra jump aroused by the DT of state 9 because there
is no LT corresponding to the input character ‘=’ in state 9.

Next, for input “CMD”, segment SG2 is correctly matched, an in
a similar manner, a corresponding state unit with state number 10
and segment ID 2 is generated. Next, for input “=RUN”, another
match state is reached; however, it is an invalid match because
the expected anterior segment SG3 is not matched previously for
current state unit. Next, for the subsequent input “.” and “/”, the
situation is identical. Next, for input “F”’, segment SG6 is matched
in the DFA, the indexed 6th entry in the RMT shows that segment
SG2 is expected to be previously matched, and in fact it had been
matched because the 2nd bit is set in the bitset 0010. Thus, this
is a valid match. In addition, the match of regex RE2 (i.e,
“CMD=[A\n]{6}") is found (the background is grayed) because the
original regex of segment SG6 is RE2.

For the following input “ILE = ET.EXE\n"”, regex RE1 is also
matched, and the number of state units is further reduced to
one. Related details are provided in Fig. 8.

6.2.3. Dynamic merger of state units

According to the analysis in Section 5.2.1, most state transitions
lead back to the initial states (e.g. state O or its neighbor states in
Fig. 6) or the intermediate self-loop states (e.g. state 11 or state

Te=3; Qsu
STATE 0 Ousize0 = 1
« su-size() =
BITSET 0000 *
e 1T ———————
if (Qsu.size() > T) then Qgy.merge_state_unit(); Qsu
STATE 0 STATE 15 STATE 15 STATE 10 .
<«~—— Qsu.size() =4
BITSET 0000 | BITSET 0001 BITSET 0010 | BITSET 0100
e 11—
if (Qsusize() <T - Tc || Qsu.size() >=T) then T = Qsy.size() + Tc; Qsu
STATE 0 STATE 15 STATE 10 X
«—— Qgusize() =3
BITSET 0000 | BITSET 0011 | BITSET 0100

x

T = Qsu.size() + Tc

Y

Fig. 9. Queue size adjustment for efficient state unit merge.

112 K. Wang et al./ Computer Communications 54 (2014) 97-119

l Regex RE]

O—0—O—0—-0—-60—-0—-0—-0—-0— —@—O—@=rE

l Segment SGrg | Segment SGrg> | Segment SGrgs] Segment SGrgx
O—O—O— 3OO D@ Ba G ana Cand 22
O—0—@ \
Partition Procedure

O—=O—@ 50w

Segment “SGrgs q

OO ® S0

@_>®_> ASGR:/ Compilation Procedure
Matching Procedure /

~ M As ces A
@4’ @ Strinig A matched by RE
Segment SGrg
—O—0—@
Segment “SGrg
—O—®—@
Segment "SGpg3
—E@—0—@
Segment "SG e
Regex RE

Fig. 10. The truth (behind PaCC) of the accurate regex matching based on the segments

15 in Fig. 6). Consequently, even if multiple state units are acti-
vated, they are likely to transit back to the same state in a short
time. Then, for the state units having identical state number, they
could be merged merely by the bitwise OR of their bitsets [30]. This
means the number of state units in the matching engine can con-
verge to one in any case.

In addition, as steps 32-34 of Algorithm 2 show, we can choose
the proper time to merge the annexable state units as necessary,
rather than for every input character because most of the time
the number of state units in the queue is minimum (e.g. the num-
ber of active state units in Fig. 8 is minimum for each input char-
acter). Thus, the threshold of the number of active state units is
used, as shown in Fig. 9. Initially, a default threshold T = T¢ is
given. Once the size of the queue achieves the threshold, the mer-
ger is executed. After that, if the size of the queue is not less than
the threshold, i.e., few states transit to the initial or self-loop states,
then it is necessary to adjust the threshold to a value larger than
the size of the queue. Similarly, if the size of the queue is much less
than the threshold, then it is necessary to reduce the threshold
accordingly. Otherwise, the threshold remains unchanged. By
choosing the proper time to merge according to the dynamically
optimized threshold, the matching engine can main matching at
an optimal rate.

6.3. Proof of matching accuracy

6.3.1. For compact Front-end and Back-end DFAs

In the uncompressed DFA, the transition corresponding to the
input character C can be directly found and executed for current
state, however, there are five and only five possible and mutually
exclusive cases for different states in the compact DFA.

Case 1: For current DS, LT corresponding to C is found and
executed.

For current DS, there is no corresponding LT (com-
pressed due to MT), MT is found and executed.

For current LS, LT corresponding to C is found and
executed.

For current LS, there is no corresponding LT (compressed
due to DT), DT to the DS is executed first, then goto Case 1.
For current LS, there is no corresponding LT (compressed
due to DT), DT to the DS is executed first, then goto Case 2.

Case 2:
Case 3:
Case 4:
Case 5:
Because MT only compresses the transitions (in DS) the same
with MT, and DT only compresses the transitions (in LS) identical
with the ones in DS for the same C, the transition corresponding

to C must be correctly found for any state in the compact DFA. In
other words, the transition from STATE,,,, to STATE,., for any input

character C in the compact DFA is equivalent to the one in the
uncompressed DFA. Consequently, the matching accuracy of the
Front-end and Back-end DFAs is guaranteed.

6.3.2. For PaCCE

As Fig. 10 depicts, when original regexes are partitioned into
overlapping-free segments, the syntagmatic relation of these seg-
ments turns from consecutive “concatenation” to independent
“alternation”, because the partition is at the concatenated location
of adjacent segments according to the definition (see the left of
Fig. 10). Hence, in PaCCE, to simulate the accurate matching of a
complete regex, the matching of the segments must be in sequence
and in succession (see the right of Fig. 10).

According to the matching procedure described in Section 6.1
and 6.2, it can be proved that the matching engine constructed
by PaCC does not sacrifice any matching correctness compared
with the corresponding DFA.

Theorem 3. Given regex set Sgg, its two segment sets resulting from
the partition are Ssg1 and Ssc,, then the PaCCE generated from the
segment sets Ssgy and Ssc is equal to the DFA built from the regex set
Ske in terms of matching accuracy.

Proof. Support Sk only has one regex RE, and RE has K segments
{SGge, [k € Z*, k < K}.

Assume the string A can be matched by the DFA of Sk (i.e., RE),
then there must exists K sections for A, where SGgg, matches A
(k € Z*,k < K). This is because each A, is concatenated in A, and
each SGgg, is originally concatenated in RE as well. Because Ay is
processed in sequence and in succession, ie. A, will be
immediately processed once the processing of A, is finished,
SGgg, will be successively and correctly matched in PaCCE, and at
last the original RE is judged to be matched validly. Thus, PaCCE
cause no false negative during the matching process.

Assume the string A can be matched by the PaCCE of Sg (i.e., RE),
but A cannot be matched by the DFA of Sgg, then for every possible
{Axlk € Z*,k < K}, there at least exists A, where SGgg, cannot
match Ay, otherwise A can be matched by the DFA of RE. However,
in PaCCE, RE has no chance to be matched unless all of the segments
SGgg, are matched, and SGgg, can not be matched for A; (i # k),
because the caret attached to the SGgg, (k € Z*,1 < k < K) guaran-
tees that there should be a one-to-one correspondence between
SGgg, and Ay. In other words, the initial assumption is contradictory,
and A which is matched by the PaCCE of Sgg must be able to be
matched by the corresponding DFA. Hence, PaCCE does not cause
false positives during the matching process.

Consequently, PaCCE and DFA are equivalent for every RE in Sgg,
Theorem 3 is proved. O

K. Wang et al./ Computer Communications 54 (2014) 97-119 113

Table 4
Statistics for the regex sets used in our experiments.

Regex set # Of regexes # Of OFs # Of states # Of segments

Total Explosive W/overlapping Total Non-equal W/¢* form W/¢{} form NFA DFA Segment set 1 Segment set 2

Raw Merged Raw Merged

backdoor 162 0 61 466 17 436 30 3534 >15M 176 164 72 72
blacklist 29 0 18 37 11 29 8 777 >15M 31 30 19 19
botnet 90 0 50 180 28 120 60 2015 >15M 98 97 76 76
deleted 1315 5 1257 9989 21 9449 540 86,288 >15M 1620 403 1561 1558
ftp 71 0 55 94 6 52 42 7262 54,009 71 68 55 55
imap 45 16 44 72 9 49 23 5488 >15M 47 35 46 46
pop3 16 0 14 19 3 7 12 1149 34,269 16 16 14 14
smtp 126 9 113 420 16 403 17 5612 >15M 128 38 117 114
spyware 343 0 276 620 12 587 33 6058 >15M 368 138 311 311
sql 26 0 16 76 13 69 7 1081 >15M 30 29 18 18
web-activex 1243 1 1237 16,073 8 15,488 585 59,109 >15M 2465 933 1858 1523
web-cgi 18 5 15 24 13 14 10 2621 >15M 22 20 15 15
web-iis 28 2 24 33 15 27 6 2279 >15M 28 28 25 25
web-misc 125 31 93 232 32 169 63 14819 >15M 134 124 107 105
web-php 64 1 35 131 13 70 61 1648 >15M 64 62 50 50
bro 1104 42 80 96 2 48 48 22,860 >15M 1149 1144 47 47
syn.3 5000 601 1400 1500 8 750 750 166,526 >15M 5000 4266 1500 1499
syn.5 5000 993 2330 2500 8 1250 1250 183,602 >15M 5000 3595 2500 2497
syn.7 5000 1397 3244 3500 8 1750 1750 199,183 >»15M 5000 2872 3500 3494

6.4. Performance advantages

It is important to note that, although two DFAs could be built for
PaCCE, the Back-end DFA is rarely activated and executed. In fact,
the Front-end DFA plays a prefilter role because, only the first seg-
ment of any original regex in the Front-end DFA is matched cor-
rectly, can Back-end DFA be activated to process the subsequent
segments belonging to the same regex. Moreover, even if the
Back-end DFA is triggered to match the new generated state units,
it can be closed in a short time because the state unit is likely to be
trapped in the dead state or merged with others. Therefore, the
average-case matching complexity of PaCCE is O(1). The theoretical
worst-case complexity is O(Ngpra + Nppra) because, at most, all con-
current active state units correspond to the distinct state numbers
in the DFA. However, this is not possible in practice. According to
our analysis, the tighter worst-case complexity is proportional to
the number of nonequivalent OFs because, the DFA can only be
trapped in the states representing the OFs while the equivalent
OFs are deflated due to Principle 4.

Furthermore, unlike a general data structure with a prefilter
(e.g. Snort IDS [2,3]), where the back-end matching engines of
the prefilter are built from the complete regexes and are required
to process the input characters from the start when a match occurs
in the prefilter (i.e., multi-pass matching), the Back-end DFA in our
matching engine is also constructed from segments, and only
needs to process the subsequent input characters if executed
(i.e., one-pass matching).

7. Experimental evaluation

In this section, we use real and synthetic data and tests to verify
the effectiveness of the PaCC solution comprehensively.

7.1. Test environment

All experiments were conducted on a HP Z220 SFF workstation,
where the CPU is 3.40 GHz Intel Core i7-3770 (with 256 KB L1
cache, 1 MB L2 cache, and 8 MB L3 shared cache), the memory is
2 x 8 GB 1600 MHz DDR3 SDRAM, and the OS is 32 bit Ubuntu
Server 12.04 LTS.

7.1.1. Regex sets

As Table 4 shows, the regex sets used include 16 real-world sets
collected from the open source Snort [3] (the first 15 regex sets, i.e.,
from backdoor to web-php) and Bro [5] (the 16th regex set, i.e., bro),
and 3 synthetic sets generated from the public regex processor [31]
(the last 3 regex sets, i.e., syn.3 with 30% OFs, syn.5 with 50% OFs,
syn.7 with 70% OFs). Note that all the duplicated regexes have been
eliminated from these sets to make the given scale (i.e., number of
regexes) more meaningful.

According to the statistics shown in Table 4, most of these regex
sets are very complex, due to a large number of OFs and significant
semantic overlapping. Especially, the real-world regex sets deleted
and web-activex both have about 10,000 OFs and over 1000 regexes
with semantic overlapping. For every given regex set, Table 4 also
lists the number of explosive regexes each of which cannot be indi-
vidually compiled into a single DFA within 15,000,000 (i.e., 15 M)
states.

It can be found that, in practice, except for ftp and pop3, none of
the regex sets in Table 4 can be transformed into a single compos-
ite DFA, because the DFA with significantly more than 15 M states
requires memory larger than the SDRAM size of our testbed. In
contrast, their NFAs are all available and contain no more than
200 K states (the NFA of syn.7 has the maximum number of states,
i.e,, 199,183).

7.1.2. Algorithms for comparison

The state-of-the-art algorithm used for performance compari-
son is Hybrid-FA [14], the source code of which is publicly avail-
able in [31]. This is because Hybrid-FA can be built for all types
of regexes and thus has no limitation for practical usage. Besides,
Hybrid-FA has the minimum and acceptable preprocessing com-
plexity compared with other hybrid construction solutions. In
comparison, for SFA [16], its algorithm used to judge state conflicts
is so complex (i.e., O(N3 - L3 - |Z|'*) preprocessing complexity) that
using SFA to implement practical regex matching is infeasible.

In fact, previous state compression algorithms focus on finding
a best tradeoff between NFA and DFA (where Hybrid-FA is one of
the superior), therefore, few of them can create a data structure
with states less than corresponding NFA, and keep the matching
speed close to DFA. In consequence, NFA, DFA, and Hybrid-FA are
mainly used to do the comparison in our experiments.

114 K. Wang et al./ Computer Communications 54 (2014) 97-119

1e+06 ¢

] NFA
1e+05f B paccE
le+04 |

1e+03 |
le+02 |
1e+01 |
1e+00 |

1

L]

Preprocessing time (s logscale)

1e-01 C

ba, Bly bo, oyl . Lo, Sty Spy Sop Wep Wep Wep Wep W
Uty Slier g 0P o gl g oy b

s

Jen s Pro D 3n $B
a“’iw:»g)i s Py

Regex sets

Fig. 11. Comparison of the preprocessing time for NFA and PaCCE.

Other well-known state compression algorithms, such as XFA
[42,12], are not considered because they fail to handle the widely
existing regexes with inherent semantic overlapping. In addition,
XFA also does not support the common regex ES; - ¢* - ES, where
the suffix of ES; and the prefix of ES, are identical. Moreover, these
algorithms do need a prohibitive preprocessing duration for large
scale regex sets. For example, according to the experimental results
of XFA [42], one can figure out that the construction time of the
given XFA is between 2.5 days and 25 days, even without counting
the combination time of XFA. Although these algorithms will not
be compared in this paper, there is already a preliminary result
[30] of the comparison among Grouping [7], XFA and our solution
for the supported types of regexes in Snort, which indicates that
our solution is superior to them.

Furthermore, the algorithms used for the comparison with our
tailor-made transition compression method is D?FA [45], A-DFA
[21], and RCDFA [29]. They are the most representative software
algorithms to reduce the duplicated inter- and intra-state transi-
tions of DFA. Note that, for D?FA, the maximum default path length
is limited to 1, to guarantee that the number of memory lookups
per input character is 2 for D?FA in the worst case (which is iden-
tical with A-DFA and our method). For RCDFA, it can compress the
DFA without introducing additional memory lookups. Besides,
D2FA combined with RCDFA [29], A-DFA combined with RCDFA
[29], and our method combined with RCDFA are compared as well.

7.2. Preprocessing statistics

7.2.1. Partition results

Table 4 displays OF statistics. Comparatively, deleted, web-acti-
vex, and syn.” are more complex, because they have thousands of
OFs (i.e., 750-15,488). Especially, they have hundreds of OFs with
form ¢{} (i.e., 540-1750), which can cause DFA state inflation indi-
vidually. Besides, it is evident that the number of nonequivalent
OFs is far less than the total (as mentioned previously in Sec-
tion 4.4). For example, for backdoor, the number of nonequivalent
OFs is only 17, although the total number of OFs is 446. This facil-
itates satisfying Principles 3 and 4.

For these regex sets with more OFs, such as deleted and web-
activex, it is necessary to split their regexes into more segments
to eliminate semantic overlapping completely. Because each regex
is partitioned into at least one segment, the number of segments
must be larger than the number of regexes. For example, for deleted
in Table 4, the number of original regexes is 1315, and the number
of segments is 1620 + 1561 = 3181, larger than 1315. However,
based on the merger of equivalent segments, the number of
segments can be practically reduced. As Table 4 shows, for deteled,
the number of segments in the raw segment sets is 3181, but
the number of distinguishing segments for the merged segment
sets is 403 + 1558 = 1961. There is a large decrease (e.g.
3181 — 1961 = 1220 for deleted) for the practical number of

segments. Therefore, compared with the number of original regex-
es, the number of segments does not increase too significantly, e.g.
no more than twice for all given regex sets in Table 4. Thus, the
increase in the number of segments can be considered near-linear.

Moreover, from Table 4, one can find that not all the OFs are
partitioned in practice, because the number of segments is far less
than the number of OFs. For example, the number of OFs in the
regex set deleted is 9989, and the number of segments in the raw
segment sets is 3981, much less than 9989. In fact, according to
the analysis presented in Section 4.4, OFs with a small character
set ¢ are unlikely to cause semantic overlapping; therefore, they
are ignored for partition.

7.2.2. Preprocessing time

PaCCE preprocessing involves two steps: regex partition and
segment compilation. The total preprocessing time for PaCCE is
primarily determined by the number of states in the DFA part of
PaCCE (i.e., Nppea + Nppra), because the time required for the
compilation process is proportional to Ngpgs + Nppra, While the time
required for the partition process is proportional to Nsg and is
relatively insigniﬁcant (Ns(_‘, < Ngg - Lre < Npppa + NBDFA)-

Fig. 11 shows that the preprocessing time of PaCCE is less than
that for NFA in general. For example, for bro, the construction of
PaCCE only requires 97 s, but the construction of NFA costs over
50 min. This is because the NFA state reduction process [31] is
more time-consuming for the original regexes than the overlap-
ping-free segments. However, for deleted and web-cgi in Fig. 11,
the NFA is slightly more efficient than PaCCE. This is because both
PaCCE and NFA spend almost the same time in the process of NFA
state reduction, but PaCCE requires more time for the processes of
subset construction and DFA minimization [6]. For the most com-
plex real-world regex set deleted, constructing PaCCE only requires
less than 3 h. Besides, for syn.7, the preprocessing time of PaCCE is
about 1.5 days. In comparison, the construction of NFA requires
over 4 days for syn.7.

Because the existing state compression algorithms are mainly
based on NFA, their preprocessing time will be not better (often
be far worse) than NFA in practice. According to our simple tests,
for Grouping, Hybrid-FA, and XFA, they cost at least one order of
magnitude (above two orders of magnitude in most cases) more
preprocessing time than PaCCE for the real-world regex sets of
the supported regexes (e.g. ftp). The shorter preprocessing time
can make PaCCE practically available within tolerable update
deadlines.

7.3. Spatial performance

According to Fig. 12, the spatial performance of PaCCE is gener-
ally superior to NFA in terms of fewer number of states. This is
because Principle 4 causes massive repetitiveness among the gen-
erated segments according to Section 4.3, and thus makes the built

K. Wang et al./ Computer Communications 54 (2014) 97-119 115
1e+06 &
F|[] NFA

2 fe+05 E M PaCCE

b7 E

£ r

T let0d |

3 E

]

2 r

S 1e+03 |

"l |

fer02 acy Yy, bog, ey, Gyl Loy, St Dy, o1 ey ey Py, Yep M bry By S W
e&qo'::é[(};'le[O A 3 A R r,b-;%, VAN 'b‘;\,, s
Regex sets “r
4
Fig. 12. Comparison of the number of states for NFA and PaCCE.
Table 5
Comparison of compression ratios for D2FA, A-DFA, RCDFA, and our method (%).
Regex set D?FA A-DFA RCDFA Ours
for FDFA for BDFA for PACCE for FDFA for BDFA for PaCCE for FDFA for BDFA for PaCCE for FDFA for BDFA for PaCCE
backdoor 84.51 75.53 82.32 97.76 84.63 94.56 79.49 93.06 82.78 96.84 97.08 96.90
blacklist 87.28 79.66 85.35 98.57 90.00 96.40 90.84 98.00 92.56 98.45 96.65 98.03
botnet 84.26 83.72 83.95 98.16 93.49 95.78 79.32 96.95 88.10 98.09 96.45 97.28
deleted 90.58 N/A N/A 98.65 93.37 93.60 79.49 98.45 97.63 98.43 98.19 98.21
ftp 73.74 16.46 31.39 85.32 18.48 35.90 98.60 98.37 98.43 98.78 99.15 99.06
imap 87.33 25.95 28.22 98.25 3.21 6.73 95.90 98.40 98.31 98.73 99.15 99.14
pop3 80.22 2.93 16.67 96.67 2.93 19.60 98.77 98.80 98.80 98.89 99.18 99.13
smtp 92.48 11.02 20.57 98.34 12.23 22.32 91.33 98.03 97.24 98.76 98.71 98.72
spyware 86.60 86.92 86.79 98.70 98.33 98.45 78.30 78.17 78.22 96.59 98.12 97.58
sql 86.69 18.09 43.64 98.76 22.82 51.11 86.31 98.04 93.68 98.70 98.27 98.43
web-activex ~ 92.23 N/A N/A 99.03 98.00 98.11 87.92 98.35 97.14 97.86 98.66 98.57
web-cgi 84.21 21.68 28.52 98.22 2.42 12.92 86.17 97.16 95.95 98.39 96.49 96.70
web-iis 88.88 9.47 18.66 98.42 10.17 20.39 88.47 97.44 96.40 99.02 98.56 98.62
web-misc 85.96 8.12 20.11 98.52 8.56 22.42 75.02 96.90 93.53 98.23 98.53 98.49
web-php 86.46 42.59 64.35 98.60 45.90 72.05 82.07 94.83 88.49 98.54 97.68 98.11
bro N/A 0.38 N/A 99.09 0.41 80.44 49.55 98.83 58.86 98.04 99.22 98.27
syn.3 N/A N/A N/A 99.22 9.24 67.73 59.36 84.00 67.99 97.90 98.10 97.97
syn.5 N/A N/A N/A 99.22 9.56 48.93 59.37 84.95 73.72 97.93 98.34 98.16
syn.7 N/A N/A N/A 99.22 9.86 33.10 59.75 86.72 79.71 98.05 98.55 98.42
Regex set D2FA with RCDFA A-DFA with RCDFA Ours with RCDFA
for FDFA for BDFA for PaCCE for FDFA for BDFA for PaCCE for FDFA for BDFA for PaCCE

backdoor 96.22 97.96 96.64 98.74 98.78 98.75 98.95 99.08 98.99
blacklist 98.15 98.80 98.31 99.07 98.81 99.01 99.09 99.07 99.09
botnet 96.19 98.74 97.46 98.82 98.84 98.83 99.01 99.10 99.06
deleted 97.39 N/A N/A 98.86 99.17 99.16 98.95 99.23 99.22
ftp 98.92 98.78 98.82 98.79 98.79 98.79 99.16 99.51 99.42
imap 98.75 98.73 98.73 99.12 98.46 98.49 99.17 99.41 99.40
pop3 99.01 98.82 98.86 98.72 98.80 98.79 99.22 99.59 99.53
smtp 98.54 98.11 98.16 98.81 98.27 98.34 99.08 99.25 99.23
spyware 96.47 96.48 96.48 99.01 99.13 99.09 99.09 99.17 99.15
sql 97.46 98.49 98.11 99.14 98.55 98.77 99.17 99.49 99.37
web-activex 98.36 N/A N/A 99.18 99.19 99.19 99.19 99.20 99.20
web-cgi 97.25 97.56 97.53 99.12 97.54 97.72 99.15 99.14 99.14
web-iis 98.06 98.21 98.20 98.89 98.21 98.29 99.16 99.56 99.52
web-misc 95.94 98.00 97.69 98.84 98.06 98.18 98.97 99.41 99.35
web-php 97.01 97.90 97.46 99.13 98.07 98.60 99.20 99.37 99.29
bro N/A 98.83 N/A 99.10 98.83 99.05 99.11 99.61 99.21
syn.3 N/A N/A N/A 99.22 92.07 96.72 99.22 98.22 98.87
syn.5 N/A N/A N/A 99.22 92.95 95.71 99.22 98.39 98.76
syn.7 N/A N/A N/A 99.22 93.18 94.76 99.22 98.58 98.75

FDFA and BDFA more succinct. However, for backdoor and spyware
in Fig. 12, the number of states in PaCCE is slightly more than NFA
because PaCCE ignores the partition of the OFs with small charac-
ter set in exchange for fewer segments and better runtime perfor-
mance, which results in little semantic overlapping.

For the most complex real-world regex set deleted, PaCCE
has only 50,326 states, and for the most complex synthetic

regex set syn.7, PaCCE has only 155,536 states. In comparison,
NFA has 86,288 and 199,183 states respectively for deleted
and syn.Z, and Hybrid-FA has 199,115 and 200,303 states
respectively for deleted and syn.7. Note that the results for
Hybrid-FA are not shown in Fig. 12 because Hybrid-FA must
have larger number of states than NFA according to its design
principle.

116 K. Wang et al./ Computer Communications 54 (2014) 97-119

1e+06

le+05 | Hybrid-FA
L PaCC—xC

le+04 PaCC

le+03 |

le+02 |

1e+01 |

Memory usage (KB logscale)

1e+00 L

op, e

by by b
ey, ey
doo,.lr/'s, e

Regex sets

leg 0 P00 g, 0 S0 Ve, Pep Ve ey e Bro O 30, 00,
4 %o a“t,',,%’

R A)
QPI Use Ll

Fig. 13. Comparison of the memory usage for NFA, Hybrid-FA, PaCCE-xC, and PaCCE.

7.3.1. Scalability

Because state explosion is defused by the partition, like NFA
(see Fig. 11 and Fig. 12), the number of states of the DFA in PaCCE
increases proportionally with the scale of the regex sets. Besides, as
indicated in Table 4 and Section 7.2, the number of segments grows
linearly with the number of original regexes. Thus, the size of the
RMT in PaCCE is also proportional to the number of regexes.
Because PaCCE consists of the DFA and RMT parts, the size of PaCCE
is determined by the sizes of both DFA and RMT (although the size
of the RMT part is ignorable compared with the DFA part). Conse-
quently, PaCCE scales linearly in terms of space consumption.

7.3.2. Deflation

Due to the large repetitiveness of segments, PaCCE can have a
more succinct engine than NFA according to Section 4.3. For exam-
ple, for the regex set ftp, there are a considerable number of OFs
“['\n[{n}" (i.e., the OFs are equivalent) that have identical prefix
ESs “\s” (i.e., the OFs can be merged). Thus, the DFA can be deflated
according to Principle 4. It is evident from Fig. 12 that almost 90%
of the states are deflated (PaCCE only has 911 states but the NFA
has 7262 states) for the DFA in PaCCE for the regex set ftp.

7.3.3. Compression ratio

Table 5 shows that our transition compression method main-
tains stability with a compression ratio greater than 96% (for both
FDFA and BDFA) for all the given regex sets. This is determined by
the features of the partition because the partition enables the DFAs
to be constructed from the prescribed segments and have a large
number of regular duplicate transitions.

In contrast, the compression ratio of D?FA and A-DFA is very
unstable for the BDFA of PaCCE. For example, for the BDFA corre-
sponding to bro, both D?FA and A-DFA only achieve less than 1%
compression ratio. This is because for the BDFA, there are few
states among which most transitions are identical for the same
characters, according to the features of the segments in the seg-
ment set 2. On the contrary, for FDFA, the A-DFA algorithm almost
achieves stable and over 96% compression ratio except the 85.32%
compression ratio (for ftp), and the D?FA algorithm has a relatively
stable compression ratio between 80% and 95%. Like A-DFA, D*FA
also has a bad compression ratio (i.e., 73.74%) for the FDFA
corresponding to ftp. Besides, due to the high spatial complexity
of construction, D?FA is not applicable for the FDFA and/or
BDFA corresponding to the complex regex sets such as deleted,
web-activex, bro, and syn.”.

For RCDFA, its compression ratio also fluctuates with different
regex sets. Especially, RCDFA achieves only about 49% compression
ratio for the FDFA corresponding to bro. This is because there are
many states whose transitions are not consecutively the same,
according to the characteristics of the segments in the segment
set 1, and RCDFA can only compress the consecutively identical
transitions inside states. However, for the FDFA corresponding to

the regex sets such as ftp and pop3, RCDFA can achieve over 98%
compression ratio. For the BDFA, the compression efficiency of
RCDFA is stable (over 93%) for most of the regex sets, but only
78.17% for spyware and around 85% for syn.”.

In Table 5, the total compression ratios for PaCCE show that, our
tailor-made method is indeed superior to other algorithms and
very suitable for the PaCC solution. However, for the applications
where higher matching speed is demanded, RCDFA can be
employed instead of our method for PaCCE, because RCDFA can
achieve a good compression ratio without additional memory
lookups (i.e., its worst-case processing complexity is equal to
DFA in terms of memory access).

In fact, RCDFA can be further used to enhance other algorithms
in practice [29]. Table 5 also shows the comparison among D?FA
combined with RCDFA [29], A-DFA combined with RCDFA [29],
and our method combined with RCDFA. One can find that, the com-
bination of our method and RCDFA can make the compression ratio
of PaCCE more than 98.75% for all the regex sets, which is better
than other two schemes. Over 98.75% compression ratio means
that there are no more than 3.2 transitions in average for each state
of the compressed DFA. A-DFA combined with RCDFA can achieve
stable and over 97.54% compression ratio for all real-world regex
sets, but slightly lower compression ratio (i.e., over 94.76%) for
the synthetic regex sets. In fact, the major transition can compress
the identical transitions which are not consecutive inside states
(and thus cannot be compressed by RCDFA), therefore, the combi-
nation of our method and RCDFA is the best.

7.3.4. Memory usage

The memory footprints of NFA, Hybrid-FA, PaCCE-xC (PaCCE
without transition compression), and PaCCE are compared in
Fig. 13. According to Section 5.1, the size of PaCCE-xC can be
calculated by the formula (NFDFA =+ NBDFA) . |Z| . lng (NFDFA + NBDFA)+
Nsc - (log,(Nsg — Ngg) + log,Nge + log, (Nepra + 1)). For example, the
practical size of PaCCE-xC for imap is (168 + 4358) x 256x
2B+ 81 x (1B + 1B + 1B) = 2.3 MB. Fig. 13 shows that the size of
PaCCE-xC is one to three orders of magnitude less than the size
of Hybrid-FA for real-world regex sets. For example, the size of
Hybrid-FA for imap is up to 145 MB, much larger than the size
of PaCCE-xC. However, for the synthetic regex sets syn.”, the
size of PaCCE-xC is only a little less than the size of Hybrid-FA,
because most of the states in corresponding Hybrid-FA are NFA
states. Note that, the size of PaCCE-xC is not always smaller than
NFA although the number of states in PaCCE-xC is less than NFA
(e.g. for backdoor), because all DFA states of PaCCE-xC has 256 tran-
sitions, but the NFA states often have less than 256 transitions.

For PaCCE, its size can be calculated as (Ngpra + Nppra):
|21 (1 — Reompress) - (1083 (Nrpra + Napra) + 8) + Ng - (log, (Nsg — Nge)+
log,Nge + log, (Nrpra + 1)). For example, the size of PaCCE for imap
is (168 +4358) x 256 x (1 —99.14%) x (2B + 1B) + 81 x (1B+
1B + 1B) ~ 30 KB. According to Fig. 13, PaCCE is much smaller than

K. Wang et al./ Computer Communications 54 (2014) 97-119

—_
)
g le+03 [] DFA /cernet
§° O DFA / campus
= [] DFA/darpa
3 les02 [Hybrid-FA / cernet
% O Hybrid-FA / campus
E [0 Hybrid-FA / darpa
) B PaCCE-xC/ cernet
g 1e+01 [] PaCCE-xC / campus
= B PaCCE-xC/darpa
Ed Il PaCCE/ cernet
=]
= [| PaCCE / campus
% 1e+00 b s b) Bl PaCCE/darpa
d 1 2 S S Wep, K K K
= ac]‘dourla"’flis,ot"ﬂt Cletey W Map Popg Sy, Py Squ e \"’L‘t,,, b e eb‘Dlz ro nz Yns n
«l’
Regex sets

(a) For the cernet trace from the CERNET network, the campus trace from Tsinghua University, and the darpa trace from the MIT Lincoln Lab

le+04

T
T

T

le+03

le+02

T
T

le+01

T
T

Regex sets

b"clrdo bl"’(‘lrlls Olnes elf‘te

T

Matching time (cycle/byte logscale)

1e+00 .
"ha[, Dops Slntp Spyw

DFA/0.35

DFA /0.55

DFA /0.95
Hybrid-FA /0.35
Hybrid-FA /0.55
Hybrid-FA /0.95
PaCCE-xC /0.35
PaCCE-xC /0.55
PaCCE-xC /0.95
PaCCE /0.35
PaCCE/0.55
PaCCE /0.95

EEEEEEOOOOOO

ro Ynz Yns Yny

\. \l’h

e
act,;, X "Is

(b) For the synthetic traces that have matching probabilities of 0.35, 0.55, and 0.95

Fig. 14. Comparison of the matching time for DFA, Hybrid-FA, PaCCE-xC, and PaCCE.

NFA; close to the size of the actual regex sets. For example, for the
most complex real-world regex set deleted, the memory footprint
of PaCCE is approximately 700 KB, which is far smaller than the
1.4 MB size of NFA and closer to the 420 KB size of the regex set.
In comparison, Hybrid-FA is over 10 MB size, which is very
inefficient compared with both PaCCE and PaCCE-xC.

7.4. Temporal performance

The network traffic used for temporal performance evaluation
includes the 925 MB published darpa trace from the MIT Lincoln
Lab [46], the 1.86 GB real-world campus trace captured from
Tsinghua University, the 668 MB real-world cernet trace captured
from the CERNET network, and the 280 KB synthetic traces gener-
ated based on the given regex sets. Note that the synthetic traces
can match the regexes in the regex sets with the given probabili-
ties, i.e., 0.35, 0.55, and 0.95. The greater the probability is, the
more likely it is that regexes will be matched.

All the experiments use only one core of the 3.40 GHz CPU in
the HP Z220 SFF workstation.

7.4.1. Runtime speed

Fig. 14 shows the matching time of the rewritten DFA, Hybrid-
FA, PaCCE-xC, and PaCCE. Note that, to make DFA feasible for com-
parison, all the complex regexes beyond DFA processing capacity
are rewritten by narrowing the OFs character sets before evalua-
tion. In other words, the actual performance of DFA is worse than
the evaluated performance (ideal value). According to our simu-
lated analysis, the performance of practical DFA should be over
one order of magnitude slower than the rewritten DFA, whose size
is comparatively very small.

From Fig. 14(a), it can be observed that the speed of the PaCCE-
xC engine is quite close to and even better than DFA in terms of
lower matching time. For example, for the most complex real-
world regex set deleted, the PaCCE achieves average 16 cycle/byte

(i.e., 1.7 Gbps for 3.40 GHz CPU) performance to process the cernet,
campus, and darpa traces, but the rewritten DFA costs average 27
CPU cycles per byte. Besides, the matching speed of PaCCE-xC is
relatively stable (i.e., 16-22 cycle/byte for the real-world regex
sets, and 25-65 cycle/byte for synthetic regex sets). Besides, the
matching speed of PaCCE-xC is a little lower for darpa trace in most
cases, because the darpa trace contains the attack flows whose
content can be matched by a few real-world regexes and thus
the BDFA of PaCCE-xC can be activated sometimes.

Compared to PaCCE-xC, PaCCE is approximately 1-6 times
slower (i.e., 21-105 cycle/byte for the real-world regex sets, and
155-203 cycle/byte for the synthetic regex sets). The reason for
this can be deduced from two aspects. On one hand, the transition
compression may introduce one more state access (at most) for
each input character. On the other hand, for each state, all labeled
transitions must be compared for the input character in the worst
case due to the heterogeneous data structure of the compact DFA.
According to the compression ratio, the average number of transi-
tions in each state is between 2 (99% compression ratio) and 10
(96% compression ratio); therefore, the matching speed of PaCCE
is slightly worse. However, PaCCE is still much faster (about one
order of magnitude faster) than Hybrid-FA, which suffers from very
low performance of its NFA part.

Furthermore, Fig. 14(b) shows the performance of these algo-
rithms in the worse situations when more regexes are likely to
be matched. This means that more states are frequently traversed
in the matching engines. Due to the cache miss, the DFA speed
decreases slightly when the matching probability increases. For
Hybrid-FA, speed becomes very slow when the probability is 0.95
because, in this case, matching is fully trapped in its NFA part.
Although there are also large performance gaps between the syn-
thetic traces with different probabilities (due to the frequent acti-
vation of BDFA), the speed of PaCCE-xC (i.e., 16-276 cycle/byte for
the real-world regex sets, and 48-304 cycle/byte for the synthetic
regex sets) is still close to DFA (i.e., 12-114 cycle/byte for the

118 K. Wang et al./ Computer Communications 54 (2014) 97-119

Table 6
Statistics of per-flow state units for PaCCE.

Regex set # Of per-flow state units
Cernet trace Campus trace Darpa trace p =0.35 trace p=0.55 trace p=0.95 trace
Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg.

backdoor 2 1.000 2 1.000 2 1.000 5 1.127 7 1.566 8 2.294
blacklist 2 1.000 2 1.000 2 1.000 5 1.157 8 1.567 8 4.454
botnet 2 1.001 2 1.000 4 1.005 4 1.080 5 1.282 13 2.886
deleted 2 1.000 2 1.000 2 1.000 2 1.005 3 1.038 4 1.201
ftp 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 2 1.001
imap 2 1.000 2 1.000 2 1.000 5 1.046 8 1.392 23 5.794
pop3 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 2 1.001
smtp 2 1.000 2 1.000 3 1.008 3 1.016 4 1.081 31 6.491
spyware 3 1.001 3 1.001 2 1.157 6 1.139 6 1.191 13 5337
sql 2 1.000 2 1.000 2 1.000 8 1.099 7 1.516 8 4.065
web-activex 2 1.000 2 1.000 2 1.000 6 1.067 5 1.128 13 2.161
web-cgi 2 1.000 2 1.000 2 1.000 4 1.010 4 1.051 3 1.108
web-iis 2 1.000 2 1.000 2 1.009 3 1.003 4 1.072 3 1.093
web-misc 3 1.001 3 1.001 2 1.011 5 1.039 4 1.082 6 1.278
web-php 2 1.000 3 1.000 4 1.009 3 1.014 5 1.156 8 1.082
bro 3 1.000 3 1.000 2 1.006 5 1.206 10 1.927 42 13.035
syn.3 6 1.062 9 1.068 13 1.163 12 2916 24 8.457 43 22.977
syn.5 12 1.243 17 1.227 23 1.825 15 3.664 32 9.822 53 25.814
syn.7 16 1.410 21 1.534 28 1.908 17 4.429 39 10.565 61 27.712

real-world regex sets, and 46-197 cycle/byte for the synthetic
regex sets).

In contrast to the data presented in Fig. 14(a), the PaCCE perfor-
mance does not reduce significantly (i.e., 40-301 cycle/byte for the
real-world regex sets, and 174-395 cycle/byte for the synthetic
regex sets), because the PaCCE states can be fully cached in the
CPU LLC. Besides, the speed of PaCCE is up to two orders of magni-
tude faster than Hybrid-FA.

7.4.2. Per-flow statistics

Table 6 shows the statistics of per-flow state units for PaCCE
during the matching procedure. The results verify that the average
number of per-flow state units in PaCCE is indeed convergent and
close to one in a typical case. Due to the convergence of state units,
PaCCE-xC and PaCCE match faster than Hybrid-FA.

For the synthetic trace with probability equal to 0.95, the aver-
age number of per-flow state units is often large than 2, which
means there are always more than 2 state units in the processing
queue of state units. This is why the matching speed of PaCCE-xC
and PaCCE decreases when the probability increases.

In addition, the maximum number of per-flow state units is
often small (i.e., less than 4) for the real-world regex sets and
traces, however, for the synthetic regex sets and traces, both the
maximum and average number of per-flow state units increase.
This is the reason of performance decrease for corresponding PaC-
CE-xC and PaCCE in Fig. 14. Despite the increased number of state
units, PaCCE-xC and PaCCE are much more efficient than Hybrid-FA
in the same situation.

7.5. Matching accuracy

In the experiments, the matching accuracy of PaCCE is also ver-
ified by comparing PaCCE with Hybrid-FA in the aspect to the
matched regexes, the times of occurrences of each matched regex,
and the positions where each matched regex occurs. All of the
experiments show that the matching of PaCCE is indeed correct.

8. Conclusion

In this paper, we have described PaCC, a distinctive solution
designed to build a scalable matching engine for increasingly large
sets of complex regexes. PaCC leverages partition to disarm the

intrinsic semantic overlapping for regexes. On this basis, PaCC is
able to compile the overlapping-free regex segments into non-
explosive and super-compact DFA and further compress the DFA
by a tail-made transition compression approach. A simple RMT is
used to preserve the complete semantics of the original regexes.
Finally, PaCC combines the DFA and the RMT together to obtain a
succinct matching engine PaCCE. Benefiting from partition, PaCCE
achieves high matching performance based on the compact DFA
for large scale regex sets, and the small RMT guarantees the
semantic equivalence between PaCCE and the original regexes.
Experiments and assessments using real-world and synthetic data
verified that PaCCE is scalable (like NFA) and sufficiently fast for
practical application (like DFA).

References

[1] R. Sommer, V. Paxson, Enhancing byte-level network intrusion detection
signatures with context, in: Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2003, pp. 262-271.

[2] M. Roesch, Snort-lightweight intrusion detection for networks, in: Proceedings
of USENIX Conference on System Administration (LISA), 1999, pp. 229-238.

[3] Snort <http://www.snort.org/>.

[4] V. Paxson, Bro: a system for detecting network intruders in real-time, Comp.
Netw. 31 (23) (1999) 2435-2463.

[5] The Bro Network Security Monitor <http://www.bro.org/>.

[6] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, third ed., Addison-Wesley, 2007.

[7] E. Yu, Z. Chen, Y. Diao, T.V. Lakshman, R.H. Katz, Fast and memory-efficient
regular expression matching for deep packet inspection, in: Proceedings of
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), 2006, pp. 93-102.

[8] A. Majumder, R. Rastogi, S. Vanama, Scalable regular expression matching on
data streams, in: Proceedings of ACM SIGMOD, 2008, pp. 161-172.

[9] J. Rohrer, K. Atasu, J. van Lunteren, C. Hagleitner, Memory-efficient distribution
of regular expressions for fast deep packet inspection, in: Proceedings of IEEE/
ACM International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2009, pp. 147-154.

[10] S.Kumar, B. Chandrasekaran, J. Turner, G. Varghese, Curing regular expressions
matching algorithms from insomnia, amnesia, and acalculia, in: Proceedings of
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), 2007, pp. 155-164.

[11] M. Becchi, P. Crowley, Extending finite automata to efficiently match perl-
compatible regular expressions, in: Proceedings of ACM CoNEXT, 2008, pp. 1-
12.

[12] R. Smith, C. Estan, S. Jha, S. Kong, Deflating the big bang: fast and scalable deep
packet inspection with extended finite automata, in: Proceedings of ACM
SIGCOMM, 2008, pp. 207-218.

[13] D. Pasetto, F. Petrini, V. Agarwal, Tools for very fast regular expression
matching, Computer 43 (3) (2010) 50-58.

[14] M. Becchi, P. Crowley, A hybrid finite automaton for practical deep packet
inspection, in: Proceedings of ACM CoNEXT, 2007, pp. 1-12.

http://www.snort.org/
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0020
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0020
http://www.bro.org/
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0030
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0030
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0030
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0065
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0065

K. Wang et al./ Computer Communications 54 (2014) 97-119 119

[15] Y. Xu,]. Jiang, Y. Song, T. Jiang, H.]. Chao, i-dfa: A Novel Deterministic Finite
Automaton Without State Explosion, Tech. rep., Technical report, Polytechnic
Institute of New York University, Brooklyn, NY, 2010.

[16] Y.E. Yang, V.K. Prasanna, Space-time tradeoff in regular expression matching
with semi-deterministic finite automata, in: Proceedings of IEEE INFOCOM,
2011, pp. 1853-1861.

[17] C. Liu, J. Wu, Fast deep packet inspection with a dual finite automata, IEEE
Trans. Comp. 62 (2) (2013) 310-321.

[18] B.C. Brodie, D.E. Taylor, RK. Cytron, A scalable architecture for high-
throughput regular-expression pattern matching, in: Proceedings of
International Symposium on Computer Architecture (ISCA), 2006, pp. 191-202.

[19] S. Kumar, J. Turner, J. Williams, Advanced algorithms for fast and scalable deep
packet inspection, in: Proceedings of ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS), 2006, pp. 81-92.

[20] M. Becchi, S. Cadambi, Memory-efficient regular expression search using state
merging, in: Proceedings of IEEE INFOCOM, 2007, pp. 1064-1072.

[21] M. Becchi, P. Crowley, An improved algorithm to accelerate regular expression
evaluation, in: Proceedings of ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), 2007, pp. 145-154.

[22] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, A. Di Pietro, An
improved dfa for fast regular expression matching, ACM SIGCOMM Comp.
Commun. Rev. (CCR) 38 (5) (2008) 29-40.

[23] C.R. Meiners, J. Patel, E. Norige, E. Torng, AX. Liu, Fast regular expression
matching using small tcams for network intrusion detection and prevention
systems, in: Proceedings of USENIX Conference on Security, 2010, pp. 1-16.

[24] Y. Qi, K. Wang,]. Fong, Y. Xue,]. Li, W. Jiang, V. Prasanna, Feacan: Front-end
acceleration for content-aware network processing, in: Proceedings of IEEE
INFOCOM, 2011, pp. 2114-2122.

[25] T. Liu, Y. Yang, Y. Liu, Y. Sun, L. Guo, An efficient regular expressions
compression algorithm from a new perspective, in: Proceedings of IEEE
INFOCOM, 2011, pp. 2129-2137.

[26] K. Peng, S. Tang, M. Chen, Q. Dong, Chain-based dfa deflation for fast and
scalable regular expression matching using tcam, in: Proceedings of ACM/IEEE
Symposium on Architectures for Networking and Communications Systems
(ANCS), 2011, pp. 24-35.

[27] J. van Lunteren, A. Guanella, Hardware-accelerated regular expression
matching at multiple tens of gb/s, in: Proceedings of IEEE INFOCOM, 2012,
pp. 1737-1745.

[28] J. Patel, A.X. Liu, E. Torng, Bypassing space explosion in regular expression
matching for network intrusion detection and prevention systems, in:
Proceedings of Annual Network and Distributed System Security Symposium
(NDSS), 2012, pp. 1-15.

[29] R. Antonello, S. Fernandes, D. Sadok, J. Kelner, G. Szabo, Deterministic finite
automaton for scalable traffic identification: the power of compressing by
range, in: Proceedings of IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2012, pp. 155-162.

[30] K. Wang,]. Li, Towards fast regular expression matching in practice, in:
Proceedings of ACM SIGCOMM, 2013, pp. 531-532.

[31] Regular Expression Processor <http://regex.wustl.edu/>.

[32] R. Sidhu, V.K. Prasanna, Fast regular expression matching using fpgas, in:
Proceedings of IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2001, pp. 227-238.

[33] B.L. Hutchings, R. Franklin, D. Carver, Assisting network intrusion detection
with reconfigurable hardware, in: Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2002, pp. 111-120.

[34] C.R. Clark, D.E. Schimmel, Efficient reconfigurable logic circuits for matching
complex network intrusion detection patterns, in: Proceedings of International
Conference on Field Programmable Logic and Applications (FPL), 2003, pp.
956-959.

[35] J. Bispo, L. Sourdis, J.M.P. Cardoso, S. Vassiliadis, Regular expression matching
for reconfigurable packet inspection, in: Proceedings of IEEE International
Conference on Field Programmable Technology (FPT), 2006, pp. 119-126.

[36] I. Sourdis, J. Bispo, J.M.P. Cardoso, S. Vassiliadis, Regular expression matching
in reconfigurable hardware,]. Sig. Process. Syst. 51 (1) (2008) 99-121.

[37] N. Yamagaki, R. Sidhu, S. Kamiya, High-speed regular expression matching
engine using multi-character nfa, in: Proceedings of International Conference
on Field Programmable Logic and Applications (FPL), 2008, pp. 131-136.

[38] Y.E. Yang, W. Jiang, V.K. Prasanna, Compact architecture for high-throughput
regular expression matching on fpga, in: Proceedings of ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS), 2008,
pp. 30-39.

[39] H. Wang, S. Pu, G. Knezek, J. Liu, A modular nfa architecture for regular
expression matching, in: Proceedings of ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), 2010, pp. 209-218.

[40] N. Cascarano, P. Rolando, F. Risso, R. Sisto, infant: Nfa pattern matching on
gpgpu devices, ACM SIGCOMM Comp. Commun. Rev. (CCR) 40 (5) (2010)
20-26.

[41] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, Q. Dong, Gpu-based nfa
implementation for memory efficient high speed regular expression matching,
in: Proceedings of ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2012, pp. 129-140.

[42] R. Smith, C. Estan, S. Jha, Xfa: Faster signature matching with extended
automata, in: Proceedings of IEEE Symposium on Security and Privacy (SSP),
2008, pp. 187-201.

[43] J. Hopcroft, An n log n Algorithm for Minimizing States in a Finite Automaton,
Tech. rep., Technical report, Stanford University, Stanford, CA, 1971.

[44] S. Zhang, H. Luo, B. Fang, C. Yun, An efficient regular expression matching
algorithm for network security inspection, Chin. J. Comp. 33 (10) (2010) 1976-
1986 (in Chinese).

[45] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley,]J. Turner, Algorithms to
accelerate multiple regular expressions matching for deep packet inspection,
in: Proceedings of ACM SIGCOMM, 2006, pp. 339-350.

[46] Darpa Intrusion Detection Data Sets <http://www.ll.mit.edu/mission/
communications/cyber/CSTcorpora/ideval/data/>.

http://refhub.elsevier.com/S0140-3664(14)00284-9/h0085
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0085
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0110
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0110
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0110
http://regex.wustl.edu/
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0180
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0180
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0200
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0200
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0200
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0220
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0220
http://refhub.elsevier.com/S0140-3664(14)00284-9/h0220
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/

	Practical regular expression matching free of scalability and performance barriers
	1 Introduction
	2 Related work
	3 Regular expression dissection
	3.1 Semantic overlapping
	3.2 Relationship to state explosion
	3.2.1 Type 1: ?
	3.2.2 Type 2: ?
	3.2.3 Type 3: ?
	3.2.4 Type 4: ?
	3.2.5 Type 5:^ ?
	3.2.6 Type 6: ?

	3.3 Life conditions
	3.4 Removal

	4 Partition procedure
	4.1 Definition
	4.2 Principles for overlapping-free partition
	4.2.1 Free of intra-segment overlapping
	4.2.2 Free of inter-segment overlapping

	4.3 Principle for compressive partition
	4.4 Principle-driven universal mechanism
	4.5 Overall procedure

	5 Compilation procedure
	5.1 Construction and transformation
	5.2 Compression
	5.2.1 Transition redundancy
	5.2.2 Algorithm design

	5.3 Combination

	6 Matching procedure
	6.1 Runtime processing mechanism
	6.2 Overall procedure
	6.2.1 Explanation
	6.2.2 Demonstration
	6.2.3 Dynamic merger of state units

	6.3 Proof of matching accuracy
	6.3.1 For compact Front-end and Back-end DFAs
	6.3.2 For PaCCE

	6.4 Performance advantages

	7 Experimental evaluation
	7.1 Test environment
	7.1.1 Regex sets
	7.1.2 Algorithms for comparison

	7.2 Preprocessing statistics
	7.2.1 Partition results
	7.2.2 Preprocessing time

	7.3 Spatial performance
	7.3.1 Scalability
	7.3.2 Deflation
	7.3.3 Compression ratio
	7.3.4 Memory usage

	7.4 Temporal performance
	7.4.1 Runtime speed
	7.4.2 Per-flow statistics

	7.5 Matching accuracy

	8 Conclusion
	References

