
FREME: A pattern partition based engine for fast and scalable regular
expression matching in practice

Kai Wang a,n, Jun Li a,b

a Research Institute of Information Technology (RIIT), Tsinghua University, Beijing, China
b Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, China

a r t i c l e i n f o

Article history:
Received 17 June 2014
Received in revised form
28 March 2015
Accepted 12 May 2015
Available online 4 June 2015

Keywords:
Regular expression matching
Deep inspection
Pattern partition
Deterministic finite automata (DFA)

a b s t r a c t

Regular expression matching has been widely used in modern content-aware network devices, where
the content of interest (i.e., patterns) is often specified by regular expressions. Due to the ever-increasing
number of patterns, implementing fast and scalable regular expression matching becomes a big
challenge. Practical solutions rely mainly on a variety of deterministic finite automata (DFA) deflation
techniques, but cannot guarantee both high speed and linear scalability simultaneously.

To fully address the problem, in this paper, we present a fundamentally different design: (1) following
principles to partition all regular expression patterns (in the given pattern set) into segments, so that
state explosion never occurs when converting these segments to DFA, and (2) compiling the resulting
segments and their syntagmatic relations, respectively, into DFA and relation mapping table (RMT),
which together make up the final matching engine named FREME.

Despite the pattern partition, FREME does not sacrifice any matching correctness with the aid of RMT.
Evaluation based on real-world pattern sets (open source and commercial) shows that FREME scales
linearly with the size of pattern set, meanwhile keeps fast matching based on nonexplosive DFA. In
contrast, FREME outperforms state-of-the-art matching engines up to two orders of magnitude.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In TCP/IP network, given a set of patterns specified by regular
expressions, the regular expression matching problem is to inspect the
payload of every packet in each network flow, and find out all the
patterns that occurred.

Modern content-aware network devices increasingly rely on regular
expression matching to search the content of interest (i.e., patterns) in
network flows. Particularly, by defining the patterns of application-
layer attacks (e.g. SQL injection attack) or application-layer protocols (e.
g. P2P filesharing protocol) through regular expressions (Sommer and
Paxson, 2003), the regular expression matching component can
provide the function of intrusion detection/prevention in network
security devices (Roesch, 1999; www.snort.org; Paxson, 1999; http://
www.bro.org; http://www.clamav.net), or protocol identification in
network monitoring devices (http://l7-filter.clearfoundation.com).

However, due to lack of algorithmic scalability, regular expres-
sion matching is still a performance bottleneck in practical net-
work processing. Even worse, with the rapid development of

Internet applications, the number of developed regular expression
patterns is increasing sharply. One can find that, in the popular
Snort intrusion detection system (IDS) (Roesch, 1999; www.snort.
org), the number of rules using regular expression patterns has
evolved from 1131 (February 2006) to 13,605 (February 2014) over
the past eight years. As a result, it is a big challenge at present to
achieve fast and scalable regular expression matching.

1.1. Background

In theory, regular expression matching is performed using either
nondeterministic finite automata (NFA) or deterministic finite auto-
mata (DFA) (Hopcroft et al., 2006). NFA is built from regular expression
patterns by following McNaughton–Yamada (1960) construction or
Thompson (1968) construction first and then NFA reduction (Hopcroft
et al., 2006), and DFA is further constructed based on NFA by using
subset construction (Hopcroft et al., 2006) first and then DFA mini-
mization (Hopcroft, 1971).

NFA has a compact data structure, and its size (i.e., number of
states) grows linearly with the size (i.e., number of patterns) of
pattern set. This makes NFA an ideal solution to perform scalable
regular expression matching in terms of memory usage. However,
NFA demands high memory bandwidth because (1) it needs to
access many concurrent active states for each input character, to

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2015.05.012
1084-8045/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author at: Research Institute of Information Technology (RIIT),
Tsinghua University, Beijing, China.

E-mail addresses: wang-kai09@mails.tsinghua.edu.cn (K. Wang),
junl@tsinghua.edu.cn (J. Li).

Journal of Network and Computer Applications 55 (2015) 154–169

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.05.012
http://dx.doi.org/10.1016/j.jnca.2015.05.012
http://dx.doi.org/10.1016/j.jnca.2015.05.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.05.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.05.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.05.012&domain=pdf
mailto:wang-kai09@mails.tsinghua.edu.cn
mailto:junl@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.jnca.2015.05.012

keep track of all candidate state transition paths leading to the
match states, and (2) it must compare the input character with all
fan-out transitions in each currently active state, to determine all
next states to be activated, so that it suffers very slow matching
speed when memory bandwidth is insufficient in practical devices.
In worst case, the processing complexity of NFA is OðNP � L2PÞ
(where NP is the number of patterns, LP is the average length of
patterns) (Yu et al., 2006). Thus, NFA does not suit high-bandwidth
network environments.

On the contrary, DFA has a homogeneous data structure,1 and
only requires precisely one state transition lookup per input
character (i.e., Oð1Þ processing complexity). This merit makes
DFA always fast and the prior choice for practical network
processing. Unfortunately, along with the increase of the size of
pattern set, DFA often exhibits an exponentially growing size, and
its worst-case space cost is OðjΣ jNP �LP Þ (where jΣ j is the size of
alphabet) (Yu et al., 2006). This is the well-known state explosion
problem of DFA. Consequently, DFA tends to require prohibitive
memory overhead, so that it is hard to be widely used.

1.2. Prior art

In order to implement high-performance regular expression
matching and support large-scale pattern sets in practice, prior work
mainly focuses on deflating the DFA by a variety of state compression
techniques (Yu et al., 2006; Rohrer et al., 2009; Fu et al., 2014; Becchi
and Crowley, 2007; Liu and Wu, 2013; Kumar et al., 2007; Becchi and
Crowley, 2008; Smith et al., 2008a, 2008b; Yang and Prasanna, 2011).

According to the prior work, it is the semantic overlapping (or
overlapping for short) of regular expression patterns that leads
DFA to explode. Further, the inter-pattern overlapping can cause
that given two or more patterns, the size of the composite DFA
built from them together increases far more than the total size of
the DFAs built from each of them independently (Becchi and
Crowley, 2007; Smith et al., 2008b). In addition, the intra-pattern
overlapping can make the size of the DFA merely built from one
single pattern expand exponentially (Becchi and Crowley, 2007).

Yu et al. (2006) first propose two solutions to deflate DFA. One,
called pattern grouping, uses greedy heuristics to divide the given
patterns into fewest groups where all the patterns have limitative
inter-pattern overlapping, and constructs independent DFA for
each group of patterns. This can efficiently trade decreased speed
by a factor of tens (due to multiple DFAs running in parallel) for
reduced memory by several orders of magnitude (due to mitigated
inter-pattern overlapping inside each group). However, the num-
ber of required groups to avoid semantic overlapping largely
depends on the scale and the complexity of the given pattern
set, making this solution unscalable in performance. The other,
called pattern rewrite, is against the intra-pattern overlapping.
Unfortunately, pattern rewrite not only breaks the semantic
equivalence, but also fails to treat a number of patterns ignored
by the authors.2 Rohrer et al. (2009) convert the grouping problem
into an energy minimization problem, and employ heuristic
optimization algorithm to improve the spatial and temporal
performance tradeoff. Fu et al. (2014) further improve the estima-
tion method of state explosion among different patterns, and
present the grouping scheme based on intelligent evolutionary
algorithms to achieve less groups on the premise of the same
deflation effect. Nevertheless, the aforementioned problems
still exist.

Becchi and Crowley (2007) and http://regex.wustl.edu present
the design of Hybrid Finite Automata (Hybrid-FA) afterwards.
Hybrid-FA aims to obtain high speed by transforming partial NFA
states (whose NFA-to-DFA conversion will not cause a great
increase in DFA states) to a single head-DFA, and prevent the
occurrence of state explosion by retaining other NFA states as a set
of tail-NFAs. Such a design is effective when the process concen-
trates on the head-DFA, but will incur great performance reduction
when the process is enslaved to the tail-NFAs. (This happens if a
border state between head-DFA and tail-NFAs is activated.)
Although the authors emphasize that the tail-NFAs could be
further converted to tail-DFAs, and give the detailed demonstra-
tion as well, it can be proven that this conversion is infeasible if
the pattern segments corresponding to a single tail-NFA still have
semantic overlapping.3 Liu and Wu (2013) designed the dual finite
automata (dual FA), which is similar to Hybrid-FA in fact, but uses
a linear finite automata (LFA) to represent the NFA states causing
DFA state explosion and an extended DFA (EDFA) to represent the
remainder. The dual FA has the same problem as Hybrid-FA.

Kumar et al. (2007) propose an alternative representation of
patterns without incurring state explosion, named History based
Finite Automata (H-FA). In comparison with DFA, H-FA brings in
auxiliary flag/counter variables to replace the essential but dupli-
cated states caused by inter-pattern overlapping, substitutes the
variable calculation for the state transition of the replaced states,
and uses variable values as well as an active state to track the
matching history. Further, Becchi and Crowley (2008) extend the
design of H-FA to Counting-FA, so as to support patterns with
intra-pattern overlapping. However, as a key problem, the design
of both H-FA and Counting-FA is ad-hoc for various patterns and
has no uniform model for systematic construction, therefore it is
limited to transform a large-scale pattern set to a general H-FA or
Counting-FA with manageable number of variables and states.

Smith et al. (2008a,b) consider that incorporating state vari-
ables in DFA is a right direction, and propose a formal model called
Extended Finite Automata (XFA). Compared with H-FA and Count-
ing-FA, XFA has specific mathematic definition, and its auxiliary
variables as well as manipulating instructions have unified coding,
thus it can be systematically constructed and performed. The
authors argue that XFA achieves good performance in terms of
memory space versus run time tradeoff. However, it is not proven
that XFA can deal with all kinds of intra-pattern overlapping. (The
authors themselves also mention this problem in their original
work Smith et al., 2008a.)4 Furthermore, in terms of practicability,
constructing XFA does need a prohibitive duration for large-scale
pattern sets.5 Although Pasetto et al. (2010) and Huang et al.
(2013) respectively present the DotStar algorithm and TCAM-
based CFA algorithm to further compress XFA, these methods do
not solve the above problems XFA has.

Yang and Prasanna (2011) introduce the Semi-deterministic
Finite Automata (SFA) recently, to avoid state explosion from a
theoretical perspective. When constructing SFA from NFA, a ”state
grouping” heuristics is used to cluster all the NFA states into

1 A data structure is said to be homogeneous if all of its elements are of the
same data type.

2 For example, pattern rewrite does not apply to a more general pattern like
, although it can treat the exemplified pattern

as the authors argue in their work (Yu et al., 2006).

3 As an example, for the Hybrid-FA built from two real-world patterns
and (www.snort.org),

its two tail-NFAs correspond to the two pattern segments
and , respectively, where the latter still has intra-pattern over-
lapping and cannot be converted to tail-DFA.

4 Note that the pattern exemplified in their further work
(Smith et al., 2008b) begins with a character , which is exclusive in the
character set of the pattern segment , and such a pattern has
no intra-pattern overlapping (both its NFA and DFA have only 205 states, while the
DFA of has over 5�1028 states).

5 According to the data provided by the authors (Smith et al., 2008a), one can
figure out that the construction time of the given XFA is between 2.5 days and 25
days, even without counting the combination time.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169 155

fewest subsets where corresponding NFA states have no pair-wise
conflicts (i.e., overlapping between state transitions), and SFA
consists of the constituent DFAs (c-DFAs) converted from each
subset of NFA states. SFA is a good theory model to find a best
tradeoff between NFA and DFA, but the algorithm used to judge
state conflicts is so complex (i.e., OðN2

P � L2P � jΣ j LP Þ processing
complexity) that using SFA to implement large-scale regular
expression matching is infeasible in practice.

1.3. Our contribution

As a whole, although considerable contributions have been
made in prior work, the proposed solutions still suffer unscalable
algorithms or data structures, and thus cannot tackle the challenge
comprehensively.

Recalling the entire problem, one can find that the root cause of
state explosion lies in the syntaxes of regular expression patterns,
rather than DFA itself, because DFA built from exact string patterns
does not have this problem at all (Yu et al., 2006). This means that
DFA deflation is not the best research orientation. Fundamentally
different from prior work, in this paper, we focus on directly
removing the semantic overlapping from patterns themselves, to
lay a foundation for constructing nonexplosive DFA.

To this end, this paper presents heuristic pattern partition
briefed in Wang and Li (2013), to split all the patterns of the given
pattern set into pattern segments without semantic overlapping.
Then, we propose the fast regular expression matching engine
(FREME) make up of DFA and relation mapping table (RMT), based
on the resulting segments as well as their syntagmatic relations.

The key contributions of this paper are fourfold:

� The principles and heuristics of pattern partition are presented,
to provide the foundation of linear scalability for FREME.

� A DFA-based but compact data structure as the prototype of
FREME is proposed on the premise of pattern partition, to gain
fast regular expression matching in practice, and the mathe-
matical description of FREME is formalized.

� A matching algorithm as the core of FREME is designed, to
guarantee no false positive or false negative compared to
original patterns.

� A set of optimization schemes based on the nature of FREME is
introduced, to further improve the performance of FREME.

The evaluation for our solution uses large-scale sets of regular
expression patterns obtained from real-world Snort rules (www.snort.
org), Bro rules (http://www.bro.org), ClamAV rules (http://www.
clamav.net), L7-filter rules (http://l7-filter.clearfoundation.com) and
two commercial application-aware products. Experimental results
show that FREME indeed approaches or even excels NFA in terms of
both small memory usage and short construction time, meanwhile
keeps fast matching speed comparable with DFA. Besides, FREME
outperforms prior art (Yu et al., 2006; Becchi and Crowley, 2007;
Smith et al., 2008b) up to two orders of magnitude in both spatial
performance (i.e., smaller memory usage) and temporal performance
(i.e., faster processing speed and shorter construction time).

1.4. Roadmap

The remainder of this paper is organized as follows: we discuss
the motivation of our work and present the detailed pattern
partition in Section 2. The design of matching engine and match-
ing procedure is proposed in Section 3. Section 4 further intro-
duces the optimization schemes for our solution. After the
experimental results shown in Section 5, we conclude this paper
in Section 6.

2. Heuristic pattern partition

In this section, we will describe the motivation and the
approach of pattern partition, to solve the state explosion problem
existing in patterns themselves.

2.1. Semantic overlapping

First of all, inorder to facilitate the textual description of this
paper, it is necessary to formulate the regular expression syntaxes
below using the prescribed terms:

� Character set (ϕ): The union set of characters,including the
proper subset of the alphabet Σ (with form as ½c1c2 � � � ck� or
[\widehatc1c2 ⋯ck],where ckAΣ),and the universal set named
wildcard (with form as .).

� Boundless counting constraint: The combination of character set
and Kleene closure,namely the character set repeating unlim-
ited times (with form as ϕn). In particular,the combination of
wildcard and Kleene closure is called dot-star (i.e.,.n).

� Constant counting constraint: The combination of character set
and fixed n times constraint (with form as ϕfng,where nAZþ).

� Infimum counting constraint: The combination of character set
and at least n times constraint (with form as ϕfn;g,where
nAZþ).

� Supremum counting constraint: The combination of character
set and finite m-to-n times constraint (with form as ϕfm;ng,
where mAZn, nAZþ , mon).

� Overlapping factor (OF): The general term of ϕn, ϕfng, ϕfn;g and
ϕfm;ng.

Compared with exact string patterns, regular expression pat-
terns introduce two basic operators Kleene closure (n) and alter-
nation ðj Þ, in addition to the identical operator concatenation (�).
Therefore, they provide an expressive power that far exceeds exact
string patterns. For example, c1 n stands for a string with zero or
more c1 characters, and ½c1c2�, i.e., ðc1 j c2Þ, corresponds to an
optional set of characters c1 and c2. Based on the two additional
operators, regular expression patterns can express ϕn, ϕfng, ϕfn;g,
and ϕfm;ng. In this paper, we refer to these four types of syntaxes
as OFs.

As a lot of previous work summarizes, it must be the OFs that
cause the DFA of corresponding regular expression patterns to
explode (Yu et al., 2006; Becchi and Crowley, 2007; Smith et al.,
2008b). On the contrary, due to no OF, exact string patterns never
suffer such a state explosion problem.

Take Patterns 1 and 2 listed in Table 1 for example. The NFA for
the pattern set of Patterns 1 and 2 has 19 states, but corresponding
DFA expands to 36 states. In contrast, one can find that both the
NFA and the DFA for the pattern set of string patterns
and have 19 states. It is not hard to see that the only
difference between these two pattern sets is the additional OFs

existing in Patterns 1 and 2. Likewise, Table 1 shows the
NFA for the pattern set of the single Pattern 3 only has 10 states,
but corresponding DFA has up to 26 states.

The root cause of state explosion lies in the possible semantic
overlapping between the OF and the pattern where the OF belongs
(i.e., intra-pattern overlapping) or other patterns (i.e., inter-pattern
overlapping) (Becchi and Crowley, 2007; Smith et al., 2008b). In
this paper, we define semantic overlapping as follows.

Definition 1. Semantic overlapping means for given pattern set
SP, (overlapping semantics Λ, the DFA for SP must use additional
state copies to represent Λ in comparison with corresponding NFA,
otherwise, it can cause false negative in pattern matching.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169156

A simple pattern example to illustrate semantic overlapping is
, where the OF can cause semantic over-

lapping coupled with the prefix , because this pattern must
be able to recognize two types of semantics, i.e., whether or not
the prefix occurs in the strings which match the OF. For the
regular semantics Λ1, it could be the string “abcdxxxxxxxefg”
(where ‘x’ is any character except for ‘d’), while for the overlapping
semantics Λ2, it could be the string “abcdxxxabcdefg”. Hence, if Λ2

cannot be represented together with Λ1, then the valid match of
“abcdefg” within Λ2 will be missed.

To keep track of the overlapping semantics, NFA adopts non-
deterministic transitions for each state, and thus can activate
multiple states simultaneously during runtime matching. Unlike
NFA, DFA employs extra duplicated states to represent all over-
lapping semantics beforehand, where each state records one
milestone to match possible semantics to keep the deterministic
one state transition per input character. For the above-mentioned
example, the NFA and DFA have 8 and 11 states respectively, and
the additional 3 states in the DFA are just added to track the
overlapping semantics Λ2, i.e., the prefix occurs when the
OF is matched. This indicates that semantic overlapping is
the root of DFA state inflation. In the worst case, it will cause
corresponding DFA to explode.

A necessary but insufficient condition for the occurrence of
semantic overlapping is that (OF and pattern P in pattern set SP,
OF intersects with P in regular expression semantics.

Consider pattern (segment) X and pattern (segment) Y, where
X's kth ð0okr jX j Þ character (set) is ϕXk ðϕXkDΣÞ, and Y's kth
ð0okr jY j Þ character (set) is ϕYk ðϕYkDΣÞ. We define that X
intersects with Y, or XFY as below.

Definition 2. (i ð0o irminðjX j ; jY j ÞÞ; 8 jr i, (character pAϕXj
where pAϕYj, meanwhile (character qAϕXi where q=2ϕYi, then
XFY .

In the example above, the OF of Pattern 1 can cover
(i.e., intersect with) the entire Pattern 2 in regular expression
semantics (see inter-pattern examples of Pattern 1 in Table 1).
Therefore, their corresponding DFA requires extra states (i.e., the
states with hollow circles in Fig. 1a) to identify all such overlapping
semantics. As shown in the DFA of Fig. 1a, the states to represent
Pattern 2 (states 10–18) are duplicated (states 27–35) at the place
where the OF exist (at state 05). In the same way, the OF of Pattern
2 can also lead to the duplication of the states representing Pattern
1. This is just the polynomial inflation caused by inter-pattern
overlapping.

Note that in Fig. 1, all the states in NFA and DFA (denoted as
circle with number) and only the significant state transitions
(denoted as arrow with character) are drawn. Taking the state
transition, the state will get to the next-hop state. For example, in
Fig. 1a, NFA will transfer to state 02 if the current state is state 01
and the current input character is ‘i’, and NFA will transfer to next-
hop states 0 and 01 simultaneously if the current state is state

0 and the current input character is ‘f’ (the arrow with mark n

means arbitrary character). However, in Fig. 1a, DFA can only
transfer to a single state at any time. For example, DFAwill transfer
to next state 01 when the current state is state 0 and the input
character is ‘f’.

For Pattern 3, its OF can partially intersect with
itself, resulting in the duplication of different lengths (e.g. states
16–19, the copies of states 01–04 in Fig. 1b) to represent the
overlapping semantics (see intra-pattern examples of Pattern 3 in
Table 1). This is the exponential explosion due to intra-pattern
overlapping. Note that the OFs leading to intra-pattern overlap-
ping can also cause inter-pattern overlapping to a great extent

NFA

0

01

10

02

11

03

12

04

13

05

14

06

15

07

16

08

17

09/1

18/2

*

f i l e = . e x e

p a t h = / b i n

[^\r\n]
[^\r\n]

DFA

0

01

10

02

11

03

12

04

13

05

14

06

15

07

16

08

17

09/1

18/2

f i l e = . e x e

p a t h = / b i n

[^\r\n.p]

[^\r\n/f]

27 28 29 30 32 33 34 35/2
a t h

=

.

b i n

19 20 21 22 23 24 25 26/1
i l e

=

/

e x e

31[^fp] [^\r\n./]

f

p

NFA

0 01 02 03 04 05 06 07 08 09/3*
c m d = [^\n]

DFA

0 01 02 03 04 05 06 07 08 09/3
c m d =

[^\n] [^\n] [^\n] [^\n]

[^c\n] [^c\n] [^c\n] [^c\n] [^c\n]

11

10/3

20

16

21

13

17

22

14

18

23

12/3

15/3

19/3

24/3

25/3

c

c m

c m d

c m d =

c m d =

c

[^c\n]

[^c]

Fig. 1. NFA versus DFA (some state transition edges omitted for clarity): (a) for the
pattern set of Patterns 1 and 2 and (b) for the pattern set of Pattern 3.

Table 1
The analysis of semantic overlapping for the example set of regular expression patterns.

ID Pattern # of States Overlapping semantics

NFA DFA NFA DFA Intra-pattern examples Inter-pattern examples

1 10 10 19 36 ⧹ file¼xxxpath¼xxx/binxxx.exe

2 10 10 ⧹ path¼xxxfile¼xxx.exexxx/bin

3 10 26 30 154 cmd¼xcmd¼xxxxx cmd¼www.xxx.org/xxx.shtml

4 21 48 www.xxx.org/www.shtml.org/xxx.shtml www.xxx.org/cmd¼x.shtml

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169 157

(see inter-pattern examples of Pattern 3 in Table 1), and thus are
the fatal factors of state explosion.

2.2. Motivating example

According to the previous analysis, the state explosion problem
can be resolved if the OFs have no chance to intersect with
patterns.

Intuitively, if Patterns 1 and 2 are respectively rewritten into
and , then the two

modified OFs are impossible to intersect with the opposite pattern
due to the exclusion of the heading character, and the DFA for the
pattern set of the two modified patterns will have only 19 states,
equal to corresponding NFA. Besides, if Pattern 3 is anchored at the
beginning, that is , then its OF cannot produce
intra-pattern overlapping as well, because in this case, the prefix

of the OF can only occur at the start (i.e., never
intersected with the position of the OF) of the string the pattern
is applied to, and corresponding DFA will not explode.

One can find that the two rewriting ways both come at the
expense of the sacrificed semantics of original patterns. But we are
motivated to consider that first remove the semantic overlapping
from the given patterns to defuse DFA, and eventually recover the
complete semantics of original patterns based on the nonexplosive
DFA. To this purpose, we present the idea of pattern partition.

Table 2 reveals the result of pattern partition for Patterns 1–4
listed in Table 1. Note that when a pattern is partitioned into
multiple segments, all of them except the first one must be
anchored at the beginning via a caret (e.g.),6

to guarantee the concatenate matching for adjacent segments (this
will be further explained in Section 3.1). As Table 2 shows, Patterns
1–3 are all split into two segments. However, for a pattern with
more OFs whose semantics are more extensive, multi-section
partition is required to completely eliminate the possible over-
lapping stemmed from every OF. Therefore, Pattern 4, which has
OF ϕn and OF ϕfm;ng, is necessarily split into four segments listed
in Table 2. In particular, the segment is simplified to

, because “anchored dot-star” is equivalent to “unanchored”
in regular expression syntax.

Further, the resulting segments are divided into two categories
(i.e., Groups 1 and 2 in Table 2), where one contains all the first
segments (no matter whether to be unanchored) of each pattern
(e.g.) as well as all unanchored non-first segments (e.g.

), and the other contains all the remaining anchored non-
first segments (e.g.). In other words, all these
pattern segments could be complied into at most two DFAs.

According to the previously mentioned analysis, semantic over-
lapping of a pattern could be removed if the pattern is anchored.
Fortunately, the non-first segments resulting from the partition must
be anchored. Therefore, the OFs should naturally be kept in the
anchored non-first segments. However, for arbitrary patterns having
OFs, regardless of whether they are anchored or unanchored, they are
very likely to cause semantic overlapping with the unanchored
patterns (e.g. the segment will cause semantic
overlapping with the segment). This is why it is necessary to
divide the partition-derived segments into two categories.

As Table 2 implies, the two DFAs corresponding to the seg-
ments of partitioned Patterns 1–4 only have 48 states in total, the
same as the NFA corresponding to original Patterns 1–4, while the
DFA for the pattern set of Patterns 1–4 has up to 1058 states (i.e., a
state inflation factor of more than 20). It is thus clear that pattern
partition is effective to defuse state explosion.

It is nontrivial to notice that the semantic equivalence between
the resulting segments and the original patterns is recoverable,
and this will be discussed in detail in Section 3.

2.3. Principles for explosion-free partition

Random partition cannot guarantee that the resulting seg-
ments for the partitioned patterns (with OFs) correspond to a
nonexplosive DFA. For example, if Pattern 1 is partitioned into

and , rather than the segments shown in
Table 2, then the first segment can still make
corresponding DFA inflate when combining with the first segment

of Pattern 2.
In order to achieve explosion-free pattern partition, the follow-

ing four principles must be obeyed:

1. Legal syntax: Partition should first ensure the regular expres-
sion syntax of the resulting segments is legal.

2. Concatenated relation: Partition should ensure the syntagmatic
relation of the adjacent segments from the same patterns is
concatenation.

3. Free of intra-segment overlapping: Partition should ensure that
for each resulting segment, its OF(s) cannot intersect with itself.

4. Free of inter-segment overlapping: Partition should ensure that
for each resulting segment, its OF(s) cannot intersect with any
other segments.

Principle 1 declares the essential requirement for a correct
pattern partition without respect to its anti-explosion effect. As a
part of the original regular expression patterns, each resulting
segment must be also a valid regular expression, otherwise, these
segments cannot be compiled into DFA normally.

Principle 2 can facilitate the concatenate matching of the
resulting segments to preserve the complete semantics of the
original patterns. It requires the partition to be at the position of
literal concatenation in a regular expression pattern, meanwhile it
cannot affect the underlying priority of concatenation. For exam-
ple, if the pattern is partitioned into ,

and , then the priority of the concatenation is just
reduced, because the resulting segments actually correspond to a
different pattern . Thus, for such a pattern with
lower-priority alternation, it should be written as multiple alter-
nated sub-patterns with identical pattern ID, or else the partition
may violate Principle 2. For example, the aforementioned pattern
ought to be first written as two sub-patterns, namely
and , and then enforce partition for each sub-pattern.

On the premise of Principles 1 and 2, to defuse state explosion,
Principles 3 and 4 must be followed in order. Without loss of
generality, Principle 3 requires that the OFs ϕfng, ϕfn;g and ϕfm;ng
must be kept in the anchored segments, and the unanchored
segments must have none of them, because it is less likely
for intra-segment overlapping to happen inside an anchored
segment (e.g. the aforementioned). Besides, for
the anchored segments, the OFs ϕfng, ϕfn;g and ϕfm;ng should
have no prefix with the OF ϕ*, meanwhile the OFs ϕfn;g and
ϕfm;ng should have no suffix. Otherwise, the occurrence of
the prefix or suffix of the OF could be not limited to the fixed
position of the string the segment is applied to, so that the OF
can still intersect with them (e.g. or

).
Different from intra-segment overlapping, all the OFs can

contribute to inter-segment overlapping. One can find that for a
segment (no matter whether to be unanchored), as long as it has
an OF whose character set ϕ contains most characters of the
alphabet Σ, it can easily intersect with any other unanchored
segments. Consequently, Principle 4 requires that the unanchored

6 The introduced caret for the non-first segments limits that its match must be
at the start of the string the segment is applied to.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169158

segments cannot be anything but strings, and the anchored
segments with OFs cannot be treated together with the unan-
chored ones. For the anchored segments, although they have less
chance to form inter-segment overlapping, partial prefix (at least
one character) should be retained for the OF of each segment, and
the prefixes of the distinct OFs should be different.

In fact, if the OFs (in each anchored segment) are identical, no
matter whether their prefixes are different, inter-pattern over-
lapping never happen between the anchored segments (see
Fig. 2a). However, if the OFs are distinct, the disappearance of
overlapping will depend on the difference of their prefixes,
because the OFs can still intersect with the suffix of the opposite
segment when they have the same prefix (see Fig. 2b), and on the
contrary, different prefixes can make overlapping never occur (see
Fig. 2c). In detail, the prefixes can be judged as different as long as
they have distinct characters in the same position (see Fig. 2d), and
the OFs are regarded to be distinct if either their forms or their
character sets are different. This is why the anchored non-first
segments of Patterns 1/2 and 3 have different prefixes (i.e.,

and).
Particularly, for OF .n, the partition position should be exactly at the

place of the OF (e.g. the aforementioned). This is used to
guarantee the existence of endless loop state in DFA (e.g. state 06 in
Fig. 2a), and it will be introduced in Section 3.3. Besides, all the first
segments of each pattern are treated together with the unanchored
ones in Group 1, and thus should have no OFs according to Principles

3 and 4, meanwhile the remainder anchored segments are all in
Group 2 and need to satisfy Principles 3 and 4.

In summary, Table 3 lists the universal treatment of the
typical pattern types (with the threat of explosion) summarized
by Yu et al. (2006). Note that, for Group 1, both STR11 and 4 STR11
belong to it, and for Group 2, 4 STR12 of distinct OFs must be
different.

2.4. Heuristic algorithm

Algorithm 1. Pattern partition.

0 01

02

04

a b

x

dc
05/2

03/1

06

n

n

*n

[^acn]

0 01

02

04

07 08

a b

x

dc

m c d
09/2

05/2

03/1

06

n

n

n *

[^acmn]

0

01 02

05

a bx

dc
06/2

03/1

07

04
y

n

n

*[^xy][^amn]

[^cn]
0

02 03

06

a bx

dc
07/2

04/1

08

05
y

n

n

01

*[^xy]

y

[^amn]

[^cn]

Fig. 2. The impact of the OFs as well as their prefixes on the DFA (only significant state transition edges are kept) for anchored patterns: (a) and ;
(b) and ; (c) and ; and (d) and .

Table 2
The effect of pattern partition for the example set of regular expression patterns.

ID Pattern # of States Segments # of states

NFA DFA ID Group 1 ID Group 2 DFA 1 DFA 2

1 48 1058 1 fil 7 16 32

2 2 pat 8

3 3 cmd 9

4 4 www 5 org 6 10

Table 3
The universal partition for pattern types with OFs.

Pattern type Segment type

Group 1 Group 2

(̂)STR1.*STR2 (̂)STR1, STR2

(̂)STR1ϕ* STR2 (̂)STR11 ^STR12ϕ* STR2

(̂)STR1ϕ{n}STR2 (̂)STR11 ^STR12ϕ{n}STR2

(̂)STR1ϕ{n,}STR2 (̂)STR11 ^STR12ϕ{n,}, ^STR2

(̂)STR1ϕ{m,n} STR2 (̂)STR11 ^STR12ϕ{m,n}, ^STR2

 0%

 20%

 40%

 60%

 80%

 100%

snort bro clamav l7filter app1 app2

Pe
rc

en
ta

ge
 o

f t
he

 n
um

be
r

of
 O

Fs

Pattern sets

Others
Top 8
Top 7
Top 6
Top 5
Top 4
Top 3
Top 2
Top 1

Fig. 3. The statistics of top eight distinct OFs in real-world pattern sets.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169 159

Based on Principles 1–4, the pseudocode of the partition
algorithm can be concluded as Algorithm 1.

In Algorithm 1, steps 3–14 are used to find the partition
positions satisfying the explosion-free principles for different OFs
according to Table 3. In these steps, steps 4–5 are used to tag the
partition position for the special OF .n, steps 6–9 are used to tag the
partition positions for other OFs, besides, steps 10–12 aim to tag
the additional partition positions for the OFs ϕfn;g and ϕfm;ng.

Particularly, step 7 is to find the shortest prefix str for the of, so
that \widehatstr is different from all other prefixes recorded in Sof
whose corresponding ofs are distinct. A simple and fast imple-
mentation of this function is as follows: construct a DFA for all the
prefixes in Sof to match \widehatstr, if no match occurs, then

return str, else if the matched prefix corresponds to an OF identical
with of, then return str likewise, or else extend str and repeat the
matching of \widehatstr in the DFA till find the available str. Note
that the DFA for Sof can be incrementally updated when a new pair
of of and str is inserted into Sof.

It is easy to find a different prefix for each distinct OF in
practice, because the OFs that can cause explosion (note that the
OFs , and so forth have very little chance to produce
explosion due to the small-size character set) mainly concentrate
on a small number of different types. Figure 3 displays the
percentage of the maximum eight OFs that widely exist in real-
world pattern sets, and they make up the majority of all the OFs in
corresponding pattern sets. In addition, for the prefixes with k

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169160

characters, the probability that they are different is 1�
ðjΣ jnð1=jΣ j Þ2Þk ¼ 1�1=jΣ j k. If k¼2 and jΣ j ¼ 256, then
1�1=2562 � 99:9985%.

Steps 15–29 are used to partition the original patterns into
segments with distinct IDs according to the tags generated in
steps 3–14, and add each resulting segment into one of the two
segment sets according to whether it is an anchored and non-first
segment. Besides, the syntagmatic relation of each segment is also
recorded in the independent relation set. In these steps, steps 27–
29 are particularly used for handling the first segments of all the
patterns.

Besides, according to Algorithm 1, it is not essential to execute
partition for every OF of a pattern. For example, the pattern
STR1ϕfngSTR2ϕfng⋯STRk (where kAZþ) only needs to be parti-
tioned into STR11 and \widehatSTR12ϕ{n}STR2 ϕ{n}⋯STRk. There-
fore, in common case, splitting into two segments (i.e., doing
partition for just one OF) is enough for a pattern.

Based on Algorithm 1, the overall partition result for the
exemplified pattern set with Patterns 1–4 has been shown in
Table 2. To guarantee no intra-segment overlapping, each OF in
Patterns 1–4 should be partitioned into the anchored segments,
therefore the OFs are all kept in the anchored segments of Group 2
(e.g. OF is kept in segment). Particularly,
the anchored OF is equivalent to the unanchored, therefore
the segment is equivalent to . In addition, for
Pattern 4 in Table 2, the OF may cause semantic
overlapping with its suffix, thus its suffix should be also parti-
tioned into an individual segment .

To guarantee no inter-segment overlapping, each OF in the
anchored segments should have distinct prefixes, therefore the
OFs , , and in Segments
6–9 respectively have different prefixes , , and

. Besides, because the anchored segments with OFs can also
generate semantic overlapping with the unanchored segments (e.
g. Segments 1 and 7), the anchored segments and the unanchored
segments should add into different groups (i.e., Group 2 and Group
1). From Table 9, one can find that the total number of states in
DFA 1 and DFA 2 is equal to that in original NFA (i.e., 48), and far
less than that in original DFA (i.e., 1058).

To sum up, the state explosion problem can be resolved by
heuristic pattern partition, and we can utilize the nonexplosive
DFA to do fast regular expression matching. However, the com-
plete semantics of the original patterns are broken into pieces,
hence we need to construct the data structure which can recover
the equivalent semantics on the basis of the pattern segments.

3. Fast regular expression matching engine (FREME)

In this section, we will propose a formal data structure, to
represent the segments resulting from pattern partition without
losing any semantics of their original patterns, meanwhile design

the corresponding processing algorithm, to match the original
patterns at very high speed without causing false positive and
false negative.

3.1. Bipartite data structure

As Fig. 4 depicts, when original patterns are partitioned into
overlapping-free segments, the syntagmatic relation of these
segments turns from consecutive “concatenation” to independent
“alternation”, because the partition is at the concatenated location
of adjacent segments according to Principle 2 (see the left
subfigure). Hence, to simulate the direct matching of a complete
pattern, the matching of the segments must be in succession and
in sequence (see the right subfigure).

Note that, as Fig. 4 implies, the caret attached to the non-first
segments (due to pattern partition) is used to guarantee the
matching succession: the start of the matching of the posterior
segment and the end of the matching of the anterior segment
must be contiguous at the interval, otherwise false positive could
occur. Further, to ensure the matching sequence, it is essential to
rely on the syntagmatic relations of the segments. To this purpose,
we propose the bipartite data structure containing DFA part and
relation mapping table (RMT) part.

The DFA part consists of (at most) two nonexplosive DFAs,
which are built from the overlapping-free segments. According to
the previous analysis, the matching of each segment is separate in
DFA part. To judge whether the matched segment is in correct
sequence, RMT part is required. The RMT part maintains the
syntagmatic relations of the segments in their original patterns,
as well as the correspondence between the segments and their
original patterns. In RMT part, the alternated segments belonging
to the same pattern, should follow the order of their concatenation
in their original pattern to be matched, or else although it is
matched in DFA part, it will be regarded invalid and ignored.

This bipartite data structure together makes up the final
matching engine named FREME. Based on the description above,
FREME is defined formally as the following.

Definition 3. FREME is a 8-tuple (Q, Σ, δ, Ξ, G, φ, oξ0; q04 ; F),
where

� Q is a finite set of states;
� Σ is a finite alphabet of input characters;
� δ : Q � Σ-Q is the state transition function for each input
character;

� Ξ is a finite array of index keys;
� GDQ is a finite set of match states;
� φ : Ξ � G-oΞ;Q4 is the index update function for each
match state;

� oξ0; q04 is the initial state unit which consists of an initial
index key ξ0 and an initial state number q0;

� FDΞ � G is the set of accepting state units.

The string Pattern k is applied to

Pattern k

Segment k1 Segment k2

0 9/k1 2 3 4 5 6 7

Segment k3

8

0 9/k1 2 3 4 5 6 7 8

4 5

9/k37 8

Segment k1

^Segment k2

^Segment k3

1 2 3/k1

6/k20

Pattern k

String

Segment k1

^Segment k2

^Segment k3

1 2 3/k1

4 5 6/k2

9/k37 8

Pattern Partition

Pattern Matching

Fig. 4. The reassembly of the pattern segments to match the string the original pattern is applied to.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169 161

In this definition, Ξ records the index information of correctly
matched segments. φ is used to judge whether the new matched
segment follows the correct sequence in RMT part, and update the
current Ξ and Q according to the result of the judgement. FDΞ �
G reveals that an original pattern is regarded as matched only
when all its segments are processed and matched as expected.
This is guaranteed by activating state units oΞ;Q4 to keep track
of the matching procedure.

3.2. Proof of concept

During pattern partition, the correspondence of each pair of
adjacent segments (in each pattern) is recorded, meanwhile each
segment is assigned a distinct segment ID (see Algorithm 1).
Therefore, the combination and permutation of the segment IDs
is unique for each different pattern, and every segment can be
exactly determined based on the ID of its anterior (adjacent)
segment. For example, in Table 2, the anterior segment of segment
7 ought to be segment 1 (corresponds to Pattern 1). Accordingly,
the anterior segment ID can be used to judge whether the match
of the current segment is valid. Therefore, a prototype of FREME is
designed based on Definition 3.

As Fig. 5 demonstrates, in DFA part, each segment corresponds
to a match state (e.g. state 03). When one segment is matched, its
segment ID is used to index (indicated as dashed arrows) the
corresponding table entry (in each row) in RMT part. For RMT part,
the ID of anterior segment records the expected anterior segment
of the matched one, which is used to judge the correctness of the
match by comparing it with the practical anterior segment (i.e.,
the defined ξ). Besides, because there are two DFAs, the DFA of
posterior segment should be designated, to identify where to
match the next (adjacent) segment of current one. In the end, the
ID of original pattern should also be marked for the tail segment of

each pattern, because the match of tail segment is the essential
condition to confirm that a pattern is completely matched.

In detail, illustrated in Fig. 5, the segment IDs of ,
, and are 4, 5, 6, and 10 (see

match states 12, 15 of DFA 1, and match states 24, 30 of DFA 2),
respectively. The RMT part indicates the relations among these
segments: the anterior segment IDs of segments 5, 6, and 10 are 4,
5, and 6 (i.e., segment 5/6/10 is at the back of segment 4/5/6),
respectively. Besides, the posterior segments of segments 4, 5, and
6 are in DFA 1, DFA 2, and DFA 2 (i.e., segment 5/6/10 is in DFA 1/2/
2), respectively. Moreover, the original pattern ID of seg-
ment 10 identifies corresponding Pattern 4, that is

. Note that 0 means no corre-
sponding value in RMT part.

One can find that the original patterns can be uniquely
reassembled based on the segments in DFA part and the relations
in RMT part. For example, segments 4, 5, and 6 are respectively the
anterior segment of segments 5, 6, and 10, and segment 4 is the
first segment (due to no anterior segment), therefore, segments 4,
5, 6, and 10 correspond to a complete pattern in sequence, that is
Pattern 4. This reversible procedure verifies that the FREME
representation preserves the full semantics of original patterns,
and we can further use the proper matching algorithm to
guarantee no false positive or false negative.

3.3. Matching procedure

When using FREME to perform regular expression matching,
active state units are required to keep track of intermediate state
number and the IDs of previously matched segments for each
input character. Algorithm 2 describes the matching procedure.

Algorithm 2. Matching procedure.

Fig. 5. FREME (some state transition edges omitted for clarity) for the pattern set of Patterns 1–4.

f i l e p a t h = \n c m d = / b i n . e x e /

20121 2012 2012 2012 2012 2012 20122012 2012
0

0

1

03

0

2

0

1

1

04

0

2

31

1

1

06

0

2

0

2

1

0

0

2

31

2

1

09

0

2

0

3

1

0

0

2

18

3

1

0

0

2

31

3

1

0

0

A

B

C

State unitA B C A DFA B State number C Previously matched segment ID

Fig. 6. The matching procedure of FREME for the example input content .

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169162

In Algorithm 2, only steps 3 and 5 must be executed for each
input character. If there are no new state units generated in step
20, then FREME is just equal to DFA. One can find that the premise
of producing new state units is that neither of steps 10, 14, and 17
can be satisfied, which means a match state must be accessed and
it should be an eligible match of a non-tail pattern segment. In
detail, step 14 is used to judge whether the matched segment
seg_id is eligible according to whether the expected anterior
segment te:ante_seg_id of the matched segment seg_id has been
matched, namely equal to su:ante_seg_id. Step 17 is executed to
find out whether the matched segment is a tail one, and if so, a
complete pattern is judged to be matched in step 18, or else a new
state unit ought to activated.

As for step 6, it can be found in FREME that there is an endless
loop state (e.g., state 31 of DFA 2 in Fig. 5), named dead state,
which always exists in the DFA whose corresponding patterns are
all anchored and have no dot-star. Every state in corresponding
DFA can transit to this state for mismatched characters. Once the
state of an active state unit su falls into such a dead state, no more
segment match is able to happen for su, no matter what the input
character is, because the state will never transit to any other match
states but the dead state itself. Thus, such an active state unit su
can be removed from Sactive without affecting the matching
procedure. This is just the purpose of steps 6–9.

To demonstrate Algorithm 2, we take Fig. 5 as example and
suppose the input content to process is “filepath¼⧹ncmd¼/bin.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169 163

exe/”. Figure 6 illustrates the detail of matching. The initial state
unit consists of DFA 1, state number 0 and segment ID 0. For input
“fil”, segment 1 is matched in DFA 1, then its ID 1 is used to index
the 1st entry in RMT, where no anterior segment is required
(anterior segment ID is 0), thus this match is valid, and a new state
unit with DFA 2, state number 0 and segment ID 1 is generated,
parallelly processed with the original one after then. Next for input
“ep”, the state unit in DFA 2 enters dead state, thus it is removed
(the number is grayed). Next for input “at”, segment 2 is correctly
matched, likewise, a corresponding state unit with DFA 2, state
number 0 and segment ID 2 is generated. Next for input “h¼⧹n”,
the new state unit is also deleted due to the transition to dead
state. Next for input “cmd”, segment 3 is matched in DFA 1, and
another state unit is created. Next for input “¼/bin.”, segment 9 is
matched in DFA 2, the indexed 9th entry in RMT shows that
segment 3 is expected to be previously matched, and it had been
matched in deed (according to current state unit), thus this is a
valid match. Besides, the match of Pattern 3 (i.e.,)
is found (the background is colored), because the original pattern
ID of segment 9 is 3. For the following input “exe/”, the number of
state units is further reduced to one in the end.

3.4. Performance advantages

In FREME, the size of DFA part is ðNS1þNS2Þ � 256 � log 2 max
ðNS1;NS2Þ bits, where NS1 and NS2 are the number of states in DFAs
1 and 2, respectively. Due to no state explosion, NS1þNS2 ¼NP � LP ,
and NP � LP=2rmaxðNS1;NS2ÞrNP � LP . The size of RMT part is
ðNPþNOF Þ � ð1þ log 2 maxðNS1;NS2Þþ log 2 NOF Þ bits, where NOF is
the number of OFs, and NOFoNP � LP . One can easily derive that the
size of RMT part is smaller than 1/64 of the size of DFA part, thus the
size of FREME mainly depends on the number of states in DFA part.
Because the number of DFA states in FREME is close to the number of
NFA states, FREME is as scalable as NFA in terms of size.

It is important to note that, although two DFAs could be built for
FREME, the back-end DFA is rarely activated and executed. In fact, the
front-end DFA plays a prefilter role, because only the first segment of
any original pattern in front-end DFA is matched correctly, can the
back-end DFA be activated to process the following segments
belonging to the same pattern. Besides, even if the back-end DFA is
triggered to match the new generated state units, it can be closed in a
short time because the state unit has a big chance to be trapped in
dead state. Therefore, its average-case matching complexity is O(1).
In worst case, its theoretical complexity is OðNS1þNS2Þ, because at
most all concurrent active state units correspond to the distinct state
numbers in different DFAs, and for the state units with identical state
number of the same DFA, they can be merged into one (this will be
explained in Section 4.3.3). In fact, this can be further optimized
according to Sections 4.3.1 and 4.3.2.

Furthermore, unlike the general data structure with prefilter (e.
g. Snort IDS Roesch, 1999; www.snort.org), where the back-end
matching engines of the prefilter are built from the complete
patterns and required to process the input characters from the
start when a match occurred in prefilter (i.e., multi-pass match-
ing), the back-end DFA in FREME is also constructed from pattern
segments, and only needs to process the subsequent input
characters if it is executed (i.e., one-pass matching). Moreover,
FREME has a homogeneous structure, because both DFA and RMT
can be stored as static arrays, and thus its data access is more
simple and time-efficient than Hybrid-FA (Becchi and Crowley,
2007) and XFA (Smith et al., 2008a, 2008b).

4. Optimization

In this section, we will introduce a series of optimization
schemes from the perspective of pattern partition, data structure

and matching procedure, to further improve the performance
of FREME.

4.1. Towards pattern partition

4.1.1. Equivalent segments
In pattern partition, each segment is labeled with an unique ID,

which implies that all the segments are distinctive by default.
However, there are often many equivalent segments, which
actually can be merged although they have different IDs.

For any two segments Xi and Yj, where Xi is the ith segment in
the pattern X which has I segments in total, and Yj is the jth
segment in the pattern Y which has J segments altogether, we say
that Xi and Yj are equivalent if the following conditions hold:

1. io I, jo J, and i¼ j;
2. 8krmaxði; jÞ, Xk ¼ Yk;
3. Xiþ1 and Yjþ1 belong to the same group.

As an example, for the two patterns and
, they can be split into oab4 , ocd4 , oef4

and oab4 , ocd4 , ogh4 . One can find that the two identical
segments ocd4 (and oab4) are equivalent indeed, and can be
merged into just one because the remainder segments will
correspond to a complete pattern , which is
equal to the original two patterns. According to our evaluation,
such an optimization can reduce about 14% of the number of
segments for the real-world pattern set from Snort IDS (www.
snort.org).

All the equivalent segments must be matched at the same time,
which can lead to the simultaneous activation of multiple state
units during matching, therefore, the segment merger based on
the equivalency will greatly reduce the number of active state
units, and in turn improve the matching performance.

4.1.2. Identical OFs
In pattern partition, Principle 4 requires that for distinct OFs,

their prefixes reserved for corresponding anchored segments
should be different as well, in order to avoid the possible inter-
segment overlapping. However, for identical OFs having the same
type and character set, their prefixes are preferred to be the same
for more compact DFA.

For the OFs ϕfn1g, ϕfn2;g and ϕfm;n3g, if their character sets ϕ
and their prefixes STR are equal, then the states of the DFA for
corresponding segments will be maxðn1;n2;n3Þ, rather than
n1þn2þn3.

For example, the two patterns and
(whose composite NFA has 147 states) can

be split into the non-first segments and
. The two OFs have the same character set

, meanwhile the prefixes of two OFs are both , then
the DFA for the two segments only has 75 states (corresponding
FREME has 75þ9¼84 states, much less than the NFA). In contrast,
if the former segment is changed into based on
another partition of the first pattern, then the DFA for the new two
segments will have 75þ66¼141 states. For the real-world pattern
set from Bro IDS (http://www.bro.org), our statistical result shows
that about 21% of the number of states can be optimized away for
FREME because of identical OFs.

It is thus clear that, on the premise of Principle 4, choosing
equal prefixes for identical OFs will render corresponding DFA
more succinct than the NFA of original patterns.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169164

4.1.3. Trade space for time
According to Section 3.4, the back-end DFA can be triggered

only when the front-end DFA has segments matched. If the
possibility of the match taking place in the front-end DFA is
reduced, then the frequency of the activation of the back-end
DFA will be decreased, accordingly, the matching performance of
FREME will be great improved.

Because longer segment can have fewer chance to be matched,
we can trade less partition for longer segments of each pattern. To
be practical, for the patterns whose OFs causing no or little state
inflation, the partition position against the OFs can be neglected,
thus the OFs can be retained for their front segments to lengthen
them, at the expense of the possible (slight) state inflation of the
front-end DFA caused by the reserved OFs in corresponding
segments.

For example, , a real-
world pattern from Snort IDS (www.snort.org), can be partitioned
into and , because
the OF cannot cause too much state inflation even if it can
intersect with other patterns. Then although the first segment
could arouse small memory overhead, the temporal performance
gets more efficient. In our experiments, for the pattern set of Linux
L7-filter (http://l7-filter.clearfoundation.com), the speed of FREME
can be increased by almost 50% in exchange for tripled memory
footprint.

Consequently, this tradeoff can facilitate pattern partition to flexibly
deal with different kinds of patterns, making FREME more practical.
Note that, even for the special pattern
mentioned by Yu et al. (2006), it can be split into and

to remove semantic overlapping, in the similar way
as \widehatSTR1ϕ{n} STR2.

4.2. Towards data structure

4.2.1. DFA part
It is known that there are a lot of DFA-based compression

algorithms (Tuck et al., 2004; Kumar et al., 2006; Brodie et al.,
2006; Becchi and Cadambi, 2007; Becchi and Crowley, 2007; Ficara
et al., 2008; Meiners et al., 2010; Qi et al., 2011; Peng et al., 2011;
van Lunteren and Guanella, 2012) proposed in the past decade.
They focus on eliminating the redundant identical transitions

inside or among the states, to reduce the memory overhead of
each state in the DFA, and only work on the premise that DFA can
be generated (i.e., nonexplosive). However, one can find that these
methods are orthogonal to ours, and can be used to reduce the
number of state transitions for FREME, although the DFA part of
FREME is very succinct in terms of the number of states. Coupled
with them, FREME is expected to achieve further multiple times
decrease in memory usage. The test shows that, based on the
improved D2FA algorithm (Becchi and Crowley, 2007), over 99%
compression ratio can be achieved for the pattern set from ClamAV
antivirus engine (http://www.clamav.net).

4.2.2. RMT part
It can be found from Fig. 5 that, in RMT of FREME, the columns

of the ID of original pattern and the DFA of posterior segment can
be combined into only one column, because only one value of
them is simultaneously significant for each segment. After merged,
original values can be identified by using positive number and
negative number. This can decrease the space of RMT part, and
more important, reduce the time to generate a state unit.

Besides, in FREME, each entry of RMT can be put in correspond-
ing match state of DFA. Based on this memory layout, during the
matching, the cache-line can simultaneously load the state transi-
tions as well as corresponding RMT entries, and thus avoid one
more memory access for fetching RMT entries (the access of RMT
entries can be directly got from cache then).

4.3. Towards matching procedure

4.3.1. Unnecessary state units
Note that in Fig. 5, almost all the match states (e.g. state 03) in

DFA 1 have the same next state as state 0 for identical input
character. Because a new state unit is initialized with state number
0, for the next input character, if the old state unit (at match state)
and the new state unit (at state 0) can transit to the same next
state in the DFA, there will be no need to generate a new state unit,
except to record the just matched segment in the old state unit.

As Fig. 7a shows, for the input “wwworg”, when the segment
is matched at match state 12 of DFA 1, it is unnecessary to

generate a new state unit, because the DFA of the posterior
segment is still DFA 1, and the next state of state 12 is

w w w o r g

1

0

0

1

12

0

1

0

4

1

13

4

1

15

4

2

0

5

1

12

4

=

Unnecessary case

w w w w w o r g

1

0

0

1

12

0

1

0

4

1

0

4

1

15

4

2

0

5

=
1

12

0

1

10

4

1

12

0

1

10

4

Ignorable case

w w w w w o r g

1

0

0

1

12

0

1

10

4

1

15

4

2

0

5

=
1

13

0

1

13

4

1

13

4

Annexable case

f i l e = f i l e =

1

0

0

1

03

0

2

0

1

2

0

1

1

0

0

2

02

1

=
1

03

0

2

02

1

2

02

1

1

03

0

2

02

1

Annexable case

Fig. 7. The optimization for matching procedure (of FREME shown in Fig. 5) based on the activation of state units: (a) unnecessary case; (b) ignorable case; (c) annexable
case; and (d) annexable case.

Table 4
The statistics of the real-world pattern sets used in our experiments.

Pattern set # of patterns # of OFs # of states # of segments

Total Explosive W/inter-overlapping W/ intra-overlapping Total Different W/ϕ* form w/ϕ{} form NFA DFA Before optimi. After optimi.

snort.set 1210 16 772 92 5099 54 4942 157 52379 ⪢10M 2240 1365
bro.set 1238 42 233 47 344 7 51 293 23918 ⪢10M 1578 1370
clamav.set 1292 15 980 964 4177 6 192 3985 73885 ⪢10M 3743 2450
l7filter.set 111 0 71 22 255 34 116 139 2997 ⪢10M 320 209
app1.set 1387 1 724 433 2730 28 1344 1386 31890 ⪢10M 2492 1958
app2.set 5886 2 72 40 131 18 67 64 155038 ⪢10M 6026 5967

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169 165

the same as the one of state 0 for the next input character “o” (i.e.,
state 13). However, the old state unit will be updated by append-
ing the ID of the new matched segment (i.e., 4) to itself.

Although the exception that the match states have different
next states with state 0 rarely occurs (e.g. for match state 12 and
next input “w”), we need to judge whether it is necessary to
generate a new state unit, by pre-fetching and pre-matching the
next input character, and comparing the next state with the one of
state 0, if not equal, then it is still necessary to create the new
state unit.

4.3.2. Ignorable state units
For the segments whose posterior (adjacent) segments are in

DFA 1 (i.e., the unanchored non-first segments), when they are
matched once and corresponding new state units are generated,
then when they are matched again, even though the match is still
correct, it is ignorable, because the matching in DFA 1 is greedy.
For this reason, one active state unit is enough for the match of
such segments, no matter how many times their match happens.
We can use a bit vector to mark whether these segments have
been already matched, where the number of bits depends on the
number of dot-star.

As Fig. 7b shows, for the input “wwwwworg”, the segment
will be matched three times, but the second match can be

ignored (the third match can refer to Section 4.3.1), because it does
not affect the match of the segment in DFA 1.

4.3.3. Annexable state units
It is found in prior work (Becchi and Crowley, 2007; Peng et al.,

2011) that most state transitions lead back to the initial states (e.g.
state 0 of DFA 1 or its neighbor states in Fig. 5) or the self-loop
states (e.g. state 02 of DFA 2 or the dead state in Fig. 5).
Consequently, even if multiple state units are activated, they have
a great chance of leading back to the same state of corresponding
DFA in a short time, and become annexable, as shown in Fig. 7c
and d. If the IDs of previously matched segments are maintained in
state unit based on the bit vector, where the number of bits is
equal to the number of OFs, then the state units having identical
state number of the same DFA could be merged merely by the
bitwise OR of their bit vectors (Wang and Li, 2013). This means the
number of state units in FREME can always converge to one in
any case.

In addition, we can choose the proper time to merge the
annexable state units as necessary as possible, rather than for
every input character, because most of the time the number of
state units is converged. Thus, the threshold of the number of
active state units is used. Initially, a default threshold is given.
Once the number of active state units achieves the threshold, the
merger is executed. After that, if the number of current state units
is much less than the threshold, then change the threshold to
make it slightly larger than this number. If the number is not

reduced too much, then we need to adjust the threshold to be
slightly larger than its own value. In other cases, the threshold
remains unchanged. By dynamically choosing the best time to
merge, FREME can keep matching as fast as possible (e.g. about 6%
processing performance improvement for the pattern set from Bro
IDS http://www.bro.org).

5. Experimental evaluation

In this section, we will use real data and experiments to verify
the effectiveness of our proposed solution.

5.1. Experiment environment and data sets

All the experiments are conducted on an Intel Xeon E5504
server (CPU: 2.0 GHz, L1 Cache: 32 KB, L2 Cache: 4 MB, DDR3
RAM: 800 MHz/8 GB, OS: 32bit Ubuntu Server 10.04 LTS).

The pattern sets used in our experiments are collected from the
open source Snort (www.snort.org), Bro (http://www.bro.org),
ClamAV (http://www.clamav.net), L7-filter (http://l7-filter.
clearfoundation.com) and two commercial application-aware pro-
ducts. As Table 4 shows, all of them but l7filter.set contain
thousands of regular expression patterns. Note that few prior
work uses pattern sets of such a large scale to test the actual
performance of the proposed solutions.

For every given pattern set, Table 4 also lists the number of
explosive patterns each of which cannot be individually compiled
into a single DFA within 10M (i.e., 10,000,000) states. Besides, the
complex patterns with intra- and inter-pattern overlapping are
counted. It can be found from Table 4 that for these pattern sets,
none of them can be transformed into the corresponding DFA in
practice, because the storage of the DFA with far over 10M states
requires much more than 10 GB (i.e., 48 GB) memory space. In
contrast, their NFAs are all available, and contain no more than
200K states (the NFA of app2.set has the maximum number of
states, i.e., 155,038).

5.2. Partition statistics

Table 4 displays the statistics about OFs. Comparatively speak-
ing, snort.set, clamav.set and app1.set are more complex due to
significantly more, beyond a thousand, OFs (i.e., 2730–5099) and
hundreds of patterns with semantic overlapping (i.e., 4700).
Especially, clamav.set and app1.set have thousands of OFs with
form ϕ{} (i.e., 1386–3985), which can cause DFA state inflation
individually. Besides, it is evident that the number of nonequiva-
lent OFs is far less than the total (as mentioned earlier in Section
2.4). For example, for clamav.set, the number of nonequivalent OFs
is only 6, although the total number of OFs is 4177. This facilitates
the satisfaction of Principle 4 and optimization in Section 4.1.2.

State space of FREME
Construction time of FR

Fig. 8. The efficiency comparison between NFA and FREME, and the scalability evaluation of FREME in terms of state space and construction time: (a) state space;
(b) construction time; (c) linear scalability for snort.set.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169166

For the pattern sets with more OFs, such as snort.set, clamav.set
and app1.set, splitting their patterns into more segments is
required, to completely eliminate the semantic overlapping.
Because each pattern is partitioned into at least one segment,
the number of segments must be larger than the number of
patterns. For example, for snort.set in Table 4, the number of
original patterns is 1210, and the number of segments in the raw
segment sets is 2240, larger than 1210. However, based on the
optimization of Sections 4.1.1 and 4.1.3, the number of segments
can be further reduced. As the last two columns of Table 4 show,
for snort.set, the number of segments in the raw segment sets is
2240, but the number of distinguishing segments for the opti-
mized segment sets is 1365. There is a large decrease (e.g.
2240�1365¼ 875 for snort.set) for the practical number of seg-
ments. Therefore, compared with original patterns, the number of
segments does not increase too much in fact (e.g. no more than
twice for all given pattern sets in Table 4), and thus its growth can
be regarded to be near-linear.

Moreover, from Table 4, one can find that not all the OFs are
partitioned in practice, because the number of segments is far less
than the number of OFs. For example, the number of OFs in the
pattern set snort.set is 5099, and the number of segments in the
raw segment sets is 2240, much less than 5099. In fact, according
to the analysis presented in Section 4.1.3, OFs with a small

character set ϕ are unlikely to cause semantic overlapping;
therefore, they are ignored for partition.

5.3. State space

According to Fig. 8a, FREME is very close or even superior to
NFA in terms of fewer number of states. In fact, Principles 3–4 can
make the segments resulting from partition free of semantic
overlapping, and thus cause the state space of the built DFA part
the same as NFA. However, for identical OFs having the same type
and character set, the optimization in Section 4.1.2 makes their
prefixes as identical as possible, therefore the built DFA part of
FREME can be more succinct than NFA. For example, for bro.set in
Fig. 8a, there are many patterns having identical OFs with the
same prefix, the number of states in the NFA constructed from the
original patterns is 23,905, but FREME built from the generated
segments only have 18,935 states, less than NFA, because there are
many patterns having identical OFs with the same prefix.

On the contrary, for l7filter.set and app1.set in Fig. 8a, the
number of states in FREME is slightly more than NFA, because
FREME ignores the partition of the OFs with small character set in
exchange for fewer segments and better runtime performance,
which results in little semantic overlapping. This is the

Fig. 9. The temporal versus spatial performance comparison of DFA, Grouping, Hybrid-FA, XFA and FREME: (a) for snort.set; (b) for bro.set; (c) for clamav.set; (d) for l7filter.set;
(e) for app1.set; and (f) for app2.set.

Table 5
The comparison of the per-flow states for NFA, Hybrid-FA and FREME.

Pattern set Patterns NFA Hybrid-FA FREME

All # Matched # Max size/bytes Max # Avg. # Max size/bytes Max # Avg. # Max size/bytes Max # Avg. #

snort.set 1210 19 218 109 9 184 46 8 22 4 1.048
bro.set 1238 153 116 58 34 176 44 28 115 23 1.061
clamav.set 1292 12 376 94 9 128 32 7 46 3 1.053
l7filter.set 111 5 28 14 6 56 14 6 10 3 1.101
app1.set 1387 57 282 141 11 232 58 9 168 28 1.113
app2.set 5886 23 320 80 10 152 38 6 54 4 1.059

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169 167

optimization of performance tradeoff mentioned in Section 4.1.3.
For these pattern sets, although there are also many segments
satisfying the condition of the optimization in Section 4.1.2, but
the number of OFs ignored for partition is more, therefore the
corresponding FREME is not better than NFA in state space.

Using the statistical numbers of patterns, OFs, segments and
states of DFA part, we can figure out the size of RMT part based on
the formula mentioned in Section 3.4, which definitely is negli-
gible compared to the size of DFA part. As an example, for snort.set,
the size of RMT part in FREME is 1365nð2 Bþ2 BÞ � 5:3 KB, but the
size of DFA part is 52;379n256n2 Bþ1365nð2 Bþ4 BÞ � 25:6 MB.

5.4. Construction time

For FREME, its construction contains two steps: pattern parti-
tion and segment compilation. The total construction time of
FREME is mainly determined by the number of states in the DFA
part (i.e., NS1þNS2), because the time consumed in compilation
process is proportional to NS1þNS2, while the time spent in
partition is proportional to NOF and relatively insignificant
(NOFoNP � LPrNS1þNS2).

Figure 8b shows that, because of the nonexplosive state space,
the construction time of FREME is also comparable with NFA. For
example, for bro.set, the construction of FREME only requires about
250 s, but the construction of NFA costs over 2700 s. Even when
FREME has more states than NFA, for example, for app1.set,
building FREME still can cost less time than NFA. This is because
the NFA reduction process is more time-consuming for the original
patterns than the overlapping-free segments.

However, for clamav.set in Fig. 8b, NFA is slightly more efficient
than FREME, although it has slightly more states than FREME. This
is because both FREME and NFA spend almost the same time in the
process of NFA reduction, but FREME requires more time for the
processes of subset construction and DFA minimization. Even so,
FREME is still close to NFA in terms of less construction time.

Because the existing state-of-the-art algorithms are mainly
based on NFA, their preprocessing time will be not better (often
be far worse) than NFA in practice. For pattern grouping (Yu et al.,
2006), Hybrid-FA (Becchi and Crowley, 2007) and XFA (Smith et
al., 2008b), they cost at least one order of magnitude (above two
orders of magnitude in most cases) more construction time than
FREME for real-world pattern sets (e.g. snort.set). The shorter
preprocessing time can make FREME practically available within
the tolerable update deadline.

5.5. Scalability

Because state explosion is defused by pattern partition, FREME
increases proportionally in state space with the scale of the
pattern sets, like NFA, as illustrated in Fig. 8c. When the number
of patterns in snort.set increases from 100 to 1200, the growth of
the number of states in corresponding FREME approximates
linearity, meanwhile the construction time of FREME is also
proportional to the scale of the pattern set. Besides, according to
Section 5.2, the number of segments grows linearly with original
patterns, thereby the size of RMT is proportional to the number of
patterns as well (although ignorable). Because FREME consists of
the DFA and RMT parts, in consequence, FREME scales linearly.
Likewise, from Fig. 8c, one can find that the construction time has
a similar trend of linear growth with the number of states for
FREME. In contrast, the growth of the state space of DFA is
exponential in most cases.

5.6. Matching performance

The network traffic used for statistical performance evaluation
includes the 495 MB published trace from MIT Lincoln Lab (http://
www.ll.mit.edu/mission/communications/cyber/CSTcorpora/
ideval/data), and the 309 MB real-world trace from the campus
network of Tsinghua University (mixed into one trace for experi-
ments). Besides, the state-of-the-art algorithms used for perfor-
mance comparison include pattern grouping (Yu et al., 2006),
Hybrid-FA (Becchi and Crowley, 2007) and XFA (Smith
et al., 2008b).

Due to the existence of explosive patterns, neither of DFA, pattern
grouping and XFA can deal with corresponding pattern sets in
practice. However, to make these algorithms feasible for comparison,
all the complex patterns beyond their processing capacity are rewrit-
ten by narrowing down the character sets of corresponding OFs (see
Section 2.2) before their evaluation. From the perspective of regular
expression semantics, only a subset of patterns in each pattern set is
used to estimate the performance of these algorithms. For example, in
snort.set, the pattern should be rewritten as

for pattern grouping and XFA, and obviously
the rewritten pattern is only a subset of the original pattern in regular
expression semantics. Therefore, it is nontrivial to note that the actual
performance of them will be no better than the evaluated
performance.

Figure 9 shows the results of performance comparison for the
given pattern sets, and the shorter the processing time is, the
faster the processing is. Although DFA has deterministic O(1) pro-
cessing complexity, its processing speed can be affected by its size
to some extent (i.e., 16–24 cycle/byte, shown as vertical line in
Fig. 9), due to the memory cache hit ratio. From Fig. 9, one can find
that FREME is quite close to DFA in terms of lower matching time
in all these cases, and its processing speed is relatively stable,
because its processing time is kept between 20 and 40 cycle/byte
(i.e., 400–800 Mbps per core for 2.0 GHz CPU).

For l7filter.set in Fig. 9d, the processing of FREME is much
slower compared with DFA. This is because on the one hand, the
number of segments is almost twice as much as the number of
patterns in l7filter.set (i.e., 209 vs. 111 in Table 4), which means
almost every pattern is partitioned, and thus the FREME often
activate more state units in processing when one segment in some
pattern is correctly matched, so that the processing speed of
FREME is relatively slow, and one the other hand, the DFA is very
small due to the aforementioned pattern rewrite. In fact, according
to our simulated analysis, the performance of practical DFA (whose
size is comparatively very large) should be over one order of
magnitude slower than the DFA built on the premise of pattern
rewrite.

Unlike clamav.set, for clamav.set in Fig. 9c, the number of
segments is also almost twice as much as the number of original
patterns (i.e., 2450 vs. 1292 in Table 4), but the segments are not
frequently matched, therefore not too many state units are
activated during processing, and the speed of corresponding
FREME is still fast.

Besides, compared with the state-of-the-art solutions, FREME
has the best temporal and spatial performance simultaneously
(being more close to left bottom means better performance in
Fig. 9). In general, FREME outperforms XFA for a factor of tens in
terms of shorter processing time (XFA sacrifices the major runtime
for the fetch and execution of the instructions attached with each
accessed state), and exceeds Hybrid-FA for up to two orders of
magnitude in terms of both shorter processing time and less
memory space (the matching of Hybrid-FA is often trapped in
the tail-NFAs). Note that the optimization of Section 4.2.1 is not
used in our evaluation to ensure that the performance comparison
is impartial.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169168

In fact, the temporal and spatial performance of XFA should be
lower because many patterns which it cannot handle are rewritten
in the test. In other words, FREME is superior to XFA not only in
processing time, but also in memory usage, although the advan-
tage in spatial performance cannot be obviously observed in Fig. 9.
Furthermore, both pattern grouping and Hybrid-FA focus on
finding a best performance tradeoff between NFA and DFA, there-
fore, neither of them can create a data structure with states less
than corresponding NFA, and keep the matching speed close to
DFA. From Fig. 9 one can find that, for pattern grouping, it makes
the memory usage less at the cost of great processing speed.
Besides, for Hybrid-FA, to make Hybrid-FA practically available for
various kinds of complex patterns, it also sacrifice much proces-
sing time compared with DFA.

In addition, Table 5 depicts the statistics of per-flow states for
NFA, Hybrid-FA and FREME (Grouping and XFA are not included
because the raw pattern sets should be used for this comparison)
during the matching procedure. For FREME, the average number of
per-flow states is indeed convergent and close to one (see the last
column of Table 5). Compared with NFA and Hybrid-FA, FREME is
superior in terms of both the less number and the smaller size of
per-flow states.

5.7. Sampling-based smoothed analysis (SSA)

In practice, the probability for FREME to meet its worst case
(see Section 3.4) is very low. To analyze the overall performance of
FREME theoretically, SSA technique (Ren et al., 2013) is employed
to test the efficiency of our algorithms more convincingly. Accord-
ing to the evaluation of SSA, the generic performance of FREME are
only about 40–110% worse than DFA (in terms of cycle/byte).

6. Conclusion and future work

In this paper, we present FREME, a pattern partition based
engine for fast and scalable regular expression matching in
practice. In contrast to direct DFA deflation, FREME leverages on
predefined partition procedure to disarm the semantic overlap-
ping existing in the complex patterns from the root, and thus the
corresponding DFA part will not suffer state explosion any longer.
Meanwhile, FREME uses simple RMT part to preserve the complete
semantics of original patterns which are broken by partition.
Benefiting from pattern partition, FREME achieves fast matching
based on the compact DFA part for large-scale pattern sets.
Evaluation based on real-world pattern sets (open source and
commercial) verifies that FREME is practically fast (like DFA) and
scalable (like NFA). In contrast, FREME outperforms state-of-the-
art matching engines up to two orders of magnitude.

As a foundation for future research, FREME is found on the
software algorithm. However, its design in hardware platforms is
worth of in-depth study, which can better utilize the pipelining
and parallelization to accelerate matching, so as to be more
applicable in high-bandwidth networks. Indeed, even with our
current prototype, measurements demonstrate very significant
performance improvements over previous solutions.

References

Application layer packet classifier for linux, 〈http://l7-filter.clearfoundation.com/〉,
2014.

Becchi M, Cadambi S. Memory-efficient regular expression search using state
merging. In: IEEE INFOCOM; 2007. p. 1064–72.

Becchi M, Crowley P. A hybrid finite automaton for practical deep packet inspection.
In: ACM CoNEXT; 2007. p. 1–12.

Becchi M, Crowley P. An improved algorithm to accelerate regular expression
evaluation. In: ACM/IEEE symposium on architectures for networking and
communications systems (ANCS); 2007. p. 145–54.

Becchi M, Crowley P. Extending finite automata to efficiently match perl-
compatible regular expressions. In: ACM CoNEXT; 2008. p. 1–12.

Brodie BC, Taylor DE, Cytron RK. A scalable architecture for high-throughput
regular-expression pattern matching. In: International symposium on compu-
ter architecture (ISCA); 2006. p. 191–202.

Clam antivirus, 〈http://www.clamav.net/〉, 2014.
Darpa intrusion detection data sets, 〈http://www.ll.mit.edu/mission/communica

tions/cyber/CSTcorpora/ideval/data/〉, 2014.
Ficara D, Giordano S, Procissi G, Vitucci F, Antichi G, Di Pietro A. An improved dfa for

fast regular expression matching. ACM SIGCOMM Comput Commun Rev
2008;38(5):29–40.

Fu Z, Wang K, Cai L, Li J. Intelligent grouping algorithms for regular expressions in
deep inspection. In: International conference on computer communication and
networks (ICCCN); 2014. p. 1–8.

Hopcroft JE, Motwani R, Ullman JD. Introduction to automata theory, languages,
and computation. 3rd ed. USA: Addison-Wesley; 2006.

Hopcroft J. An n log n algorithm for minimizing states in a finite automaton.
Technical report. Stanford, CA: Stanford University; 1971.

Huang K, Ding L, Xie G, Zhang D, Liu AX, Salamatian K. Scalable tcam-based regular
expression matching with compressed finite automata. In: ACM/IEEE sympo-
sium on architectures for networking and communications systems (ANCS);
2013. p. 83–94.

Kumar S, Dharmapurikar S, Yu F, Crowley P, Turner J. Algorithms to accelerate
multiple regular expressions matching for deep packet inspection. In: ACM
SIGCOMM; 2006. p. 339–50.

Kumar S, Chandrasekaran B, Turner J, Varghese G. Curing regular expressions
matching algorithms from insomnia, amnesia, and acalculia. In: ACM/IEEE
symposium on architectures for networking and communications systems
(ANCS); 2007. p. 155–64.

Liu C, Wu J. Fast deep packet inspection with a dual finite automata. IEEE Trans
Comput 2013;62(2):310–21.

McNaughton R, Yamada H. Regular expressions and state graphs for automata. IRE
Trans Electron Comput 1960;EC-9(1):39–47.

Meiners CR, Patel J, Norige E, Torng E, Liu AX. Fast regular expression matching
using small tcams for network intrusion detection and prevention systems. In:
USENIX conference on security; 2010. p. 1–16.

Pasetto D, Petrini F, Agarwal V. Tools for very fast regular expression matching.
Computer 2010;43(3):50–8.

Paxson V. Bro: a system for detecting network intruders in real-time. Comput Netw
1999;31(23):2435–63.

Peng K, Tang S, Chen M, Dong Q. Chain-based dfa deflation for fast and scalable
regular expression matching using tcam. In: ACM/IEEE symposium on archi-
tectures for networking and communications systems (ANCS); 2011. p. 24–35.

Qi Y, Wang K, Fong J, Xue Y, Li J, Jiang W, Prasanna V. Feacan: front-end acceleration
for content-aware network processing. In: IEEE INFOCOM; 2011. p. 2114–22.

Regular expression processor, 〈http://regex.wustl.edu/〉, 2014.
Ren X, Liu Z, Qi Y, Li J, Teng S. Sampling-based smoothed analysis for network

algorithm evaluation. In: Proceedings of IEEE GLOBECOM; 2013. p. 9–13.
Roesch M. Snort-lightweight intrusion detection for networks. In: USENIX con-

ference on system administration (LISA); 1999. p. 229–38.
Rohrer J, Atasu K, van Lunteren J, Hagleitner C. Memory-efficient distribution of

regular expressions for fast deep packet inspection. In: IEEE/ACM international
conference on hardware/software codesign and system synthesis
(CODESþ ISSS); 2009. p. 147–54.

Smith R, Estan C, Jha S. Xfa: faster signature matching with extended automata. In:
IEEE symposium on security and privacy (SSP); 2008. p. 187–201.

Smith R, Estan C, Jha S, Kong S. Deflating the big bang: fast and scalable deep packet
inspection with extended finite automata. In: ACM SIGCOMM; 2008. p. 207–18.

Snort, 〈http://www.snort.org/〉, 2014.
Sommer R, Paxson V. Enhancing byte-level network intrusion detection signatures

with context. In: ACM conference on computer and communications security
(CCS); 2003. p. 262–71.

The bro network security monitor, 〈http://www.bro.org/〉, 2014.
Thompson K. Regular expression search algorithm. Commun ACM 1968;11

(6):419–22.
Tuck N, Sherwood T, Calder B, Varghese G. Deterministic memory-efficient string

matching algorithms for intrusion detection. In: IEEE INFOCOM; 2004. p. 2628–
39.

van Lunteren J, Guanella A. Hardware-accelerated regular expression matching at
multiple tens of gb/s. In: IEEE INFOCOM; 2012. p. 1737–45.

Wang K, Li J. Towards fast regular expression matching in practice. In: ACM
SIGCOMM; 2013. p. 531–2.

Yang YE, Prasanna VK. Space-time tradeoff in regular expression matching with
semi-deterministic finite automata. In: IEEE INFOCOM; 2011. p. 1853–61.

Yu F, Chen Z, Diao Y, Lakshman TV, Katz RH. Fast and memory-efficient regular
expression matching for deep packet inspection. In: ACM/IEEE symposium on
architectures for networking and communications systems (ANCS); 2006. p.
93–102.

K. Wang, J. Li / Journal of Network and Computer Applications 55 (2015) 154–169 169

http://l7-filter.clearfoundation.com/
http://www.clamav.net/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref9
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref9
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref9
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref11
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref11
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref16
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref16
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref17
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref17
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref19
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref19
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref20
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref20
http://regex.wustl.edu/
http://www.snort.org/
http://www.bro.org/
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref32
http://refhub.elsevier.com/S1084-8045(15)00119-8/sbref32

	FREME: A pattern partition based engine for fast and scalable regular expression matching in practice
	Introduction
	Background
	Prior art
	Our contribution
	Roadmap

	Heuristic pattern partition
	Semantic overlapping
	Motivating example
	Principles for explosion-free partition
	Heuristic algorithm

	Fast regular expression matching engine (FREME)
	Bipartite data structure
	Proof of concept
	Matching procedure
	Performance advantages

	Optimization
	Towards pattern partition
	Equivalent segments
	Identical OFs
	Trade space for time

	Towards data structure
	DFA part
	RMT part

	Towards matching procedure
	Unnecessary state units
	Ignorable state units
	Annexable state units

	Experimental evaluation
	Experiment environment and data sets
	Partition statistics
	State space
	Construction time
	Scalability
	Matching performance
	Sampling-based smoothed analysis (SSA)

	Conclusion and future work
	References

