Towards Fast Regular Expression Matching in Practice

Kai Wang*t and Jun Lit*

*Department of Automation, Tsinghua University, Beijing, 10084, China
fResearch Institute of Information Technology, Tsinghua University, Beijing, 10084, China
iTsinghua National Lab for Information Science and Technology, Beijing, 10084, China
wang-kai09 @ mails.tsinghua.edu.cn, junl@tsinghua.edu.cn

ABSTRACT

Regular expression matching is popular in today’s network
devices with deep inspection function, but due to lack of al-
gorithmic scalability, it is still the performance bottleneck
in practical network processing. To address this problem,
our method first partition regular expression patterns in-
to simple segments to avoid state explosion, and then com-
pile these segments into a compact data structure to achieve
fast matching. Preliminary experiments illustrate that our
matching engine scales linearly with the size of the real-world
pattern set, and outperforms state-of-the-art solutions.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]:
al—=Security and protection (e.g., firewalls)

Gener-

Keywords

Regular expression matching; deep inspection; DFA

1. INTRODUCTION

Nowadays, regular expression matching is widely used in
content-aware network processing, such as intrusion detec-
tion/prevention, antivirus, application identification, con-
tent filtering and so on. Given a set of regular expressions
specifying the patterns of interest, the matching engine is
to inspect the payload of every packet in each network flow,
and find out all the patterns that occurred.

Regular expression matching is performed via either non-
deterministic finite automata (NFA) or deterministic finite
automata (DFA). Although NFA has a compact data struc-
ture, it demands high memory bandwidth and thus runs very
slowly. DFA is always fast, on the contrary, but it often ex-
hibits an exponentially growing size (i.e., state explosion)
compared to NFA, leading to prohibitive memory usage.

To achieve fast regular expression matching in practice,
prior work mainly focuses on deflating DFA by a variety of
compression techniques [3-5]. However, their design comes
at the cost of manyfold decreased matching speed. In this
work, we present a fundamentally different solution, to ad-
dress the entire problem through pattern partition.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SIGCOMM’13, August 12-16, 2013, Hong Kong, China.

ACM 978-1-4503-2056-6/13/08.

531

£t

NFA vs. DFA (some edges omitted for clarity)

else

Anteriorsegmenti | 0| 0 | 1 | 2]
OriginalPatternd | 0 | 0 | 0 | 0 |

(b) FREME (some edges simplified for clarity)

™
31 4]
I

Figure 1: The matching engines for the pattern set
of <.*ab.*cd.*mn> and <.*ef.*gh.*uv>

2. THE MOTIVATION

It is known that, regular expression syntaxes containing
character set with Kleene closure (e.g. .*) or counting con-
straint (e.g. .{n}), called overlapping factors (OFs) in this
work, can cause corresponding DFA to explode [3-5]. For ex-
ample, one can find that both the NFA and the DFA for the
pattern set of <.*abcdmn> and <.*efghuv> have 13 states.
In contrast, the NFA for the pattern set of <.*ab.*cd.*mn>
and <.*ef.*gh.*uv> also has 13 states, but corresponding D-
FA has 33 states (see Figure 1a). The explosion reason can
be explained as the possible semantic overlapping between
the OF and the patterns [3,4]. In the example above, the
entire pattern <.*ef.*gh.*uv> could be fully covered by both
two middle OFs <.*> of the pattern <.*ab.*cd.*mn> in reg-
ular expression semantics, and thus the states to represen-
t < *ef*gh.*uv> (states 7-12) are duplicated (states 15-20
and states 23-28) at the places where the two middle <.*>
of <.*ab.*cd.*mn> exist in DFA (at state 2 and state 4 in
the DFA of Figure la).

Accordingly, the state explosion problem of DFA can be
mitigated or solved, if all the patterns have no middle OFs
(e.g. the above-mentioned <.*abcdmn> and <.*efghuv>).
To this purpose, we propose the idea that first partition all
the patterns of the given pattern set into simple segments,
so that the resulting segments have no middle OFs, then

1e+05 1e+05

le+04

B DFA
[0 FREME

B NFA
[0 FREME

le+04 1e+03

le+02

of states

1e+03 le+01

Construction time (s)

1e+00

Processing time (cycle/byte)

le+02 le-01

12 120

1,200
of patterns from Snort

12
of patterns from Snort

(b) Number of states

120 1,200

(a) Processing time

B NFA
[0 FREME

12
of patterns from Snort

(c) Construction time

le+04 ¢ ——————3
£ DFA |3
Grouping !
Hybrid-FA O
XFA E

FREME

1e+03 £

1e+02 £

Memory usage (MB)

1e+01

le+00
le+01

1e+02 le+03

Processing time (cycle/byte)

120 1,200

(d) Time vs. space for 120 patterns from Snort

Figure 2: Performance comparison for DFA, NFA, Grouping [5], Hybrid-FA [3], XFA [4] and FREME

use all these segments to construct the fast regular expres-
sion matching engine (FREME) which can match original
patterns without causing false positive and false negative.

3. PATTERN PARTITION BASED DESIGN

As the DFA part of Figure 1b implies, the example pat-
terns <.*ab.*cd.*mn> and <.*ef*gh.*uv> are partitioned,
respectively, into <.*ab>, <" *cd>, <".*mn> and <.*ef>,
<" *gh> <" *uv>. Note that for each pattern, all the par-
titioned segments except the first one must be anchored, to
guarantee the concatenate matching for adjacent segments.
Particularly, <”.*> is equivalent to <.*> in syntax. Figure
1b shows that the DFA built for the resulting segments only
has 13 states (like the NFA in Figure 1a).

In addition, the relations of each pair of adjacent seg-
ments (in each pattern) are recorded during pattern parti-
tion, meanwhile each segment is assigned a distinct segment
ID. In Figure 1b, the segment IDs of <.*ab>, <.*cd> and
<.*mn> are 1, 3 and 5 (see match state 2, 4 and 6), respec-
tively. And the relation mapping table (RMT) part indicates
the relations among the segments: the anterior segment IDs
of segment 3 and 5 are 1 and 3 (i.e., segment 3/5 is at the
back of segment 1/3), respectively. Besides, the original pat-
tern ID of segment 5 identifies corresponding pattern 1, that
is <.*ab.*cd.*mn>. Note that 0 means no corresponding 1D
in RMT. It is the ID of the matched segment that is used to
index corresponding table entry in RMT.

The DFA part and the RMT part together make up the
final matching engine FREME. The size of DFA part is
Nstate - 256 - loga Nsiate bits. The size of RMT part is Nor -
2-logaNor bits, where Nor < Nstate. One can find that the
size of FREME mainly depends on the number of states in
DFA part. In FREME, an original pattern is matched only
when all its segments are processed and matched in sequence.
This is guaranteed by activating a single state unit to keep
track of current state number (based on a logs Nstate-bit val-
ue) and the IDs of previously matched segments (based on
a Nop-bit bit vector) in the process of matching.

4. MATCHING TO INPUT

Take Figure 1b as example and suppose the content to
inspect is "7abmncdmn”. The initial state unit consists of state
number 0 and bit vector 0000b. For input ”ab”, segment 1
is matched, then its ID 1 is used to index the 1st entry in
RMT, where no anterior segment is required, thus this match
is valid, and the 1st bit of bit vector is set (i.e., 0001b). Next
for input "mn”, segment 5 is matched, the indexed 5th entry
in RMT shows that segment 3 is expected to be previously
matched, but the 3rd bit in bit vector is not set, thus this
match is invalid and ignored. Next for input ”cd”, segment 3

532

is matched, and its anterior segment 1 in MRT is previously
matched according to bit vector, thus this match is valid,
and the 3rd bit of bit vector is set (i.e., 0101b). Next for
another input "mn”; segment 5 is matched correctly this time
because segment 3 has been matched before. Besides, the
match of pattern 1 (i.e., <.*ab.*cd.*mn>) is found, because
the original pattern ID of segment 5 is 1.

Note that in Figure 1b, all the match states (e.g. state
2) have the same next state as state 0 for identical input
character. This guarantees that the matching of arbitrary
segment must start from state 0 after the previous one is
correctly matched. If an exception is meet in practice (al-
though rarely), a new state unit with state number 0 and
the ID of the segment just matched must be activated, and
parallelly processed with the original one after then. In a lot
of prior work, it is found that most state transitions in DFA
lead back to state O or its neighbors. Consequently, even if
the exception occurs, the original and new activated state
units have a great chance of transiting to the same state in a
short time, then they could be merged merely by the bitwise
OR of their bit vectors. This means the number of state
units in FREME can always converge to one in any case.

S. EXPERIMENTS AND CONCLUSION

Experiments are conducted on an Intel Xeon E5504 plat-
form (CPU: 2.0GHz, L1 Cache: 32KB, L2 Cache: 4MB,
Memory: 8GB), using real-world regular expression patterns
(with hundreds of explosive OFs) collected from Snort ID-
S [1] and the published trace from MIT Lincoln Lab [2]. The
results shown in Figure 2 verify that FREME is practically
fast (like DFA) and scalable (like NFA), and outperforms
state-of-the-art solutions. In summary, benefiting from pat-
tern partition, our solution can defuse state explosion, mean-
while utilize DFA to achieve fast matching. We expect more
efficient design with heuristic partition and grouping.

6. REFERENCES

[1] Snort, http://www.snort.org/.

[2] DARPA Intrusion Detection Data Sets,
http://www.1ll.mit.edu/mission/communications/ist/
corpora/ideval/data/index.html.

M. Becchi and P. Crowley. A hybrid finite automaton for
practical deep packet inspection. In Proceedings of the 2007
ACM CoNEXT Conference, pages 1-12. ACM, 2007.

R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big
bang: fast and scalable deep packet inspection with extended
finite automata. In Proceedings of the 2008 ACM
SIGCOMM Conference, pages 207-218. ACM, 2008.

F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. Katz. Fast
and memory-efficient regular expression matching for deep
packet inspection. In Proceedings of the 2nd ACM/IEEFE
ANCS Conference, pages 93-102. ACM, 2006.

[3]

[4]

[5]

