
China Communications • August 2015 146

and packet payload. Accordingly, packet 
classification and pattern matching algorithms 
play a key role in network security processing. 
Due to the flexibility and high performance, 
most network security systems are developed 
on many-core network processing platforms. 
However, the existing packet inspection 
algorithms are difficult to be implemented 
effectively on these platforms for two reasons.

On one hand, due to the employment of 
intricate heuristics, the data structures of 
existing algorithms are often complicated 
and heterogeneous. These data structures 
may have different sub-structures of various 
memory sizes, which often hamper the 
optimization of memory allocation and 
access. Besides, complicated data structure 
may hurt the instruction locality in software 
implementation. For example, the well-known 
decision tree based packet classification 
algorithm HiCuts [1] employs the heuristics 
of greedy search at each internal node to 
select the locally optimized number of 
cuttings, which makes different tree nodes 
have different number of child node pointers. 
Therefore, direct compression of the HiCuts 
data structure is difficult and the traversal 
of HiCuts nodes might require unstable I/O 
bandwidth.

Abstract:  Modern network security devices 
employ packet classification and pattern 
matching algorithms to inspect packets. 
Due to the complexity and heterogeneity 
of different search data structures, it is 
difficult for existing algorithms to leverage 
modern hardware platforms to achieve high 
performance. This paper presents a Structural 
Compression (SC) method that optimizes the 
data structures of both algorithms. It reviews 
both algorithms under the model of search 
space decomposition, and homogenizes their 
search data structures. This approach not only 
guarantees deterministic lookup speed but 
also optimizes the data structure for efficient 
implementation on many-core platforms. 
The performance evaluation reveals that 
the homogeneous data structure achieves 
10Gbps line-rate 64byte packet classification 
throughput and multi-Gbps deep inspection 
speed.
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I. INTRODUCTION

Modern  ne twork  secur i ty  app l i ances 
require the inspection of both packet header 
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This paper presents 
a  St ruc tu ra l  Com-
pression (SC) method 
that  opt imizes the 
data structures of both 
algorithms. It reviews 
both algorithms under 
the model of search 
space decomposition, 
and homogenizes their 
search data structures.

On the other hand, the worst-case look-
up time is not guaranteed because most 
algorithms trade search time for memory 
space.  The decision tree based packet 
classification algorithms, such as HiCuts and 
HyperCuts [2], do not have explicit worst-case 
tree depth because they perform variable stride 
cutting at internal nodes and linear search at 
leaf nodes. The DFA based pattern matching 
algorithms, such as D2FA [3] and its improved 
variation [4], are difficult to guarantee the 
number of memory access per input character 
because the number of inter-state and intra-
state transitions are not strictly bounded. These 
limitations often cause unstable performance 
among different policy sets.

This paper optimizes the classic packet 
inspection algorithms for many-core network 
processing platforms. An effective Structural 
Compression (SC) method is proposed for 
both packet classification and pattern matching 
algorithms. The major contributions include:

1) Algorithm analysis: Based on the study 
of decision tree based packet classification 
algori thms,  the paper investigates the 
relationship between the implementation of 
data structures and the model of search space 
decomposition. Two types of information 
are abstracted, i.e., addressing information 
and partition information. The addressing 
information defines the affiliation among 
different nodes, and the partition information 
defines the traversal paths for tree search. 
Most existing algorithms do not explicitly 
distinguish them in their implementations, and 
there might be spatial redundancy within the 
tree data structures.

2) Structural compression: After the 
separation of addressing and parti t ion 
information,  the paper  introduces the 
s tructural  compress ion  approach that 
effectively reduces the spatial redundancy. 
In packet classification, the approach (SC-
Tree) restricts the employment of heuristics 
in building search data structures and 
enforces fixed-stride cutting strategy. Subject 
to a two-stage compression of tree nodes, 
the spatial redundancy is reduced at each 

internal node and also is globally eliminated 
using a shared storage. Moreover, this paper 
extends the approach to DFA based pattern 
matching algorithms by adding relay states 
and a locality-aware encoding scheme. The 
structural compression approach for DFA (SC-
FA) can guarantee the memory access times 
when looking up different policy sets, and 
uses homogeneous data structures for efficient 
memory operations.

3) Hardware evaluation: Both SC-Tree 
and SC-FA are optimized and implemented 
on a 64-core Tilera TILEPro64 [5] platform 
for hardware evaluation. Each tree node 
is compressed into one 64bit word and is 
aligned in consecutive memory. The searching 
procedure runs in parallel with linear speedup 
along with the increment of the processing 
core number. The results of performance 
evaluation demonstrate that the SC-Tree 
reaches 10Gbps line-rate 64byte packet 
classification speed, and the SC-FA achieves 
multi-Gbps pattern matching speed.

The rest of this paper is organized as 
follows. Section 2 analyzes the structural 
redundancy of the exit ing algori thms. 
Section 3 and Section 4 present the structural 
compression algorithm for both packet 
classification and pattern matching algorithms. 
Section 5 describes the evaluation of the 
structural compression approach on many-
core network processing platforms. Section 6 
draws the conclusion.

II. DATA STRUCTURE REDUNDANCY

2.1 Two types of information

Figure 1 shows a typical HiCuts decision 
tree. Node-0 is the tree root, and its related 
2-dimensional overall search space is equally 
cut into 4 unit-spaces on Y dimension. After 
aggregation, the 1st and the 2nd unit-space 
are mapped to the 1st and the 2nd subspace, 
respectively; the 3rd and the 4th unit-spaces 
are aggregated into the 3rd subspace. Similar 
decomposition is performed on node-1 ~ 
node-3. Node-4 ~ node-9 are leaf nodes as 
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the recursion is terminated. The tree outline, 
i.e., tree nodes and their traversal paths, and 
the tree texture, i.e., space decomposition 
pattern residing in internal nodes, consist in 
the decision tree. According to this example, 
there are two key points in a typical tree data 
structure:

Addressing: The addressing information is 
used for identifying nodes during decision tree 
building and traversal, which is determined 
by the tree outline. Multiple schemes can be 
employed to address tree nodes. For example, 
the general scheme is using node pointer or 
node global index. To reduce the memory 
requirement, the parent node can use the base 
plus offset scheme, which is based on its first 
child node address and the number of its child 
nodes.

Partition:  The partition information 
includes cut dimension, cut stride (the number 
of cuttings) and aggregated subspace mapping. 
It texturizes the tree with possible search paths. 
The search procedure uses this information 
and packet header field value to select the next 
traversal node. Most algorithms decide the cut 
dimension sequence using different evaluation 
functions. Besides, i t  usually employs 
variable-stride cutting strategy during decision 
tree building, and generates different amount 
of unit-spaces and subspaces.

2.2 Structural redundancy

From the experimental results on real-life 
policies, it could be observed that the existing 
packet classification trees have a lot of 
structural redundancy, i.e., a large number of 
internal nodes have similarity in two aspects: 
1) the number of subspaces; 2) the mapping 
between unit-spaces and subspaces. The first 
similarity is due to the fact that the fan-out of 
most internal nodes is small, i.e., most internal 
nodes have only a small number of child 
nodes. The second similarity is caused by the 
common practice of subnet address allocation 
and application port specification, i.e., most 
rules have the same source IP addresses, and 
popular network services, e.g., web / mail 

Fig.1  Geometric view and HiCuts tree for policy in Table 1

Table I  A 2-field policy with 4 rules

Rule Priority X-field Y-field Action
R1 1 [0100,0111] [0000,0011] act1
R2 2 [0000,1111] [0101,0101] act1
R3 3 [1000,1111] [1000,1111] act1
R4 4 [0000,1111] [0000,1111] act2

/ DNS, bind well-known ports. In addition, 
standard application ports are limited to a 
small value range, and many rules have the 
same destination port. In Figure 1, the internal 
nodes have the following two similarities. 
First, all of node-1, node-2 and node-3 have 
2 subspaces. Second, node-1 and node-2 have 
the same space mapping, i.e., the 1st, 3rd and 4th 
unit-spaces are aggregated to the 1st subspace, 
and the 2nd unit-space is mapped to the 2nd 
subspace. Although these similarities can be 
found in most internal nodes, they have not 
been exploited by the existing algorithms. 
Most implementation adopts the array of 
pointer to store both addressing and partition 
information. Different nodes are addressed 
with different pointers, which hamper the 
elimination of the partition similarity.

Based on the above analysis, it is required 
to separate the addressing and partition 
information. After decoupling, the partition 
information can be independently expressed. 
And it is free to employ different compression 
techniques to extract the most significant 
information. Overall, it is the decoupling that 
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opens the way to structurally compress the 
spatial redundancy in data structures.

III. STRUCTURAL COMPRESSION FOR 
PACKET CLASSIFICATION

3.1 Decision tree based packet 
classification

Many existing packet classification algorithms 
are based on decision tree data structure. These 
algorithms partition the overall search space 
hierarchically into subspaces until each of 
subspaces contains only a few rules. At each 
internal tree node, the current search space is 
partitioned into a certain number of subspaces 
via equal-sized cutting(s) on selected packet 
header field(s). The number of cuttings and the 
cutting field(s) may be determined by policy-
related heuristics. The space decomposition 
terminates at each leaf node.

As an example, Table 1 shows a 2-field 
policy with 4 rules. Each rule has range 
specifications on both X and Y fields. The 
priority of rules is in decent order. R4, the 
default rule, overlaps R1, R2 and R3. The 
left part of Figure 1 is the geometrical view 
these rules. All rules are in the entire search 
space S0={x∈[0000,1111], y∈[0000,1111] 
}. The objective of classifying a packet 
P={x=0111,y=0010} is to find the rectangle 
with the highest priority that contains P. The 
right part of Figure 1 shows the HiCuts tree as 
an example classifier. At the root node, the S0 
is partitioned into 4 unit-spaces using equal-
sized cuttings on the Y-field:

U1={x∈[0000,1111],y∈[0000,0011]}
U2={x∈[0000,1111],y∈[0100,0111]}
U3={x∈[0000,1111],y∈[1000,1011] }
U4={x∈[0000,1111],y∈[1100,1111]}
According to HiCuts algorithm, U3 and 

U4 are aggregated into a single subspace, 
because they contain the same sub-rule set of 
rules {R3, R4}. Thus, at the tree root, the S0 is 
partitioned into 3 subspaces:

S1={x∈[0000,1111],y∈[0000,0011]}
S2={x∈[0000,1111],y∈[0100,0111]}
S3={x∈[0000,1111],y∈[1000,1111]}

After space partition, three child nodes 
are created. A pointer array is allocated and 
stored in the root node to map U1 ~ U4 to S1 
~ S3. By performing similar space partition at 
node-1, node-2 and node-3, the S0 is further 
partitioned into six subspaces:

S4={x∈[0000,0011]∪[1000,1111],
        y∈[0000,0011]}
S5={x∈[0100,0111],y∈[0000,0011]}
S6={x∈[0000,1111],
        y∈[0100,0100]∪[0110,0111]}
S7={x∈[0000,1111],y∈[0101,0101]}
S8={x∈[0000,0111],y∈[1000,1111]}
S9={x∈[1000,1111],y∈[1000,1111]}

As each subspace of S4 ~ S9 is fully 
covered by a specific set of rules, the rule 
with the highest priority in the set is the final 
classification result. Therefore, node-4 ~ node-
9 are leaf-nodes and no space partition is 
needed.

Compared to HiCuts, HyperCuts applies 
equal-sized cuttings on multiple fields 
simultaneously to reduce the average depth of 
decision tree. EffiCuts [6] divides the original 
classifier into a set of sub-classifiers to reduce 
the memory usage. Although they use different 
strategies to achieve the better tradeoff 
between time and space, the basic structure of 
packet classification trees are similar.

3.2 SC-Tree for packet classification

Three steps are taken to obtain the SC-Tree. 
The first step is to separate the partition 
information from the addressing information 
at each internal tree node. Then the per-node 
partition information is compressed using a 
two-stage space aggregation technique. In 
the third step, only unique per-node partition 
information is extracted and then shared 
among all internal nodes. After these three 
steps, all pointers are eliminated, and a 
compact SC-Tree data structure is obtained.

STEP-1 :  Separation of two types of 
information. All nodes are restricted to fixed 
memory size, and all child nodes of an internal 
node are stored in consecutive memory. 
Assume each node has the size N_SIZE 



China Communications • August 2015 150

and the number of cuttings N_CUTS. Using 
children base plus offset addressing scheme, 
the ith pointer Pi in the pointer array can be 
rewritten as follows:

Pi=P0+offset[i]*NSIZE,0≤i<NCUTS

where P0 is the address of the first child node, 
and offset[N_CUTS] stores the offset of all 
child nodes. As shown in the top of Figure 2, a 
pointer array with 8 pointers can be separated 
into two parts. One is the base address and the 
number of child nodes. The other is the offset 
array. The former represents the addressing 
information, and we can count on this 
information alone to access all child nodes. 
The latter is the partition information, as it 
only uses local offsets for space mapping. And 
it does not contain any addressing information. 
Since the length of pointer array and the 
maximum value in offset array are equivalent, 
the former can be eliminated to optimize the 
memory usage.

As the partition information has been 
abstracted and is independent from the 
addressing information, it is possible to 
remove the structural redundancy of data 
structures. Unfortunately, the fan-out of a tree 
is small, and most offset arrays are very sparse 
when the number of cuttings is large. Direct 
redundancy removal based on these offset 
arrays is not efficient. As a consequence, in 
the second step, the local redundancy in each 
offset array will be first removed.

STEP-2 :  Compress ion  o f  par t i t ion 
information. At this step, the offset arrays are 
compressed using the bitmap technique [7]. 
Given an offset array OA[k], 0 ≤ k < K, a K-bit 
bitmap and an M-element offset list OL[m], 
0 ≤ m < M ≤ K can be generated by taking 
following steps:
-    Clear the first bit of the bitmap, let m = 0, 

and set OL[m] = OA[0].
-    For each 1 ≤ k < K, if OA[k] != OA[k + 1], 

set the (k + 1)th bit of the bitmap, let m += 
1, and set OL[m] = OA[k]; else clear the (k 
+ 1)th bit of the bitmap.
The bottom of Figure 2 shows an example 

of bitmap compression, and it can be seen that 
an 8-element offset array is compressed into a 

Fig. 2  The separation and compression of two types of information

4-element offset list using an 8-bit bitmap.
S T E P - 3 :  E l i m i n a t i o n  o f  p a r t i t i o n 

redundancy. After the first two steps, there 
is  an important  observat ion in packet 
classification trees: The number of unique 
bitmaps and the number of unique offset lists 
are both small compared to the one of tree 
nodes. In other words, many nodes have the 
same bitmaps or offset lists. According to the 
experimental results on real-life policies, the 
numbers of unique bitmaps and offset lists 
are both at least 1~2 orders less than the one 
of tree nodes. As an example, by replacing all 
pointer arrays in Figure 1 with bitmaps and 
offset lists and using fixed-stride 4-cuttings, 
the decision tree shown in Figure 3 could be 
obtained. There are only 2 unique bitmaps 
(0110 and 0010) and 3 unique offset lists (012, 
010 and 01) among all 4 internal nodes. As the 
offset list 01 in node-3 is a prefix of the offset 
list 012 in node-0, the latter can be also used 
as the offset list of node-2. Thus, the number 
of unique offset lists is reduced to 2.

Both unique bitmaps and offset lists are 
extracted from all internal nodes and shared 
among them. After that, each internal node 
only needs to store two indices (bmpID and 
offID) to index the shared bitmap table and 
offset list table. Besides, the base pointer 
in each node can also be replaced with the 
first child node global ID, e.g., N1, to save 
memory usage. Figure 4 shows the final SC-
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Fig. 3  Packet classification tree with bitmaps and offset lists

Fig. 4  SC-Tree for policy in Table 1

Tree data structure.
To search the SC-Tree data structure, we 

start from the root node and then traverse 
down the tree through a series of internal 
nodes until reach a leaf node. For example, 
to classify packet P={x=0111,y=0010} by 
searching the SC-Tree shown in Figure 4, it 
takes the following steps: At the root node, 
as we use fixed-stride 4-cuttings and the first 
two bits of value on cutting dimension Y is 
00, the packet falls into the 1st unit-space. 
The procedure counts the number of 1s of the 
first 1 bit of bmp0, and gets the result 0. It 
reads the next node whose ID is N1 + off0[0], 
i.e., node-1. Similarly, at node-1, as the first 
two bits of value on cutting dimension X is 
01, the packet falls in the 2nd unit-space. The 
procedure counts the number of 1s of the 
first 2 bits of bmp0, and gets the result 1. It 
reads the next node whose ID is N4 + off1[1], 
i.e., node-5. As node-5 is a leaf node, the 

procedure can find the best matched rule R1 
with action act1 associated.

IV. STRUCTURAL COMPRESSION FOR 
PATTERN MATCHING

4.1 DFA based pattern matching

Different from packet classification, which 
is range matching on a limited number 
of packet header fields, pattern matching 
conducts byte-level matching on an unlimited 
number of packet payload. The number of 
inspected bytes is the overall size of a flow. 
Many existing pattern matching algorithms 
are based on DFA. A DFA consists of a finite 
set of input symbols, denoted as Σ, a finite 
set of states, and a transition function δ. In 
network applications, |Σ| = 256, which is the 
size of extended ASCII symbols. Among these 
states, there is a single initial state and a set 
of accepting states. The transition function δ 
takes a state and an input symbol as the input 
and returns the next state as the output.

The left part of Figure 5 shows an example 
DFA for matching 2 regular express1ions 
RE1 /.*be+/ and RE2 /.*dad/ over the symbol 
set Σ = {a, b, c, d, e, f, g, h}. For any input 
symbol c∈Σ and state Si, the next state Sj can 
be found by following the transition labeled 
with the symbol c. All transitions to S0 are 
not shown for clarity. To lookup the DFA, 
we can use the DFA transition table shown in 
the right part of Figure 5. Pi is the memory 
address of Si. Given an input character stream 
“babedad” and the initial state S0, it will take 
the following steps to lookup the transition 
table:

4.2 Structural redundancy in DFA

According to the existing studies, the DFA 
transition table has a lot of redundancies [3] 
[4]. Based on the observation of real-life 
DFA transition tables, the redundancy can be 
categorized in two classes [8]:

Intra-state redundancy: The number of 
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Fig. 5  DFA graph and transitions for /.*be+/ and /.*dad/

Fig. 6  Adding relay states in the DFA graph

Fig. 7  DFA graph and transitions after reducing relay states

unique transitions in a certain state is usually 
small, because frequently used characters in 
pattern matching rules are a small subset of 
the ASCII symbol set. Therefore, most states 
have only a few unique transitions at these 
symbols.

Inter-state redundancy: A set of states are 
usually of similar transitions, because many 
state transitions point to several common 
failure states [9]. Besides, some unambiguous 
states may be replicated when automata is 
combined [10].

Figure 5 shows that at least 5 out of 8 
transitions are identical in each state, which 
point to P0. In the group of states {S0, S2, 
S5}, 7 out of 8 transitions in each state are 
identical to one another. Such intra-state and 
inter-state redundancies are more apparent in 
real-life DFA transition tables.

4.3 SC-FA for pattern matching

In pattern matching, DFA can be regarded as 
a hierarchical data structure: the initial state 
is viewed as the root node; all states next to 
the initial one are viewed as child nodes of 
the root. The significant difference between 
DFA and decision tree is that DFA transition 
may point to upper nodes (previous states). 
These backward transitions implicate the next 
and the preceding space will share the same 
partition pattern.

The proposed structural compression 
method is extended to DFA based pattern 
matching by taking the following steps. Firstly, 
the DFA graph is converted into a 256-stride 
tree by adding relay states. Then an offset 
encoding technique is employed to reduce 
the number of relay states by exploring the 
statistical distribution of relay state transitions. 
After that, the SC-FA data structure that 
eliminates the redundancies in DFA transition 
tables is obtained.

STEP-1: Introduction of relay states. Each 
transition in the DFA graph belongs to either 
a descent transition (solid arrow in Figure 
5) or a relay transition (dashed arrow in 
Figure 5). The existence of relay transitions 

makes it impossible to use the base plus 
offset addressing scheme to extract partition 
information, because child states are stored in 
non-consecutive memory space. To support 
incremental addressing of child states, the 
additional relay state is introduced. Each relay 
state is a state replication corresponding to its 
relay transition. After adding relay states, all 
relay transitions can be replaced by descent 
transitions, and the DFA graph turns into a 
tree-like structure. Each state is similar to an 
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internal node of the packet classification tree, 
and transition pointers are analogous to the 
pointer array. Figure 6 shows the DFA graph 
after adding relay states. In this figure, it could 
be observed that all relay transitions have 
been removed by adding relay states, i.e., Si.j 
indicates the jth duplicates of Si. Because each 
relay state is identical to its corresponding 
state, the search of the DFA graph maintains 
the property of one character per state 
traversal. For example, given the input byte 
stream “babedad” and the initial state S0, it 
will take the following steps to lookup the 
DFA graph in Figure 6:

STEP-2: Reduction of relay states. To 
achieve a better compression ratio, the number 
of relay states is reduced before applying 
the structural compression. Based on the 
observation that most relay transitions point to 
only a small number of states, i.e., most relay 
states are replication of only a few states, an 
index encoding strategy could be introduced to 
significantly reduce the number of relay states. 
This encoding method takes the following 
steps:
-   Reorder all DFA states according to the

access frequency in descent order. This 
frequency can be obtained by counting 
the total number of a certain transition in 
original transition tables.

-   Store the first M states in consecutive memory.
Thus, these states can be directly accessed 
when given an index of the value, i.e., 0 ~ 
M - 1.

-   Replace state transitions that point to the
first M states with the state index.
For example, Figure 5 reveals that S0, S1 

and S2 are the top three most frequently visited 
states, which means M = 3. If the state index is 
employed to access them, their corresponding 
relay states can be removed from Figure 6. 
The resulting DFA graph and transition table 
are shown in Figure 7. Note that, because S3 
has only one child state, the transition pointer 
P3, rather than P3.1, can be directly used to 
relay state S3.1. Thus, the relay state S3.1 can 
be removed in the transition table. Similarly, 

S4.1 can be also eliminated, as it has the only 
child state of S5.

STEP-3 :  El iminat ion  o f  s t ruc tura l 
redundancy. After transforming the original 
DFA and reducing the relay state overhead, the 
structural compression is employed to build 
the final DFA graph. As the indices of the first 
M states are used for direct accessing, the 
corresponding values in the offset array are the 
real global state IDs, rather than the offsets to 
the children array base. Except for these states, 
other decent states are viewed as siblings, and 
the corresponding values in the offset array 
vary from M ~ M + 255. In most cases, the 
number of decent states is small, so the offsets 
are also in a small range as well. After that, we 
also obtain the similar observation compared 
with the real-life packet classification trees: 
The number of unique bitmaps and the number 
of unique offset lists are both small compared 
to the one of DFA states. Thus, the unique 
bitmaps and offsets are extracted from all DFA 
states and shared. Besides, the pointer in each 
state can be replaced with its global state ID, 
and all states are shaped with the same size. 
Figure 8 shows the final SC-FA data structure.

To search the SC-FA data structure, we 
start from the initial state and traverse in DFA 
graph through multiple transitions until input 
symbols are all processed. For example, it 
takes the following steps to match the input 
character stream “babedad”, by searching 
the SC-FA shown in Figure 8. At the initial 
state, as the first input character is ‘b’, the 
procedure falls in the 2nd unit-space. It counts 
the number of 1s of the first 2 bits of bmp0, 
and gets the result 1. Because we regard S0, 
S1 and S2 as three most visited states and 
the value of off0[1], i.e., 1, is smaller than 
M, it directly reads the next state whose ID 
is 1, i.e., S1. Similar processing is performed 
until the current input character is ‘e’, and 
the current state is traversed to S1. At S1, as 
the input character is ‘e’, the procedure falls 
in the 5th unit-space. It counts the number 
of 1s of the first 5 bits of bmp1, and gets the 
result 4. Because the value of off1[4], i.e., 3, 
is not smaller than M, it read the next state 
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whose ID is N3 + off1[4] - M, i.e., S3. At S3, 
the procedure can find the matched RE0. The 
procedure goes through these two types of 
state addressing until all inputs are processed.

V. MANY-CORE OPTIMIZATION AND 
PERFORMANCE EVALUATION

5.1 Many-core platform

Among network security devices, high-end 
products may leverage ASIC or FPGA chips 
to perform critical packet processing. It can 
achieve extreme high processing speed, but 
lacks of flexibility to extend its functionality. 
As a result, most commodity network security 
devices are built on many-core network 
processing platforms, which are developed 
with various acceleration engines that are 
optimized for packet manipulation specifically, 
such as DFA thread engine for packet payload 
inspection, ingress/egress packet processor for 
high-speed packet parser and packet order unit 
for flow-level order preserving. Besides, these 
processors also have the specific instruction 
sets for security and compression processing, 
such as cryptographic and SIMD instructions.

Tilera TILEmpower appliance [11] is a 
many-core network processing platform. It can 
perform high-speed packet processing with 
low clock rate and low power consumption. 
It includes a Tilera TILEPro64 processor, 

providing Linux programming environment 
and optimized dataplane processing library. 
Figure 9 shows the high-level architecture 
of Tilera TILEPro64. The processor has 64 
full-meshed processing tiles. The L2 cache 
in all processing cores can be configured to 
be accessed from other processing cores in 
various forms. Thus, all L2 caches can form a 
distributed L3 cache, which is able to reduce 
the access latency of main memory. All 64 
cores are interconnected by six inter-tile on-
chip networks, and three of them are software 
programmable for low-latency communication 
among processing cores. It also has four on-
chip memory controllers that can address up 
to 16GB shared memory. All controllers can 
be configured for independent access or be 
striped for system controlled load balance in 
memory intensive scenarios. Two 10Gbps 
XAUIs are attached as network IO interfaces.

5.2 SC-Tree / SC-FA optimization

In high-speed processing systems, the data 
ought to be stored / loaded at alignment 
address and be processed in processor word 
length. According to the complexity of 
different policies, SC-Tree / SC-FA are able 
to limit the bits allocated for different usage 
within one word. It can be observed that 
each internal node has four different fields: 
the cutting dimension, the bitmap index, the 

Fig. 8  SC-FA of pattern matching in Fig. 5 Fig. 9  Tilera TILEPro64 architecture [12]
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offset index and its first child index, which are 
determined by the dimension number of rules, 
the number of bitmap, the number of offset 
and the number of tree nodes, respectively. 
Based on the statistics analysis of public 
available 5-dimensional policies, these four 
types of information can be stored in one 64bit 
word with each field of 3bits, 12 bits, 9 bits 

and 40 bits, respectively.
Parallel optimization: The structural 

compression approach is deployed in data 
parallelism mode. All available cores execute 
the same processing logic of policy lookup, 
and received packets are distributed among 
these cores at flow granularity. Ideally, 
the system throughput could achieve the 
linear speedup along with the increment of 
processing core number.

Cache optimization:  The structural 
compression approach can guarantee the 
deterministic search speed among all policies, 
but it needs two extra memory accesses to 
fetch the bitmap and offset. To achieve high 
system throughput, the cache scheme of 
bitmaps and offsets are configured differently 
from the one of tree nodes. In TILEPro64 
processor, each physical memory address 
could be configured with or without coherence 
guarantee. In coherence manner, the data 
structures could be cached in the L2 cache 
of all tiles. Besides, to avoid the jitter of 
processing speed, the coherence scheme could 
be configured as hash-for-home, where the 
coherence maintenance of one memory page is 
evenly distributed among all processing tiles. 
In incoherence manner, the data structures 
are locally cached, which could not leverage 
the cache of other tiles. For SC-Tree / SC-
FA optimization, the bitmaps and offsets are 
configured in coherence manner with hash-for-
home scheme. And they are also set with high 
priority to prevent cache eviction. The tree 
nodes are configured in incoherence manner, 
as its randomly accessed behavior is difficult 
to benefit from caching.

Memory optimization: The TILEPro64 
processor supports huge page. And the size of 
one huge page is 16MB, against 4KB for the 
one of default memory page. This optimization 
could significantly reduce the TLB misses. 
All data structures of SC-Tree / SC-FA 
employ huge pages for storage. Besides, the 
packet buffer is also configured to use huge 
pages. The packet buffer is allocated on the 
memory controller which is the nearest one 
to the network IO interfaces, i.e., the 1st and 

Table II  Partition patterns in decision trees

rules total uni bmp uni off agg off
ACL_1K 2548 640 64 29
ACL_5K 9547 1671 266 136
ACL_10K 27543 2705 369 200
FW_1K 304185 703 109 49
FW_5K 1585.3K 2612 293 128
FW_10K 4818.4K 3713 499 253
IPC_1K 75931 776 71 31
IPC_5K 808348 2258 237 111
IPC_10K 2122.1K 3968 331 153

Fig. 10  Memory usage of HiCuts, HyperSplit and SC-Tree

Fig. 11  Memory access of HyperSplit and SC-Tree
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2nd controllers, to reduce the transmit latency. 
As the search procedure of SC-Tree / SC-FA 
consumes large volume of memory bandwidth, 
all controllers are configured in strip manner. 
Thus, the memory accesses of data structures 
are evenly scattered to achieve better balance 
of the memory IO pressure. 

Instruction optimization: The structural 
compression approach heavily relies on the 
function of counting '1' in one bitmap. In 
generic software implementation, the function 
counts the number in loop manner, which 
needs multiple CPU cycles. The TILEPro64 
processor provides multiple instructions for 
bit manipulation. The pcnt instruction is 
used for hardware acceleration, which could 
accomplish the counting of one word in single 
CPU cycle.

5.3 Performance evaluation

5.3.1 Evaluation data sets

The SC-Tree rule sets contain three types of 
rules: Access Control List (ACL), Firewall 
(FW) and IP Chain (IPC), generated by 
ClassBench [13]. Each type of rule sets 
includes the scales of 1K, 5K and 10K rules.

The SC-FA signature sets include two 
regular expression sets (snort24 and snort40) 
and two string sets (short8 and short120) from 
Snort [14], one regular expression set (bro217) 
from Bro [15] and two regular expression sets 
(linux13 and linux30) from L7-filter [16].

5.3.2 SC-Tree evaluation

5.3.2.1. Partition redundancy in decision trees
The number of search space partition patterns 
stored in data structures is measured to 
illustrate the partition redundancy in packet 
classification trees. The HiCuts algorithm 
is employed to build original decision tree. 
According to the requirement of structural 
compression technique, 256-stride cutting 
is conducted at each internal node. And the 
number of rules at leaf node is set to 1, which 
forbids the linear-search at leaf node. Table 2 

shows the number of partition patterns stored 
in HiCuts-Tree and SC-Tree. As each internal 
node of HiCuts-Tree stores the partition 
information, the number of partition patterns 
equals to the one of internal tree nodes in 
HiCuts-Tree, which is shown in total field 
of Table 2. According to the complexity of 
search space on different rule sets, the number 
of partition patterns in HiCuts-Tree varies 
in a large range. After extracting bitmaps 
and offsets from internal nodes, the number 
of unique bitmaps (uni bmp in Table 2) is 
reduced up to 0.1% of the one of partition 
patterns in HiCuts-Tree. And the number of 
unique offsets (uni off in Table 2) is reduced 
even more. Besides, if aggregating offsets that 
share the same prefix, the number of unique 
offsets (agg off in Table 2) is further reduced 
by about 50%.

5.3.2.2. Memory usage and access
The SC-Tree is compared with HiCuts and 

Fig. 12  Throughput on different core number

Fig. 13  Throughput on different packet size
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HyperSplit [17] in terms of both memory size 
and memory access. HyperSplit is a typical 
algorithm of rule-based space decomposition 
with low memory requirement. Figure 10 
shows the memory size on different policies. 
In this figure, the memory usage of SC-Tree 
can be reduced by up to 99% compared to the 
one of HiCuts-Tree. The memory size of SC-
Tree is comparable with the one of HyperSplit 
on all rule sets. Figure 11 shows the memory 
access of both HyperSplit and SC-Tree. In 
equal-sized space decomposition algorithms, 

Table III  Partition patterns in DFAs

rules total uni bmp uni/agg off uni/agg off 256
snort24 8335 1595 828/795 2352/2316
snort40 19019 4494 566/289 2173/1505
linux13 4871 225 103/79 657/578
linux30 43547 2782 944/773 3648/3185
short8 5662 44 39/38 1278/1278
short120 56280 112 246/246 5473/5473
bro217 6533 73 116/1111 2235/2229

Fig. 14  Memory usage of DFA, D2FA and SC-FA

Fig. 15  Throughput of DFA and SC-FA

i.e., HiCuts and SC-Tree in our test, the 
memory access time is well guaranteed if 
the fixed-stride cutting strategy is adopted. 
Although SC-Tree needs multi-table lookups, 
the bitmaps and offset lists are relatively small 
to be stored in CPU L2 or L3 cache, which 
avoids directly fetching data from DRAM 
with much higher latency. On the contrary, the 
memory access time of HyperSplit increases 
when the policy scale or the complexity of 
search space grow.

5.3.2.3. System throughput
Figure 12 and Figure 13 show the throughput 
of HyperSplit, HiCuts and SC-Tree using 
ACL10K policy, which are evaluated on the 
Tilera TILEPro64 platform. Input packets are 
generated by SmartBits. Both figures show 
the worst-case throughput of these algorithms 
on different core numbers and packet sizes, 
respectively. In Figure 12, both 256-stride 
HiCuts and SC-Tree can achieve 10Gbps line-
rate throughput for 64-byte packets using all 
available tiles. However, the throughput of 
HyperSplit is bounded by memory bandwidth, 
as it requires twice memory access time of 
SC-Tree in worst case. Figure 13 demonstrates 
that both HyperSplit and 256-stride HiCuts 
could achieve 10Gbps line-rate throughput 
for packets whose length is above 1024 bytes, 
using two processing tiles. Moreover, SC-
Tree reaches 10Gbps line-rate throughput 
when classifying 1518-byte packets with the 
same number of processing tiles, as it requires 
multiple bitmap calculations during each 
packet classification.

5.3.3 SC-FA evaluation

5.3.3.1. Partition redundancy in DFA
Similar to the measurement of partition 
redundancy in decision trees, the number of 
partition patterns in SC-FA is compared with 
the one of states in classic DFA to illustrate 
the partition redundancy in DFA based pattern 
matching algorithms. In Table 3, the total 
filed indicates the number of DFA states of 
different signature sets. After introducing 



China Communications • August 2015 158

relay states and extracting partition patterns 
from all states, it is observed that the numbers 
of unique bitmaps and offsets are both much 
smaller than the one of DFA states. If the IDs 
of first 256 DFA states are encoded in offset 
arrays, the numbers of unique offsets (uni/
agg off 256 in Table 3) are mostly larger than 
the ones of unique bitmaps (uni bmp in Table 
3). Besides, unique offsets can hardly be 
aggregated, especially for the two string sets. 
The main reason of the above difference is 
that in packet classification, most subspaces 
have the same sub-rule sets but different unit-
space aggregation patterns. While in pattern 
matching, most DFA transitions have the same 
transition patterns but different next states for 
the same symbol.

5.3.3.2. Memory usage
In Figure 14, SC-FA, D2FA and DFA are 
compared in terms of memory usage. Two ID 
encoding schemes of SC-FA are employed for 
comparison. After structural compression, SC-
FA can achieve 80% compression ratio and 
outperforms D2FA in most cases. Specifically, 
the SC-FAs without ID encoding take less 
memory usage than DFAs, except for the two 
string sets from Snort. Besides, the SC-FAs 
with the ID encoding of first 256 DFA states 
can further reduce the memory requirement, 
except for the signature sets from L7-filter. 
And the D2FA fails to process the short120 
signature set due to the large number of state 
transition. The first exception indicates that 
introducing relay states on string sets imposes 
great state space overhead. The main reason 
is that the multi-string DFA usually has high-
dense distinct transitions, which is quite 
different from the DFA constructed form 
regular expressions. The second exception is 
mainly due to the DFA states of L7-filter sets 
are clustered into multiple groups, and the 
reduction of relay states cannot benefit from 
state ID encoding.

5.3.3.3. System throughput
Figure 15 depicts the comparison of system 
throughput between DFA and SC-FA on the 
Tilera TILEPro64 many-core platform. All 
processing tiles are employed to process 
1518-byte packets. The evaluation result on 

random packet payload reveals that the SC-
FA can achieve comparable processing speed 
against the classic DFA. For linux13 set, SC-
FA has high system throughput, i.e., 3.4Gbps 
processing speed, because the compressed 
data structure is so small that could be stored 
within L2 cache. Besides, the throughputs are 
nearly identical on the signature sets of short8 
and bro217. For other evaluation sets, the 
throughputs are only degenerated about 10% 
on average. If employing the state ID encoding 
of SC-FA, the throughputs are still around 
1Gbps. The speed gap mainly results from 
the increase of unique offset lists introducing 
more extra cache coherence operations among 
multiple tiles.

VI. CONCLUSIONS

The rapid growth of network applications 
requires network security devices to perform 
high-performance lookup of complex security 
policies. This paper focuses on the efficient 
implementation of both packet classification 
and pattern matching algorithms on many-
core network processing platforms. Based on 
the decoupling of addressing and partition 
information, the structural compression 
approach homogenizes these two types of 
search data structures. It achieves above 
90% compression ratio, and also guarantees 
the processing speed. Evaluation shows 
the approach reaches multi-Gbps packet 
inspection speed on Tilera TILEPro64 many-
core platform. To encourage the innovation in 
this area, the source code of SC-Tree has been 
publicly available at [18].
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