
An XML Firewall on Embedded Network Processor

Wei Wang1,2 and Jun Li2,3
1Department of Automation, Tsinghua University, China

2Research Institute of Information Technology, Tsinghua University, China
3National Lab for Information Science and Technology, China

autotm@gmail.com

Abstract

XML-based services with flexible and intelligent

structures for data expression and exchange are
quickly gaining popularity. Enterprises are deploying
XML-based services as a central component of the
application integration. As the application data are
crucial to the enterprises, the XML messages must be
secured to ensure the reliability of these services. This
paper presents the design of an embedded XML
firewall with XML identification, XML validation, XML
encryption and decryption, XML signature and
signature verification, which is implemented on Intel
IXP425, an embedded network processor for small and
medium enterprise solutions. Suitable for enterprises
to deploy XML security for their IT infrastructure, the
XML firewall provides confidentiality, integrity and
authenticity for XML-based services. Improvements are
introduced and evaluated, including schema
preprocessing and hardware acceleration for security
processing. Ideas about future work of XML firewall
based on this platform are also proposed.

1. Introduction

Data exchange and application integration are

becoming more and more critical to business success.
XML enables convenient data sharing, regardless of
the platforms. XML also proliferates powerful
intelligent search, a fine granularity structural search
that goes to the interior of an XML document, because
XML can leverage its tree structure to induce the
complex semantic search to an intuitive and feasible
tree search. Mainly due to these two attractive
advantages, XML has quickly become a popular
language to express data in electronic business for the
construction of Web services and SOA
(Service-Oriented Architecture). It is predicted that the
XML application traffic will increase rapidly and take
about 45% of overall network traffic in 2008 [1].

As XML-based services are becoming popular,
various security threats emerge targeting XML
applications. A survey of IT managers shows that
45.5% of them take security as the biggest obstacle of
deploying XML-based Web services [3].

There are three major categories of XML-based
security threats [4].

(1) Message Transport Security. During
transportation through Internet, XML messages may be
under attacks such as "man in the middle", or data
compromise. SSL (Secure Sockets Layer) is useful to
provide security for message transportation, but it is
insufficient for many XML-based Web services,
because these services require different secure levels of
protection and extend beyond point to point topology
addressed in SSL.

(2) XML-Based DoS (Denial of Service) Attacks.
Attackers can send huge amount of XML messages to
the server, which consume nearly all system resources
so that the server will be unable to respond to valid
users’ requests. Besides, XDoS (XML-based DoS)
attacks can be brought into effect in other ways, for
example, recursive entity declarations in XML
message can cause the parser of the server either to
shut down with an out-of-memory error or to become
irresponsible to legitimate requests by consuming great
amount of processor cycles.

(3) Content-Based Attacks. Attackers can insert
some special symbols or numbers into the XML
messages. These symbols or numbers may form a
section of malicious code, like invalid SQL sentence,
to compromise the server.

In summary, an XML message, which is text-based
and application-level processed, can be attached to
HTTP protocol and transferred through Internet. It may
pass through firewalls without getting checked,
because most of the firewalls have their policies set to
allow HTTP protocol. This makes it possible to use
XML messages to invade the security of hosts via
network.
 This security need motivates the development of
XML firewall, usually a network appliance with

Fourth International Conference on Networking and Services

0-7695-3094-X/08 $25.00 © 2008 IEEE
DOI 10.1109/ICNS.2008.15

1

comprehensive XML processing functions built-in. It is
predicted by Yankee Group that the revenue of XML
firewall will be close to 100 million dollars in 2009
[2].

Our contributions in this paper are summarized as
follows. We use DOM (Document Object Model) [12]
processing scheme to implement an XML firewall on
an embedded network processor with all four basic
functions integrated into the XML security system.
Based on the observation of XML-based services’
characteristics, we introduce two optimizations for
schema validation. Driven by the bottleneck analysis,
we also develop hardware acceleration for XML
security processing.

The remainder of the paper is organized as follows.
We start by giving a system design and introduced
improvements of our XML firewall in Section 2. We
then provide the experimental data and corresponding
analysis in Section 3. We bring some thoughts about
future work of XML firewall based on this platform in
Section 4. We then summarize our work in Section 5.

2. Design and Improvement

In this section, we describe the system functions and

the hardware platform. We also present the
improvements and processing scheme, and explain
why they are introduced to the system.

2.1. XML Firewall Architecture

As shown in Figure 1, the XML firewall processes

the messages over various protocols and makes
policy-based decisions on the traffic by accessing the
identity and policy stores managed by the policy server.
Then the XML firewall routes the messages to the
specific application server.

Figure 1. The XML firewall ecosystem

Generally speaking, an XML firewall contains four
basic XML processing functions. They are
identification, validation, encryption and decryption,
signature and signature verification. We call the last
two functions “security processing” in this paper. They
are deployed against different threats, which are shown

in Table 1.
Table 1. Threats resisted by different functions

In this paper we implemented all these four

functions according to W3C Recommendations
[7]-[10]. These functions can also process WS-Security
[11] standard traffic for Web services with
corresponding security policy and template. From
industrial test report [5], it is obvious that security
processing is the bottleneck in the whole XML
processing, but once the embedded system with
XScale core is used and the hardware acceleration is
deployed, validation and identification will become the
bottlenecks. Therefore, the XML firewall development
presented in this paper is focused on the hardware
acceleration in security processing and the
optimizations in XML validation.

2.2. Embedded Network Processor and
Hardware Acceleration

Intel IXP425 network processor is a highly

integrated, versatile single-chip processor [6]. It
contains an XScale core at 533MHz and three NPEs
(Network Processing Engines), which can run their
instruction streams in parallel. NPE B is capable of
hardware acceleration for encryption (DES, 3DES and
AES) and signature (HMAC-SHA1). It is used to
accelerate the XML security processing in our system.
Although XScale is not as powerful as best available
standalone CPUs, IXP425 is a suitable embedded
network processor with low cost and low power
consumption for SME (Small and Medium Enterprise)
solutions.

XML encryption ensures the confidentiality for data
transportation. In addition, XML encryption can also
provide a partial message encryption, which is more
intelligent than SSL. As set forth, SSL is a
point-to-point protocol used to ensure the
confidentiality of messages. Although it is sufficient to
meet the straightforward requirement, however, in
XML-based services, like Web services, it will require
that several pieces of information have different levels
of confidentiality. Thus SSL is not adequate and XML
encryption should be used.

Intrinsically XML encryption must have traditional
encryption operation on the message, which is time
consuming. We use 3DES algorithm to do encryption,

2

which is supported by NPE B of IXP425.
Performances of both hardware and software
encryption are shown in Section 3. Hardware
encryption means that, the sensitive message is parsed
out by software, and then the plain text is converted to
cipher text by hardware.

XML signature provides data integrity, authenticity,
and non-repudiatability of XML messages like
traditional signature in other applications. In addition,
XML signature can provide a partial message signature,
which is more flexible. We use HMAC-SHA1
algorithm to do signature, which is supported by NPE
B of IXP425 and mentioned in W3C XML Signature
[10]. This implementation is actually using a MAC
(Message Authentication Codes) algorithm, which
cannot provide non-repudiatability. Signature
algorithm with non-repudiatability can be implemented
by software. However, for the fair comparison to the
hardware implementation, it is not used in our
experiments. Performances of both hardware and
software signature are shown in the following
experiments in Section 3. This hardware acceleration is
only used in conversion from plain text to HMAC
value.

2.3. Performance Optimization of XML
Validation

In most of XML-based services which require

schema validation, there are lots of XML messages
defined by one schema document. We don’t have to
process the schema document every time when
validating the XML message. The following
optimizations are based on the ideas of reusing the
schema processing results.

(1) One optimization applied to XML validation is
to avoid schema self-check. The XML schema
documents, which describe the structures of XML
messages, are written in XML grammar with some
specific structures, thus they should be validated in
XML firewall before they are used to check XML
messages. However, this is a redundant work in most
of cases when the schema documents are constructed
by the administrators in advance and have been already
checked. Thus the system does not need to check the
validity of the schema document in the validation
processing unless the schema document is changed or
not trusted. Based on this observation, a simple TDL
(Trusted Document List) is deployed for performance
optimization.

(2) Schema documents can be stored in the server,
some of which are used frequently. With this
observation, we can optimize performance by
preprocessing those most frequently used schema

documents into corresponding tree structures in
memory for the validation. These structures are named
SGP (Schema Grammar Pool). In Section 3, we
evaluate the performance enhanced by SGP in XML
validation.

When SGP is not in place, TDL is introduced into
this system in default; otherwise, TDL is unnecessary.
In this paper, only impact of SGP is discussed in
design and measured in experiments.

2.4. Choice of Processing Schemes

In this system, there are two schemes that can be
applied to the whole process. One is using SAX
(Simple API for XML) [13] to parse the XML message
with schema validation and the other is using DOM
(Document Object Model) [12]. We implement our
XML firewall with DOM scheme.

The reason is that SAX is event-based and
processing XML message like a pipeline. It validates
XML message faster than DOM. But SAX doesn’t
construct any structure for the XML message in
memory. So there are no results that can be used in
security processing. DOM manages a tree structure in
memory after XML validation. We can use this tree to
manipulate XML message effectively for security
processing.

3. Experiments and Analysis

Based on DOM scheme, we present some

comparative experiments’ results and corresponding
analysis of XML firewall on the embedded network
processor, IXP425.

3.1. Experiment Conditions

The hardware platform used in our experiments is

IXP425 with Intel XScale core 533 MHz, and 64 MB
memory.

The software kits used in this experiment are listed
in Table 2.

Table 2. Software list

 The experiments are based on the following
assumptions.

Firstly the XML messages in the experiments are
generated manually according to a fixed structure in

3

which the plain text to be signed and encrypted takes
about more than 90% of the whole message in size.
There are four different sizes of XML messages in the
experiments, which are 1K, 5K, 20K and 100K bytes.
There are two different sizes of schema documents in
the experiments, which are 1K and 20K bytes.

Secondly the XML message has been processed for
100 times in each test. The performance is measured
by processing time per message and is calculated by
the average of three trails.

At last, crypto keys are allocated and known by both
sender and receiver in advance. Actually the keys are
stored in local hard disk and can be obtained when
needed.

3.2. Experiment Results and Analysis

Experiments are carried out in such an XML
security system. The impacts on processing speed of
two optimizations, schema preprocessing and hardware
acceleration, are evaluated with experimental data. We
also present the performances of all four functions
integrated in this system and illustrate corresponding
analysis.

(1) Schema preprocessing
Figure 2 shows the performance improvement of

XML schema validation with schema preprocessing
mentioned in Section 2.3. The SGP created in the
preprocessing is implemented by Xerces-c 2.6.0. The
XML messages are 1KB in size. The schema
documents vary in size. This paper presents two
comparative experiments with 1KB and 20KB schema
documents.

The X axis denotes the size of the schema document.
The Y axis denotes the processing time in milliseconds
per XML message.

From the figure we can see that the performance of
XML schema validation is improved significantly by
using SGP which is created in the schema
preprocessing. The reason is that the schema
processing parses the schema documents into tree
structures in memory, which is a time-consuming part
in XML validation.

The figure also shows that the processing time
without schema preprocessing is increasing rapidly as
the size of schema document increases from 1KB to
20KB. The processing time with schema preprocessing
is increasing more slowly. The reason is that the
increase of schema document’ size has more influence
on the schema preprocessing than that on XML
checking.

As set forth, the schema documents can be stored in
the firewall. So the conclusion from the experiments is
that, schema preprocessing should be introduced into
the XML firewall to enhance the performance of XML

validation providing there is sufficient memory, and
the schema documents are frequently reused.

0
100
200
300
400
500
600
700
800
900

pr
oc

es
si

ng
 ti

m
e

pe
r

m
es

sa
ge

 (m
s)

1K 20K

size of schema document (byte)

with Schema Preprocessing without Schema Preprocessing

Figure 2. with vs. without schema

preprocessing

(2) Hardware acceleration
The algorithms, parameters and develop kits used in

the software and the hardware implementation are
listed in Table 3.

Table 3. Parameters in signature and
encryption

The work flow of signature or encryption is shown

in Figure 3. Hardware acceleration can be applied in
shaded step “Sign/Enc”, which is one of the five steps
in XML security processing.

Figure 3. Work flow of signature or encryption

Figure 4 and Figure 5 show the performance
improvement of hardware acceleration supported by
NPE B of IXP425. The X axis denotes the size of the
XML messages in the test. The Y axis denotes the
processing time in milliseconds per XML message.

4

The plain text to be signed or encrypted is the root
element’s content, which takes most part of the XML
message. So the X axis can also denote the size of the
plain text approximately.

0

50

100

150

200

250

pr
oc

es
si

ng
 ti

m
e

pe
r m

es
sa

ge
(m

s)

1K 5K 20K 100K

size of XML message (byte)

software sign hardware sign

Figure 4. Signature: software vs. hardware

0

100

200

300

400

500

600

pr
oc

es
si

ng
 ti

m
e

pe
r

m
es

sa
ge

 (m
s)

1K 5K 20K 100K

size of XML message (byte)

software enc hardware enc

Figure 5. Encryption: software vs. hardware
From the figures we can see that the hardware

acceleration can enhance the performances of XML
signature and encryption. The processing time for
signature is reduced by 3~10%, and the processing
time for encryption is reduced by 7-15%.

There is a trend that the enhancement of
performance is more and more significant as the size of
XML message becomes larger. The first reason is that
hardware acceleration is good at characters operation
for security algorithm, such as rotation and shift, but
the characters passing between processing engines
adds overhead comparing with software operation. To
be taken together, the improvement of hardware
acceleration is better as the size of XML message, to
be more exact, the size of plain text becomes larger.
The second reason is that the step “Sign/Enc” shown in
Figure 3 takes more and more proportion in time of the
whole security processing, as the size of plain text
increases. So the improvement of hardware
acceleration is more significant for XML message with
plain text in larger size.

(3) Overall Performance
In our system, XML identification has included

XML message parsing. XML validation has used SGP.
XML security processing has utilized hardware
acceleration. The work flow of XML decryption and
XML signature verification is shown in Figure 6, as
also described in W3C Recommendations [9][10].

Figure 6. Work flow of XML decryption and

XML signature verification
Comparing XML signature with signature

verification, we can see that there is one step in
signature, which doesn’t exist in signature verification.
That is step “Manipulate XML message” in Figure 3.
There are no more manipulations on XML message
after the plaintext is signed in signature verification.
The results of the experiments show that signature
verification is faster than signature. But as the size of
XML message increases, the performances of the two
parts are similar. The gap between them is no more
than 1% for 100K XML message. The reason is that,
the processing time of “Manipulate XML message”
step in signature doesn’t increase so much as that of
other steps, when the size of XML message becomes
larger.

Comparing XML encryption with decryption, we
can see that the two parts are opposite in procedure.
But the performance shows that decryption is slower
than encryption for XML message in any size. The
reason is that the conversion from plain text to DOM
tree in decryption is slower than the conversion from
DOM tree to plain text in encryption.

Figure 7 shows the performance of all the XML
processing functions. They have been optimized as
presented above. The X axis denotes different
functions in XML firewall. The Y axis denotes the
processing time in milliseconds per XML message.
Different shades denote different sizes of XML
messages.

From the figure we can see that the most time
consuming part is XML identification, which includes
XML parsing and XPath query [7], after the other three
parts are optimized. XML parsing, which is used in

5

both identification and validation, is the focus of
attention on the performance of XML firewall.

0

200

400

600

800

1000

1200

1400

1600

pr
oc

es
si

ng
 ti

m
e

pe
r

m
es

sa
ge

 (m
s)

Identification
Validation

Signature

Verification

Encryption

Decryption

Functions in XML firewall

1K 5K 20K 100K

Figure 7. Performances of XML processing
functions in XML firewall

4. Future Work

In terms of hardware, IXP425 has not been fully

utilized by this system. The software design has few
considerations for hardware features. We only deploy
hardware acceleration in XML security processing.
Optimizations based on hardware are important for the
performance. For example, the NPE B and XScale core
are running in parallel. Software can be designed to
implement multi-thread program to hide latency in the
NPE B and XScale.

In terms of processing scheme, global optimization
can be applied considering the interactions of the four
functions. The XML identification can merge with
XML validation, for they both need XML parsing. At
least the results of XML identification can be used in
XML validation. From the experiments we can see that
the XML parsing, which converts XML message into a
specific structure in memory, is time-consuming. So
the system should link different functions together in
order to avoid unnecessary parsing. More
optimizations based on processing scheme should be
introduced according to different applications. For
example, the conversion from plain text to DOM tree
in XML decryption can be disabled if the XML
signature is not necessary in some applications,
because this DOM tree is used to find plain text to be
signed in the XML message for XML signature
verification.

To better evaluate the system, the XML firewall
should be deployed on a network and tested in a real
environment. Designing processing scheme according
to statistical quantities can also improve the
performance of the system.

Finally, the algorithms of XML parsing and XML
schema validation will be investigated and some new
algorithms are expected to enhance the performance of
XML firewall.

5. Summary

Our XML firewall on embedded network processor

is designed to secure XML-based services, like Web
services. We use DOM scheme to implement it on Intel
IXP425 and integrate four basic functions, XML
identification, XML validation, XML encryption and
decryption, XML signature and signature verification,
to make an XML security system. Two main
optimizations, schema preprocessing and hardware
acceleration, have been introduced to the basic
functions. The experimental results have shown the
improvements brought from the two optimizations.
The performances can be further improved by
hardware utilization, other processing schemes, new
algorithms for parsing and validation.

Acknowledgement

The author would like to thank Mr. Quan Huang for

his help in the implementation work. Thanks also due
to colleagues at Network Security Lab of Research
Institute of Information Technology for their generous
suggestions and encouragement.

References

[1] J. Bloomberg and R. Schmelzer, “A Guide to Securing
XML and Web Services,” White Paper of Zapthink, Jan
2004.
[2] A. Jaquith, “Application Assurance Platforms Arise
from Web App Firewall Market’s Ashes,” Yankee Group,
Dec 2005.
[3] “XML Application Firewalls,” White Paper of
Westbridge, Jan 2002.
[4] “Security within the XML Infrastructure,” White Paper
of Reactivity, Jan 2005.
[5] “Forum Sentry 1504 XML Security Appliance,” Test
Summary by Tolly Group, No. 203777, Sep 2003.
[6] “Intel IXP425 Network Processor,” Product Brief,
http://www.intel.com/design/network/prodbrf/27905104.pdf
[7] W3C XPath, http://www.w3.org/TR/xpath
[8] W3C XML Schema, http://www.w3.org/XML/Schema
[9] W3C XML Encryption,
http://www.w3.org/Encryption/2001/
[10] W3C XML Signature, http://www.w3.org/Signature/
[11] OASIS WS-Security,
http://www.oasis-open.org/committees/wss
[12] W3C DOM, http://www.w3.org/DOM/
[13] SAX Project, http://www.saxproject.org/

6

