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Recently, recommender systems have attracted increased attention because of their ability to suggest
appropriate choices to users based on intelligent prediction. As one of the most popular recommender
system techniques, Collaborative Filtering (CF) achieves efficiency from the similarity measurement of
users and items. However, existing similarity measurement methods have reduced accuracy due to
problems such as data correlation and data sparsity. To overcome these problems, this paper introduces
the Grey Forecast (GF) model for recommender systems. First, the Cosine Distance method is used to
compute the similarities between items. Then, we rank the items, which have been rated by an active
user, according to their similarities to the target item, which has not yet been rated by the active user;
we use the ratings of the first k items to construct a GF model and obtain the required prediction. The
advantages of the paper are threefold: first, the proposed method introduces a new prediction model
for CF, which, in turn, yields better performance of the model; second, it is able to alleviate the well-
known sparsity problem as it requires less data in constructing the model; third, the model will become
more effective when strong correlations exist among the data. Extensive experiments are conducted
and the results are compared with several CF methods including item based, slope one, and matrix
factorization by using two public data sets, namely, MovieLens and EachMovie. The experimental results
demonstrate that the proposed algorithm exhibits improvements of over 20% in terms of the mean
absolute error (MAE) and root mean square error (RMSE) when compared with the item based method.
Moreover, it achieves comparative, or sometimes even better, performance when compared to the matrix
factorization methods in terms of accuracy and F-measure metrics, even with small k.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recommender systems help users cope with the information
overload experienced in a wide range of Web services and have been
widely adopted in various applications, such as e-commerce (e.g.,
Amazon1), online video sharing (e.g., YouTube2), and online news
aggregators (e.g., Digg3). Recommender systems have also been suc-
cessfully developed for e-business and e-government applications
[1–3]. They can be used to present the most attractive and relevant
items to the user based on the individual user’s characteristics. As
one of the most promising recommender techniques [4], collaborative
filtering (CF) predicts the potential interests of an active user by con-
sidering the opinions of users with similar preferences. As compared
to other recommender techniques (e.g., content based methods [5]),
CF technologies have the capability to recommend unanticipated
items to users, which are not similar to those they have seen before;
this could work well in domains where the attribute content of items
is difficult to parse. Generally, the representative CF technique,
namely, the memory based CF technique [6], has been widely used
in many commercial systems due to its simplistic algorithm and rea-
sonably accurate recommendations. It obtains the user’s ratings on
different items by explicitly asking the user or by implicitly observing
the user’s interactions with the systems; these ratings are stored into
a table known as the user-item rating matrix. Then, the memory
based CF methods use similarity measurement methods to filter out
the users (or items) that are similar to the active user (or the target
item) and calculate the prediction from the ratings of these neighbors.
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Table 1
An example of a user-item rating matrix.

User Purchase Not Purchase

(a)
Alice Milk, Bread, Cake Beer
Lily Milk, Bread Cake, Beer
Lucy Milk, Cake Bread, Beer
Bob Bread, Beer Milk, Cake

Bread Beer Cake Milk

(b)
Alice 1 1 1
Lily 1 ? 1
Lucy 1 1
Bob 1 1
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Memory based methods can be further classified into user based
methods [7] or item based methods [8] depending on whether the
process of defining neighbors follows the process of finding similar
users or similar items.

Despite its widespread use, memory based CF techniques still
suffer from several major problems, including the data sparsity
problem [4,9], data correlation problem [10], and cold start prob-
lem [11,12]. The cold start problem can be regarded as a data spar-
sity problem. Hence, in this paper, we focus on the first two issues.
In most recommender systems, each user rates only a small subset
of the available items, and therefore, most of the entries in the rat-
ing matrix are empty. In such cases, determining similar users or
items becomes a considerable challenge. Consequently, the simi-
larity between two users or items cannot be calculated and the
prediction accuracy becomes very low. Furthermore, the active
users always tend to consume similar commodities, and the ratings
for these items will be close, which indicates that there are strong
correlations among the ratings. However, the existing similarity
measurement methods, such as Cosine Distance and Pearson Cor-
relation, suffer from such issues. Therefore, we cannot directly
use similarities for rating prediction. To overcome these shortcom-
ings, some researchers have developed algorithms that use models
employing pure rating data to make predictions, such as clustering
CF models [13,14], Bayesian belief nets (BNs) CF models [15,16],
Markov decision process based (MDP-based) CF models [17], and
latent semantic CF models [18]. However, some of these models
are extremely complicated, require estimation of multiple param-
eters, and are sensitive to the statistical properties of data sets. In
practice, many of these theoretical models have not been used in
recommender systems due to the high costs involved.

In addition, dimensionality reduction techniques, such as singu-
lar value decomposition (SVD) [19], have been investigated to alle-
viate the data sparsity problem, where the unrepresentative users
or items in the user-item rating matrix are removed to reduce the
dimensionalities. However, useful information may be lost when
certain users or items are discarded, and it is difficult to factor
the matrix due to the high portion of missing values caused by
its sparseness. Koren et al. [20] proposed a matrix factorization
model, which is closely related to SVD. The model learns by only
fitting the previously observed ratings. Its excellent performance
enables it to be considered a state-of-the-art approach in rating
prediction, but it also faces parameter estimation problems and
high time complexities. Luo et al. [21,22] improved the matrix fac-
torization based method by including incremental computations
and applying an adaptive learning rate.

In this paper, we present novel approaches that aim at over-
coming data sparsity limitations and benefiting from the data cor-
relations existing among the ratings rather than eliminating them
altogether. In particular, the proposed algorithm calculates the
similarities between the items using the simplest method, namely,
the Cosine Distance measurement method. It is worth noting that
we do not directly use the exact value of the similarities, but rather
rank the items according to their similarities. Then, a Grey Forecast
(GF) model is constructed for rating prediction. This model has
been successfully adopted for forecasting in several fields, such
as finance [23], integrated circuit industry [24], the market for
air travel [25], and underground pressure for working surface
[26]. We compare the performances of the proposed algorithm
with several other CF methods, including item based methods,
slope one, and the state-of-the-art matrix factorization based
method. Extensive experiments were conducted on two public
data sets, namely, MovieLens and EachMovie. The results provide
empirical evidence that the GF model can indeed cope effectively
with data sparsity and correlation problems.

The remainder of this paper is organized as follows. Section 2
provides a detailed description of conventional user based CF
(UCF) methods, item based CF (ICF) methods, the definition of
existing problems, and our contributions. Section 3 presents the
proposed GF model based algorithm in detail. Section 4 describes
the experimental study, including experimental data sets, evalua-
tion metrics, methodology, analysis of results, followed by a final
section on conclusions and future work.
2. Related work

The CF technique is one of the most successful recommender
techniques [27]: it can be classified into memory based CF tech-
niques [7,8] such as similarity or neighborhood based CF algo-
rithms, model based CF techniques such as clustering CF
algorithms [13,14], and hybrid CF techniques such as personality
diagnosis [28], hybrid fuzzy-based personalized recommender sys-
tem [1], and hybrid semantic recommendation system [29]. As a
representative memory based CF technique, the similarity based
method represents one of the most successful approaches for rec-
ommendation. They have been extensively deployed into commer-
cial systems and been comprehensively studied [4,30]. This class of
algorithms can be further divided into user and item based meth-
ods. The former is based on the basic assumption that people who
share similar past preferences tend to agree in their future prefer-
ences. Hence, for the target user, the potential interest for an object
is predicted according to the ratings from the users who are similar
to the target user. As opposed to the user based method, an item
based method recommends the items that are similar to what
the active user has consumed before. In a typical memory based
CF scenario, there is a set of n users U ¼ fu1;u2; . . . ;ung, a set of
m items I ¼ fi1; i2; . . . ; img, and the n�m user-item rating matrix.
The ratings can either be explicit indications, such as an integer
number from 1 to 5 (The integer number represents the rating a
user gives to the item. Usually, number 1 means that the user does
not like the item, while number 5 indicates the user is very satis-
fied with the item.), or implicit indications, such as purchases or
click-throughs [31]. For example, implicit user behaviors
(Table 1a) can be converted into a user-item rating matrix R
(Table 1b). When the kth user has purchased the lth item, R(k, l)
for the kth row and the lth column of the matrix is assigned to rat-
ing 1. If the kth user has not purchased the lth item yet, a null value
is assigned toR(k, l). Therefore, the recommendation problem is
reduced to predicting the null entries (Lily is the active user for
whom we want to make recommendations for in Table 1b). Gener-
ally, the procedure for this type of CF method consists of two steps:
similarity measurement and rating prediction.

2.1. Similarity measurement

The critical step in memory based CF algorithms is the similar-
ity computation between users or items [32–35]. In UCF methods,
the similarity sðux;uyÞ, between the users ux, and uy is determined
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by comparing the items that both of them have rated. In ICF meth-
ods, the similarity sðix; iyÞ between the items ix, and iy is determined
by the users who have rated both the items. There are various
methods to compute the similarity between two users or items.
The two most popular methods are Cosine Distance [5,36] and
Pearson Correlation [5,36]. To define them, let I be the set of all
items rated by both the users ux, and uy, and let U be the set of
all users who have rated the items ix, and iy. For example, in
Table 1b, the co-rated items of Alice (ux) and Lily (uy) are Bread
and Milk (item set I); therefore, these two items’ ratings given by
individual user form a d-dimensional vector, where d is equal to
the size of set I. In this case, d is equal to two. Analogously, items
Cake (ix) and Milk (iy) are rated by both Alice and Lucy (user set
U) whose ratings on each item form a d-dimensional vector, where
d is equal to the size of set U. d is equal to two in this case.

2.1.1. Cosine distance
For the Cosine Distance approach, the cosine of the angle

between the two vectors represents the similarity between them.
For UCF, the similarity between two users with Cosine Distance
method can be calculated as follows:

sðux;uyÞ ¼
P

i2Irux ;i � ruy ;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Ir

2
ux ;i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Ir

2
uy ;i

q ð1Þ

where rux ;i and ruy ;i are the ratings of the users ux and uy on item i. I
has the same definition in Section 2.1. Analogously, for ICF, the
Cosine Distance between two items can be expressed as follows:

sðix; iyÞ ¼
P

u2Uru;ix � ru;iyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
u2Ur2

u;ix

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
u2Ur2

u;iy

q ð2Þ

where ru;ix and ru;iy are the ratings of the user u for items ix and iy. U
is defined in Section 2.1.

2.1.2. Pearson correlation
We should note that, during the computation of similarity, it is

necessary to eliminate the rating correlations (e.g., the average rat-
ing of the user) to improve the significance of similarity. The Pear-
son Correlation is one such method, which can be used to improve
the accuracy of similarity computation to a certain extent. For UCF,
the Pearson Correlation between two users can be expressed as

sðux;uyÞ ¼
P

i2Iðrux ;i � �rux Þðruy ;i � �ruy ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Iðrux ;i � �rux Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2Iðruy ;i � �ruy Þ
2

q ð3Þ

where the terms rux ;i and ruy ;i mean the same as in Eq. (1) and �rux and
�ruy are the average ratings of the users ux and uy, respectively. Sim-
ilarly, for ICF, the Pearson Correlation between two items can be
formulated as

sðix; iyÞ ¼
P

u2Uðru;ix � �rix Þðru;iy � �riy ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
u2Uðru;ix � �rix Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

u2Uðru;iy � �riy Þ
2

q ð4Þ

where the terms ru;ix and ru;iy mean the same as in Eq. (2) and �rix and
�riy are the average ratings of all the users for items ix and iy,
respectively.

2.2. Rating prediction

The rating prediction stage aims to predict the value that the
active user will assign to the target item. The k Nearest Neighbors
(KNN) method [37] is usually used for prediction by weighting the
sum of the ratings that similar users give to the target item or the
ratings of the active user on similar items depending on whether
UCF or ICF is used.
2.2.1. UCF
The UCF algorithm is based on the basic assumption that people

who share similar past preferences will be interested in similar
items. The algorithm uses the following steps: first, the similarities
between the users are computed using similarity measurement
methods introduced in Section 2.1; then, the prediction for the
active user is determined by taking the weighted average of all
the ratings of the similar users for a certain item [37] according
to the formula in Eq. (5); finally, the items with the highest pre-
dicted ratings will be recommended to the user.

pux ;i ¼ �rux þ
P

uy2UðuxÞsðux;uyÞðruy ;i � �ruy ÞP
uy2UðuxÞ sðux;uyÞ

�� �� ð5Þ

where U(ux) denotes the set of users similar to the user ux, and pux ;i

is the prediction for the user ux on item i.

2.2.2. ICF
The ICF algorithm recommends items to users that are similar

to the items that they have already consumed. Similarly, after cal-
culating the similarities between the items, the unknown rating of
user u on item ix can be represented as an aggregation of user u on
similar items:

pu;ix ¼ �rix þ
P

iy2IðixÞsðix; iyÞðru;iy � �riy ÞP
iy2IðixÞ sðix; iyÞ

�� �� ð6Þ

where I(ix) denotes the set of similar items of item ix. Further, pu;ix

denotes the prediction of user u on item ix.

2.3. Problem analysis

After using the co-rated entries as a vector to represent the
object, the Cosine Distance method measures the similarity
between two users or items by computing the cosine of the angle
between them. Pearson Correlation takes the rating correlation
into consideration to eliminate the influence of average ratings.
Obviously, Pearson Correlation can be considered a variation of
Cosine Distance. Taking UCF as an example, we select the items
that both users have rated earlier and then use these ratings of
each user for these items to construct a d-dimensional vector,
namely, ðru;i1 ; ru;i2 ; . . . ; ru;id Þ, where d is the number of co-rated
items. If we subtract each element by the average rating of user
u, the vector will be converted to ðru;i1 � �ru; ru;i2 � �ru; . . . ; ru;id � �ruÞ.
In this case, the Pearson Correlation is equivalent to Cosine
Distance. With Pearson Correlation, the accuracy of similarity
computation can be improved to a certain extent. However, it still
suffers from many issues.

� Data sparsity. It is difficult to determine co-rated entries when
the data is sparse. For instance, Bob and Lucy have not con-
sumed the same items before (Table 1). Therefore, the similarity
between such users cannot be computed by using the existing
methods elaborated in Section 2.1. Furthermore, it might not
be possible to obtain the similarities between the users or items
in the same dimensionality. For example, Alice and Lucy both
rated milk and cake (Table 1): the similarity between them is
computed in a 2-dimensional space; however, Bob and Lily have
only one co-rated entry, namely, bread (Table 1); therefore, the
similarity between them is computed in a 1-dimensional space.
Therefore, the results seem biased.
� Data correlation. In this paper, data correlation corresponds to

the general features hidden in the data because of the similar
attributes among the users or items. For example, people who
like Tom Cruise tend to give similar rating to movies the
‘‘Mission: Impossible III’’ and ‘‘Mission: Impossible IV’’. People
of the same age will have similar preferences; therefore, their
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ratings for the same item will also be close. These correlations
among the ratings yield a nonorthogonal vector space since
the elements in different dimensions are not independent.
Although the Pearson Correlation eliminates the influence of
average ratings, such rating correlations still exist. Therefore,
the similarities computed with these similarity measurement
methods are not accurate (see Appendix A).

Because of these issues, in practice, the similarity between two
users or items computed using Cosine Distance or Pearson
Correlation is not accurate. Consequently, if we take a weighted
average of the ratings using the similarities to directly generate
the prediction, we may not obtain a good result. To overcome
these shortcomings, Xie et al. [38] utilized the statistical values
of the ratings related to the object to form a vector for the simi-
larity measurement, which improved the prediction accuracy.
Moreover, similarity transitivity [39] was proven to be an effec-
tive method for sparse data sets, which can effectively balance
the tradeoff between the quality and quantity of similarity. In
this paper, we relate these problems as being those of data
sparsity and data correlation, and we use the GF model for rating
prediction.

2.4. Contributions

The GF process for prediction can be described as follows. The
Cosine Distance method is used to measure the similarity between
two items. Then, an m�m similarity matrix is generated, where m
is the number of items. Although the similarity computation is not
accurate, as discussed in Section 2.3, the value can represent the
degree of similarity. Therefore, in our algorithm, we do not use
the exact value of similarity; rather, we only rank the items accord-
ing to the similarity. Then, to generate the prediction of the active
user u on item i, the k most similar items that have been rated by
the active user on item i are selected. Finally, we use these items
as the input to build a GF model and predict the rating of the
active user u on item i. If the user u does not rate k items, a fixed
value will be used to complete the k ratings. Empirically, the fixed
value can be the median value of the rating scale. For example,
when the rating scale is 1–5, the number 3 is selected as the fixed
value. The proposed method provides the following three main
contributions:

� Overcoming data sparsity. Although the data is sparse and few
items are rated by each user, only a few ratings are needed to
construct the GF model for our algorithm and the experimental
results show that the prediction accuracy is still high even when
k is equal to 5. Obviously, the proposed algorithm can efficiently
address the data sparsity problem.
� Benefiting from data correlation. The stronger the data corre-

lation, the more accurate is the GF model. In the experiments,
when the user’s average rating or overall average rating is elim-
inated, the GF model performs considerably worse. In other
words, the proposed algorithm can effectively benefit from
the data correlations rather than eliminating them.
� Obtaining accurate predictions. We test our algorithm on two

public data sets, namely, MovieLens4 and EachMovie5. The
experimental results when compared with traditional ICF (using
Cosine Distance for similarity measurement) reveal that our
algorithm yields better performance with respect to the metrics
of Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). In particular, with regard to the MovieLens data set,
4 www.grouplens.org/.
5 www.kumpf.org/eachtoeach/eachmovie.html
the accuracy has been improved by over 20% in terms of the
MAE. Moreover, it achieves comparative or even better perfor-
mance with regard to accuracy and F-measure when compared
to the state-of-the-art matrix factorization based method.

3. Proposed algorithm

Memory based CF algorithms aggregate ratings of similar users
for a target item or ratings of the active user for similar items to
generate prediction. Consequently, the prediction accuracy
depends mainly on the similarity computation. However, when
the data is sparse and exhibits strong correlations, the existing
similarity measurement methods cannot obtain accurate similari-
ties between the users or items. In other words, the similarities
are not very accurate. Hence, we cannot use the similarities to
directly obtain reliable predictions. In this paper, the GF model is
used for rating prediction. It involves two steps: rating preprocess-
ing and rating prediction.
3.1. Rating preprocessing

Since the similarities between the items computed by using
existing similarity measurement methods have significance, we
use them to preprocess the ratings. First, for simplicity, the Cosine
Distance method is utilized to compute the similarity between two
items. Then, an m�m similarity matrix is generated, where m is
the number of items. If we want to predict the unrated entry of
the user u on item i in the rating matrix, the k most similar items
to the item i that have been rated by the user u are selected. Note
that when the user u does not rate k items, the fixed value with the
lowest similarity will be used to complete the k ratings. Finally, the
k ratings are sorted according to their incremental similarities to
the item i to produce a rating sequence. In the next step, the pro-
posed algorithm inputs the rating sequence to the GF model and
forecasts the rating that the user u will give to item i. For instance,
a section of a rating matrix with ratings in the 1–5 scale is shown in
Table 2. We want to predict the rating of user u3 on item i1. Accord-
ing to Cosine Distance, the similarities between item i1 with the
other items are shown in Table 3. The items rated by user u3 can
be sorted as their similarities with item i1 increase: i5; i7; i3; i9; i4.
If we set k = 3, the last three items (namely i3; i9, and i4) will be
selected, since they have been rated by the user u3 and have higher
similarities to item i1. Then, the rating sequence is (4,3,5). Further-
more, if we set k = 7, since the number of items rated by the user u3

is less than 7, all the ratings of the items rated by the user u3 will
be selected and the median value (number 3) will be used to com-
plete seven ratings with the lowest similarity. Then, the rating
sequence is (3,3,5,4,4,3,5), where the first two numbers are
replaced with the number 3 in the rating sequence. Note that when
two or more items have the same similarity to the target item, the
order of their ratings is random. For example, item i5 is sorted in
front of item i7 although they have the same similarity to item i1.

The rating sequence has several special attributes:

� The similarities among the items are very high, since they are
the k most similar items to the target item. Hence, these ratings
are highly correlated. Intuitively, the user tends to allocate
closer ratings to similar items.
� The ratings of the sequence are incrementally sorted by the

items’ similarities to the target item. Consequently, the ratings
with higher similarities will contribute more to the final predic-
tion, which makes the GF model more effective.

Due to these valid attributes, the rating prediction stage can be
more effective.

http://www.grouplens.org/
http://www.kumpf.org/eachtoeach/eachmovie.html


Table 2
Fragment of a rating matrix.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 4 4 5 5 4 4 5
u2 3 4 2 4 3 4
u3 ? 4 5 5 4 3
u4 1 3 2 3 4

Table 3
Similarities between item i1 with other nine items.

i2 i3 i4 i5 i6 i7 i8 i9 i10

i1 0.989 0.789 0.991 0 0.999 0 0.942 0.857 0.999
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3.2. Rating prediction

Grey theory was originally developed by Deng in 1982 [40]. It
mainly focuses on model uncertainty and information insufficiency
when analyzing and understanding systems via research on condi-
tional analysis, prediction, and decision making. A recommender
system can be considered as a grey system; further, with our algo-
rithm, the GF model is used to yield the rating prediction. The GF
model utilizes accumulated generation operations to build differ-
ential equations, which benefit from the data correlations. Mean-
while, it has another significant characteristic wherein it requires
less data so it can overcome the data sparsity problem. The rating
sequence generated in the rating preprocessing stage is the only
input required for model construction and subsequent forecasting.
These are the reasons why we have selected the GF model for rat-
ing prediction: the GM(1,1) method is adopted in this paper.
GM(1,1) indicates a single variable first-order GF model. The gen-
eral procedure followed in a GF model is derived as follows [41]:

Step 1: Assume the original rating sequence to be rð0Þu :

rð0Þu ¼ frð0Þu ðlÞg; l ¼ 1;2; . . . ; k ð7Þ

where rð0Þu ðlÞ represents the original rating of the user u for the lth
value of the rating sequence. Further, k is the number of neighbors
or the length of the rating sequence, and it must be equal to or
greater than 4.

Step 2: A new sequence rð1Þu is produced by the Accumulated
Generating Operation (AGO). The GF model is based on the gener-
ating sequence rather than the original one:

rð1Þu ¼ frð1Þu ðlÞg; l ¼ 1;2; . . . ; k ð8Þ

where rð1Þu ðlÞ =
Pl

j¼1rð0Þu ðjÞ, l = 1,2, . . . ,k.
This step is vital, since the randomness of the data is somehow

smoothed and it further enhances the tendency of the new
sequence due to the correlation between the values of the original
sequence. For example, rð0Þu ¼ f3;4;3;4;5g is a user’s original rating
sequence. Obviously, the sequence does not have a clear regularity.
If AGO is applied to this sequence, rð1Þu ¼ f3;7;10;14;19g is
obtained which has a clear growing tendency.

Step 3: Based on the property, that the relation between the
grey derivative and the background grey number is approximate
linear regression, of smooth discrete function, a grey differential
model called GM(1,1) can be defined as follows [41]:

dð1Þu ðlÞ þ azð1Þu ðlÞ ¼ b; l ¼ 2;3; . . . ; k ð9Þ

where a, b are the coefficients, especially in the terms of Grey Sys-
tem theory, a is the grey development coefficient and b is the grey
input. They are estimated in Step 5. dð1Þu ðlÞ = rð1Þu ðlÞ - rð1Þu ðl� 1Þ = rð0Þu ðlÞ
is the grey derivative, therefore, the grey differential model is
always denoted as rð0Þu ðlÞ + azð1Þu ðlÞ = b. zð1Þu ðlÞ is the grey background
number, which is the weighted sum of the values of the consecutive
neighbors of the sequence rð1Þu . More specially, zð1Þu ðlÞ = arð1Þu ðl� 1Þ +
(1 - a)rð1Þu ðlÞ. Further, a(0< a< 1) is the weight. Here, a is selected so
as to yield the smallest prediction error rate. When a < 0.5, the val-
ues in the sequence with higher rankings will make more contribu-
tion to the differential equation, and therefore, the final result. In
fact, extensive experiments with different values of a have found
that when a < 0.5, the GF model based method performed well. This
convinces us to incrementally sort the ratings with items’ similari-
ties to the target item. The more similar the items are to the target
item, the more important are their ratings to the final prediction.
Therefore, in our experiments, we set a ¼ 1=3.

Step 4: If the discrete space is mapped into the continuous one
(discrete variable l to the continuous variable t), the grey differen-
tial model can be whitened as:

drð1Þu ðtÞ=dt þ arð1Þu ðtÞ ¼ b ð10Þ

where rð1Þu is converted to the continuous function, rð1Þu = rð1Þu (t). The
grey derivative dð1Þu ðlÞ is mapped to drð1Þu ðtÞ=dt, and zð1Þu ðlÞ to rð1Þu ðtÞ,
since zð1Þu ðtÞ = rð1Þu ðtÞ = rð1Þu ðt � 1Þ in the continuous space.

Step 5: From Step 4, the solution r̂ð1Þu ðtÞ is:

r̂ð1Þu ðtÞ ¼ ðrð0Þu ð1Þ � b=aÞe�aðt�1Þ þ b=a ð11Þ

where a, b have the same definitions in Step 3. Let v ¼ ða; bÞT ,

B ¼

�zð1Þu ð2Þ 1

�zð1Þu ð3Þ 1

..

. ..
.

�zð1Þu ðkÞ 1

2
666664

3
777775; Y ¼

dð0Þu ð2Þ
dð0Þu ð3Þ

..

.

dð0Þu ðkÞ

2
666664

3
777775 ¼

rð0Þu ð2Þ
rð0Þu ð3Þ

..

.

rð0Þu ðkÞ

2
666664

3
777775;

then, the GM(1,1) defined in Eq. (9) is equivalent to Y ¼ Bv . By
minimzing Jðv̂Þ ¼ ðY � Bv̂ÞTðY � Bv̂Þ, the least squares estimation
of parameters are: v̂ ¼ ða; bÞT ¼ ðBT BÞ�1

BT Y .
When we set t = l, r̂ð1Þu ðlÞ is the estimation of the lth value of the

AGO data.
Step 6: Inverse Accumulated Generation Operation (IAGO).

Because the GF model is formulated using the data of AGO rather
than the original data, we should use the IAGO to convert the
AGO data to an actual rating prediction:

r̂ð0Þu ðlÞ ¼ r̂ð1Þu ðlÞ � r̂ð1Þu ðl� 1Þ ¼ ðrð0Þu ð1Þ � b=aÞe�aðl�1Þð1� eaÞ ð12Þ

When we set l = k + 1, the rating prediction pu;i of the user u on item
i can be represented by r̂ð0Þu ðkþ 1Þ = ðrð0Þu ð1Þ � b=aÞe�akð1� eaÞ.

Obviously, during the estimation of the parameters a and b in
Step 5, a matrix inverse operation is needed. Hence, we cannot
always forecast the ratings using the GF model. In these cases,
the average of the k ratings is used as the rating prediction of the
active user for the target item.

4. Experimental results

In this section, we present the results of the experimental eval-
uation of our novel algorithm. We describe the data sets used; the
experimental methodology and performance improvement are
compared with several CF methods, particularly the state-of-the-
art matrix factorization based method.

4.1. Data sets

We conducted extensive experiments on two standard data
sets: MovieLens [42] and EachMovie [43]. Both these data sets
are publicly available data sets regarding movie ratings. MovieLens
rating sets are collected by GroupLens research from the Movie-
Lens Web site (http://movielens.umn.edu). Three different sizes

http://movielens.umn.edu
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of data sets are available. In this paper, the MovieLens 1M data set
was used, which consists of 1 million ratings (in the scale of 1–5
stars) from 6040 users on 3952 movies. We also implemented
the experiment for another data set, namely, EachMovie, which is
collected by the DEC Systems Research Center. It consists of
2,811,983 numerical ratings from 74,424 users on 1648 different
movies (films and videos). Since the ratings are linearly mapped
to the interval [0,1], for convenience, we multiplied the ratings
by 5 and deleted the records in which the ratings were zero.
Finally, 2,464,792 ratings remained, which were in 1–5 rating
scale. Table 4 summarizes the statistical properties of both these
data sets. The sparsity level of the data set can be computed as fol-
lows [4]:

sparsity level ¼ #total entries�#rating entries
#total entries

ð13Þ
4.2. Metrics and methodology

To evaluate the performance of a recommender algorithm, the
data set needs to be partitioned into two sections: training set
and testing set. The former is dedicated to the model’s construc-
tion, while the latter is used for testing the model. Here, we set x
as the training ratio, which is the proportion of the training set
in the data set. For example, when x is equal to 80%, the training
set comprises 80% of the data set, while the remaining 20% is the
testing set. In this paper, two classes of metrics are used to evalu-
ate the algorithmic performance: error metrics and classification
metrics. Error metrics evaluate the error between the actual rating
and the predicted value. MAE [44] and RMSE [45] are the most fre-
quently used error metrics. Therefore, we use these two metrics to
evaluate the accuracy of rating prediction. MAE and RMSE can be
defined as

MAE ¼
P
ðu;iÞ2T ru;i � pu;i

�� ��
Tj j ð14Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðu;iÞ2Tðru;i � pu;iÞ

2

Tj j

s
ð15Þ

where T is the set of all the pairs (u, i) in the testing set.
Generally, we are not interested in the precise prediction of rat-

ings; rather, we are concerned about suggesting a short list of
interesting items to the user [19,37].

Therefore, the information retrieval classification metrics are
used to measure the recommendation accuracy more precisely.
When using classification metrics, four different kinds of recom-
mendations are distinguished. If the algorithm recommends an
interesting item to the user, we have a true positive (TP); however,
if an uninteresting item is recommended, we have a false positive
(FP). If the algorithm does not recommend an uninteresting item to
the user, we have a true negative (TN); however, if an interesting
item is missed, we have a false negative (FN). We set the number
3 as the threshold to determine whether the user is interested in
the item or not. In particular, if the actual and predicted ratings
Table 4
Statistical properties of MovieLens and EachMovie.

Movielens EachMovie

Users 6040 74,424
Items 3952 1648
Ratings 1,000,000 2,464,792
Ratings per user 165 33
Ratings per item 253 1495
Sparsity level 95.81% 97.99%
are not less than 3, there is a TP; if the actual and predicted ratings
are less than 3, there is a TN; if the actual rating is not less than 3
while the predicted rating is less than 3, there is a FN; and if the
actual rating is less than 3 while the predicted rating is not less
than 3, there is a FP.

The most popular classification metrics [4,19] are precision and
recall:

precision ¼ TP
TP þ FP

ð16Þ

recall ¼ TP
TP þ FN

ð17Þ

Precision measures the percentage of interesting items recom-
mended to the users with respect to the total number of recom-
mended items, while recall measures the percentage of interesting
items recommended to the users with respect to the total number
of interesting items. Often, there is an inverse relationship between
precision and recall. To better understand the recommendation
quality, a combination between precision and recall is used, which
is called F-measure [4,19]:

F �measure ¼ 2 � precision � recall
precisionþ recall

ð18Þ

We compute the overall values of precision, recall, and
F-measure.

To evaluate the performance of our proposed algorithm, we
compare its performance with those of several other methods:

� ICF [8]: This is a well-known memory based CF approach, which
calculates the similarity between two items using the Cosine
Distance measurement. Due to its easy implementation and
interpretability, it is one of the most popular recommender
methods.
� SlopeOne [46]: This also belongs to a class of CF methods. Its

prediction accuracy is relatively high, but this method requires
high storage capacities.
� SVD+: This is a basic matrix factorization based method [20],

which is closely related to SVD, and it uses the stochastic gradi-
ent descent for minimizing the regularized squared error on a
set of known ratings.
� SVD++: This is another matrix factorization based method [20],

which takes biases into account. These biases are the observed
variations in the rating values induced by the effects associated
with either users or items independent of any interactions.
Examples of such effects are the overall average rating or the
users’ and items’ average deviations. Therefore, SVD++ is an
improved version of SVD+. It has been shown that this method
yields accuracy superior than conventional memory based
CF techniques. However, multiple parameters need to be
estimated, which is time-consuming.
� Cosine based GF: The proposed method is based on the GF

model and uses the Cosine Distance method to determine
similarity between items.

4.3. Experimental results and analysis

4.3.1. Variations in training ratio
We increase the training ratio x from 10% to 90% for a variation

of 10% in the MovieLens data set. The MAE and RMSE values for the
ICF, cosine based GF, and correlation based GF methods are shown
in Figs. 1 and 2; here, the correlation based GF method uses
Pearson Correlation for item similarity measurement. We select
the 100 nearest neighbors for the ICF method and 5 nearest
neighbors for the cosine and correlation based GF methods having
the following abbreviations in the figures: Item based CF (100),



Fig. 2. RMSE values for different training ratios using MovieLens data set.

Fig. 3. MAE values for different number of neighbors using MovieLens data set.
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Cosine based GF (5), and Correlation based GF (5), respectively. In
the subsequent experiments, the numbers given in the brackets
have the same meaning.

Figs. 1 and 2 show that the cosine and correlation based GF
methods perform much better than the ICF method with regard
to error metrics, particularly when the training ratio is set at
80%. Moreover, although Pearson Correlation yields more accurate
similarities than Cosine Distance, the results obtained from the
correlation based GF method are slightly different than those
obtained from the cosine based GF method. This indicates that
the similarities derived from these two similarity measurements
are valuable for effective item ranking. Therefore, GF model based
methods can efficiently perform independent of the similarity
accuracy. A similar conclusion is derived from the EachMovie data
set; the experimental results are not shown here.

4.3.2. Influence of the number of neighbors
To determine the optimal number of neighbors for GF model

based methods, the training ratio x is set at 80% and the number
of neighbors k is adopted as 5, 10, 15, 30, 40, and 60. The cosine
based GF method is compared with the ICF method in terms of
the MAE and RMSE metrics using two data sets. The results are
shown in Figs. 3–6.

The results shown in these four figures reveal that the cosine
based GF method outperforms the ICF method with regard to pre-
diction error. Moreover, as the value of k increases, the perfor-
mance of the cosine based GF method improves steadily. The
optimal performance is achieved when k is approximately equal
to 30. However, the prediction accuracy of the ICF method varies
smoothly as k increases.

4.3.3. Comparison with state-of-the-art methods in terms of error
metrics

To effectively evaluate the performances of GF based methods,
it is necessary to compare them with other CF methods, particu-
larly the state-of-the-art methods. In the experiments, slope one
and two variants of the matrix factorization based method are
tested, except the ICF method. We set 15 as the number of neigh-
bors for the cosine based GF method and 100 for the ICF method.
These two methods use Cosine Distance for item similarity mea-
surements. Moreover, the training ratios of the two data sets are
set at 80%. The obtained MAE and RMSE values are shown in Figs. 7
and 8.
Fig. 1. MAE values for different training ratios using MovieLens data set. Fig. 4. RMSE values for different number of neighbors using MovieLens data set.



Fig. 5. MAE values for different number of neighbors using EachMovie data set.

Fig. 6. RMSE values for different number of neighbors using EachMovie data set.

Fig. 7. MAE value comparisons of five methods.

Fig. 8. RMSE value comparisons of five methods.
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Figs. 7 and 8 show that the SVD++ method outperforms the
other four methods in terms of MAE and RMSE, whereas SVD+
comes second. Since the EachMovie data set is sparser than the
MovieLens data set, cosine based GF, SVD+, and SVD++ perform
better when using the latter, while contradictory results are
obtained when using it with the slope one and ICF methods.
Although the cosine based GF yields poor performance when com-
pared to matrix factorization based methods, an improvement of
over 20% in terms of the MAE and RMSE values is observed when
compared with the traditional ICF method.

4.3.4. Comparison with state-of-the-art methods in terms of
classification metrics

In real-world recommender systems, we are interested in sug-
gesting interesting items to users rather than accurately predicting
ratings. Therefore, the precision, recall, and F-measure metrics are
used to evaluate this capability. These metrics are defined in Sec-
tion 4.2, and the settings of the evaluation methods are the same
as the ones in Section 4.3.3. The experimental results with classifi-
cation metrics are shown in Figs. 9 and 10.

Figs. 9 and 10 show that both algorithmic precision and recall
cannot be simultaneously high. For example, when using the
MovieLens data set, SVD+ achieves the highest precision, but its
recall is the lowest. Because of their accurate but conservative rat-
ing predictions, the prediction ratings of both the matrix factoriza-
tion based methods are generally less than the actual ones.
Therefore, the number of FPs is low, but the number of FNs is high.
Consequently, they yield higher precision but lower recall. More-
over, with regard to the ICF method, if the rating of a user on an
item in the testing set cannot be predicted, 3 is taken to be the
default value for such a prediction. In other words, no matter if
the actual ratings are more or less than 3, the predictions are set
at 3. Therefore, the number of FPs is high, but the number of FNs
is low; this results in lower precision but higher recall. In fact,
due to the sparsity of the data set, a large number of ratings cannot
be predicted by the ICF method. Therefore, its precision, recall, and
F-measure values seem insignificant. The cosine based GF method
yields comparative performance in terms of both precision and
recall. In particular, its F-measure value is considerably higher than
the ones yielded by the matrix factorization based methods when
using the EachMovie data set, while their F-measure values are
similar when using the MovieLens data set. Overall, the GF model
based methods can significantly outperform conventional ICF
methods in terms of error metrics and achieve comparative or even
better performance than the state-of-the-art methods in terms of
classification metrics, which are more important in real-world
systems.



Fig. 9. Classification metrics comparisons of five methods using MovieLens data set.

Fig. 10. Classification metrics comparisons of five methods using EachMovie data
set.

Fig. 11. MAE value comparisons of three methods using MovieLens data set.

Fig. 12. RMSE value comparisons of three methods using MovieLens data set.
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4.3.5. Influence of correlations
Typically, some aggressive users tend to give higher ratings,

while conservative users like to give lower ratings. This difference
lies in the user average ratings. Intuitively, different systems may
have different overall average ratings. We call these tendencies
as correlations. To verify whether these correlations are useful
for the GF model construction, we eliminate the user average rat-
ing and the overall average rating from the rating sequence (see
Section 3.1) before building the model. Consequently, two variants
of the GF model based methods are generated, and they have the
following abbreviations: cosine based GF-UA and cosine based
GF-OA. A comparison of the results obtained using these two meth-
ods with the cosine based GF method in terms of the MAE and
RMSE values are shown in Figs. 11–14.

The experimental results show that the performances sharply
deteriorate when the correlations are removed. Therefore, this sug-
gests that the GF model based methods can benefit from data cor-
relations. Moreover, it is also evident that the correlation of the
user average rating is more significant than that of the overall aver-
age rating, since the performance decreases more drastically when
the user average rating is eliminated. It can be supposed that the
GF model based methods may be more effective when strong cor-
relation exists among the data.

4.3.6. Effect of median value
As the median value is used to complete k ratings when the user

does not rate enough items, it is necessary to compare with the tra-
ditional item based CF taking the same preprocessing. Item based
CF++ is such a variant of item based CF method, which uses the
median value as the default rating when the user have not given
a rating to the item which is one of the k nearest neighbors of
the target item. Therefore, there are always k ratings for the
weighted sum in the prediction process. The performance compar-
ison is shown in Table 5, where k is set to be 15 for both.

The GF model based method consistently outperforms item
based CF++ in terms of error metrics and classification metrics
except precision. However, their precisions are about the same.
Because item based CF++ alleviates data sparsity using median
value as the default, it achieves better performance than traditional
item based CF. However, its predictions are around the median
value, which results in mediocre performance in classification met-
rics. Actually, the ratings for most users (Ratings Per User in
Table 4) are enough for GF model based methods when k equals



Fig. 13. MAE value comparisons of three methods using EachMovie data set.

Fig. 14. RMSE value comparisons of three methods using EachMovie data set.
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to 15, therefore, only small part of testing pairs need to use the
median value to complete the rating sequences. Furthermore, since
the median values have the lowest similarity, they contribute less
to the final predictions as described in Section 3.2. Consequently,
these indicate that GF model based methods achieve outstanding
performance independent of the median value.
4.3.7. Time complexity analysis
GF model based methods have the same time complexity with

that of ICF method in constructing item similarity matrix, which
is O(m2), where m is the number of items. In the procedure of
Table 5
Comparison with the improved item based CF.

Metric MovieLens

Item based CF++ Cosine based

MAE 0.7956 0.7152
RMSE 0.9922 0.9258
Precision 0.8986 0.8936
Recall 0.8451 0.9385
F-measure 0.871 0.9155
prediction, kCF multiplications are needed for ICF, where kCF is
the number of nearest neighbors. Intuitively, when the input rating
sequences are the same, GF model based methods will produce the
same prediction. Therefore, if we assume s (All ratings are integers
from 1 to s) as the rating scale and kGF as the number of neighbors,
there are only sKGF combinations for the rating sequence. In our
experiment design, the sKGF unique predictions are generated off-
line and stored in memory. Each rating sequence is mapped into
a key which is used to get the prediction from memory. Then,
the time complexity decreases to kGF with binary search. As illus-
trated in Figs. 3–6, GF model based methods can achieve high per-
formance even when kGF is small, while kCF is much bigger in ICF.
For example, kCF ¼ 100; kGF ¼ 5, s = 5, then, kGF log s� KCF , while
the storage consumption is less than 1M. Therefore, we can con-
sume little storage space to achieve better time efficiency. The time
consumption of model building in SVD is proportional to the size of
training set which is much the one of item similarity matrix con-
structing when the data set is sparse. After the model is con-
structed, the time consumption of prediction is kSVD for SVD,
where kSVD is the number of factors. In general, kSVD has the same
scale with kCF and increases as the sparsity of data set increases.
However, the model parameters need to be re-estimated when
new ratings are injected. In practice, item similarity is stable which
means we do not need to frequently update the similarity matrix.
Therefore we can reduce the frequency of similarity calculation to
make GF model based methods more efficient. Moreover, its pre-
diction efficiency can be greatly improved by using little storage
space to store the possible predictions beforehand.
5. Conclusions and future work

Since the existing similarity measurement methods, such as
Cosine Distance and Pearson Correlation, cannot accurately com-
pute the similarities between users or items when the data is
sparse or when there are strong data correlations, UCF and ICF
methods do not perform well when it comes to prediction accu-
racy. In this paper, we used the GF model for rating prediction in
recommender systems and conducted a series of experiments on
two public movie data sets, namely, MovieLens and EachMovie.
The experimental results demonstrated that the GF model based
methods can overcome the problem of data sparsity, benefit from
data correlations, and outperform conventional memory based CF
(ICF) methods. In particular, even when only 15 nearest neighbors
are adopted, the GF model based method still reduces the predic-
tion error by over 20% in terms of MAE and RMSE when compared
to the ICF method with 100 nearest neighbors. Although the state-
of-the-art methods, such as the matrix factorization based meth-
ods, perform better than the GF model based methods in terms
of error metrics, the latter presents comparative, or sometimes
even better, performance in terms of classification metrics—which
are more valuable for algorithmic estimation in real-world systems
as compared to error metrics.

Improving the accuracy of recommendations has been exten-
sively investigated. In this paper, we adopt a mature forecasting
EachMovie

GF Item based CF++ Cosine based GF

0.8796 0.8364
1.0777 1.0629
0.8451 0.8352
0.8374 0.9424
0.8412 0.8856
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model used in economics—called the GF model—to gain high-accu-
racy recommendations. This fosters a new era in prediction
wherein advanced technologies in other fields can employ novel
recommender algorithms, and the various problems in recom-
mender systems, such as data sparsity and data correlation, can
be overcome. As an effective rating prediction method, the GF
model has room for improvement. In our future work, we consider
the case when the user does not rate a sufficient number of k items,
the average of the user’s ratings on all the items is used instead of a
fixed value to complete the k ratings. Moreover, we will also try to
employ GF model based methods for larger data sets, and it is our
target to implement the proposed method into recommender sys-
tems for real world applications. Actually, we are planning to apply
it for video recommendation on iqiyi.com website.
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Appendix A

Theorem 1. In a nonorthogonal coordinate space, the cosine of the
angle between two vectors cannot be computed directly by using Eqs.
(1) or (2). An orthogonal transformation is needed.
Proof. We define ðe1; e2; . . . ; enÞ as the standard orthogonal basis of

an n-dimensional vector space, i.e., ei ¼
0; . . . ;0|fflfflfflffl{zfflfflfflffl}

i�1

;1;0; . . . ;0
� �T

Assume ða1;a2; . . . ;anÞ is an arbitrary basis of Rn; then,
ða1;a2; . . . ;anÞ ¼ ðe1; e2; . . . ; enÞA, where ei;ai are column vectors
and A is the Rn�n transition matrix from ðe1; e2; . . . ; enÞ to
ða1;a2; . . . ;anÞ. In terms of the basis ða1;a2; . . . ;anÞ, suppose the
coordinates of the vectors b1; b2 are x ¼ x1; x2; . . . ; xnð ÞT and

y ¼ y1; y2; . . . ; ynð ÞT , respectively. Equivalently, b1 ¼ ða1;a2; . . . ;anÞ
x and b2 ¼ ða1;a2; . . . ;anÞ y.The cosine of the angle between vectors
b1; b2 can be calculated as coshb1; b2i ¼ b1 �b2

kb1kkb2k
.

b1 � b2 ¼ bT
1b2 ¼ xTða1

T ;aT
2; . . . ;aT

nÞ
Tða1;a2; . . . ;anÞy ¼ xT Fy ðA:1Þ

Similarly, kb1k
2 ¼ b1 � b2 ¼ xT Fx; kb1k

2 ¼ b1 � b2 ¼ yT Fy. Further,
F denotes the measurement matrix in terms of the basis
ða1;a2; . . . ;anÞ, namely,

ða1;a1Þ ða1;a2Þ � � � ða1;anÞ

ða2;a1Þ ða2;a2Þ � � � ða2;anÞ

..

. ..
. . .

. ..
.

ðan;a1Þ ðan;a2Þ � � � ðan;anÞ

0
BBBBBBB@

1
CCCCCCCA

ðA:2Þ

Let E be the measurement matrix in terms of the basis
ðe1; e2; . . . ; enÞ; obviously, E = I, where I is the n-dimensional unit
vector; then,

F ¼ ðaT
1;a

T
2; . . . ;aT

nÞ
Tða1;a2; . . . ;anÞ

¼ ATðeT
1; e

T
2; . . . ; eT

nÞ
Tðe1; e2; . . . ; enÞA ¼ AT EA ¼ AT A ðA:3Þ

Therefore,

b1 � b2 ¼ xT Fy ¼ xT AT Ay ¼ ðAxÞT Ay

kb1k
2 ¼ xT Fx ¼ ðAxÞT Ax

kb2k
2 ¼ yT Fy ¼ ðAyÞT Ay

ðA:4Þ
Hence, coshb1;b2i ¼ ðAXÞT Ay
ðAXÞT AxðAyÞT Ay

, which is XT y
kxkkyk only when A = E;

therefore, the basis is a standard orthogonal basis. Therefore, in a
nonorthogonal coordinate space, we cannot directly use Eqs. (1)
or (2) to compute the cosine of the angle between two vectors. As
the Pearson Correlation is a variation of the Cosine Distance method
for similarity measurement, the theorem is also applicable to Eqs.
(3) and (4). h
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