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Recommendation can be reduced to a sub-problem of link prediction, with specific nodes (users and
items) and links (similar relations among users/items, and interactions between users and items). How-
ever, previous link prediction approaches must be modified to suit recommendation instances because
they neglect to distinguish the fundamental relations similar vs. dissimilar and like vs. dislike. Here, we
propose a novel and unified way to cope with this deficiency, modeling the relational dualities using
complex numbers. Previous works can still be used in this representation. In experiments with the
MovieLens dataset and the Android software website AppChina.com, the proposed Complex Representa-
tion-based Link Prediction method (CORLP) achieves significant performance in accuracy and coverage
compared with state-of-the-art methods. In addition, the results reveal several new findings. First, per-
formance is improved, when the user and item degrees are taken into account. Second, the item degree
plays a more important role than the user degree in the final recommendation. Given its notable perfor-
mance, we are preparing to use the method in a commercial setting, AppChina.com, for application
recommendation.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Information overload creates difficulties for users. Information
filtering tools, such as search engines, can help find items of interest
to users, but the requirement that users specify in advance what
they are looking for is still challenging [1,2]. Fortunately, recom-
mender systems, which attempt to predict interests by mining data
on past user-item interactions, can be used to identify what users
need [3,4]. Consequently, recommender systems provide users
with items that they are not aware of or cannot access using tradi-
tional keyword searching approaches. Recommender systems have
been successfully deployed in many application settings, e.g., book,
video, music, and friend recommendations on Amazon, Youtube,
Pandora, and Facebook, respectively. Most of these have a client–
server architecture with a centralized control mode. Some work
has paved the way for developing recommender systems for per-
sonal knowledge management in collaborative environments in a
distributed mode, widely used in connection with traditional
knowledge management methods and tools [5,6].

An efficient recommender system can help customers find what
they want quickly, and thereby save their time, improving the cus-
tomer experience [7], and promoting sales [8]. As the core of a rec-
ommender system, recommendation algorithms typically take
user and item attributes and user-item interactions (such as
explicit ratings, and implicit browsing, purchasing or clicking-
through activities) as input to anticipate user interests [9]. One of
the most popular and promising recommendation algorithms, col-
laborative filtering (CF) provides recommendations using only
user-item interactions [10,11], which can be classified as user
based [12] or item based [13], depending on whether the cluster
of recommendations are derived by identifying similar users based
on their overlapping interactions or on similar items based on the
common users who ever have expressed interests in them [14–16].
Despite its success, CF still suffers from data sparsity [17,18],
where sparse user-item interactions lead to invalid user or item
clustering. Some variants have been proposed to alleviate this
problem [19–21]. Furthermore, this approach involves the risk that
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increasing numbers of users will be exposed to a narrowing selec-
tion of popular items, while unpopular items that might be very
relevant to users will be overlooked [22]. Several attractive solu-
tions have been proposed to overcome these disadvantages. One
is to explore the structures of user-item interaction graphs to
improve recommendation performance [23–25]. More specifically,
users and items are regarded as nodes in a bipartite graph, with
their interactions represented as links. In this representation, the
recommendation problem is converted to finding future links for
each user node, and thus can be converted into a link prediction
problem. Link prediction is a fundamental problem that attempts
to estimate the likelihood of the existence of a link between two
nodes based on observed links and node attributes [26,27]. In a
typical link prediction scenario, the nodes are symmetric, and the
question of which node is the subject or object is neglected.
However, there are two types of nodes in a user-item graph, users
and items. In addition, three types of links (user-user, user-item,
and item-item) depending on different endpoint combinations
coexist. We further define the type of links between two users or
items as similar or dissimilar and that between users and items as
like or dislike. In this classical setting, it is much more interesting
to predict like or dislike links since we typically would not recom-
mend users to users or items to items.

In this paper, we propose a novel and unified model based on
complex-number representation to address this task. The similar
or dissimilar links are weighted by real numbers, while the like or
dislike ones are weighted by complex numbers. Since complex

number j has the property that j2 ¼ �1, complex numbers provide
a natural way to model the particularities of item recommenda-
tions, when the recommendation problem is being reduced to a
link prediction problem. Consequently, previous link prediction
algorithms can still be used conveniently without modification.
We evaluate the validity and efficiency of this representation and
demonstrate the performance of this recommendation approach
on two real-world datasets. One of the datasets is collected from
our commercial platform, where the proposed method will be
implemented in the near future.

The rest of this paper is organized as follows. Section 2 provides
a detailed description of the proposed algorithm. Section 3
describes experiments on two real-world datasets and discusses
the experimental results. This is followed by a final section,
which summarizes the findings and proposes future research
directions.
Fig. 1. The multiplication rules lead to triangle closing between the like and similar
relations.
2. Proposed algorithm

The method proposed in this paper is based on abstracting
recommendation to a link prediction problem. Firstly, the subjects
(or users) and objects (or items) in a recommender system are
regarded as nodes in a graph, while the links of the graph are taken
to represent the relations between different types of nodes, such as
user-user or item-item similarities and user-item interactions.
Then, interest prediction between a particular user and an item
can be reduced to evaluating the likelihood of existence of a link
between the nodes corresponding to them in the graph. Since
previous link prediction methods work by taking just one type of
nodes into account, we need to modify them before using
them in a recommendation scenario. This can be addressed
efficiently with the proposed method by introducing complex
numbers into graph theory.

2.1. Basic notation

In the typical link prediction approach based recommendation
scenario, input data are modelled as a directed graph G = (V ; E;x)
where the set of nodes V consists of all users U and items I present
in the system (V = U [ I), E is the set of links that represent various
relations among these nodes (E = U � U [ U � I [ I � I), and x con-
tains all of the links’ weights. Furthermore, any path is denoted by
(a1; a2; . . . ; akþ1)(ai 2 V, where i = 1,2,. . . ; kþ 1 and k is the length of
the path), a1 and akþ1 are two endpoints, while ai(i = 2,3,. . . ; k) is
the inner node, and there are k links along this path ((ai; aiþ1) 2
E, where i = 1,2,. . . ; k). When k = 1, the length of the path is equal
to one, and it is reduced to a link with no inner nodes. In addition,
we define NiðuÞ as the set of items that are rated by user u and NuðiÞ
as the set of users who have expressed interest in item i. That is,
NiðuÞ = {i j(u; i)2 E; i 2 I} and NuðiÞ = {u j(u; i) 2 E;u 2 U}. If two nodes
are connected, this node-pair is always connected by two links, one
in each direction. Then, the recommendation is reduced to predict-
ing whether a link will exist between an item and a particular user
in the graph. In this paper, we calculate an estimated score that
expresses how relevant any item is to a particular user using the
link prediction algorithm.

2.2. Triangle closing

There are two types of relations among nodes in a user-item
bipartite graph. First, there is the similarity, xsimilar , between two
users or items, including both user-user and item-item links. Sec-
ond, there is the preference, xlike and �xlike, of the user of an item,
including user-item links and item-user links, respectively,
because of the need to recognize the asymmetry between user
and item. That is, when there is a link with weight xlike from user
u to item i, there is always a reverse link with weight �xlike from
item i to user u and vice versa. Here, xlike and xsimilar are normal-
ized values just for the weights. The principle of triangle closing
in this model can be illustrated as in Fig. 1.

The principle is twofold: users who have expressed the same
interest in (perhaps many) common items might be similar (see
Fig. 1a), similar users will have a similar interest in the same item
(see Fig. 1b), and user similarity is transitive among users (see
Fig. 1c). Analogously, items liked by (perhaps many) common users
might be similar (see Fig. 1d), users tend to be interested in similar
items (see Fig. 1e), and item similarity is also transitive among
items (see Fig. 1f). These are the core ideas of CF from another
perspective. Consequently, these rules can be expressed
mathematically as follows:
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xsimilar ¼ �x2
like ð1Þ

xlike ¼ xsimilar �xlike ð2Þ
xsimilar ¼ x2

similar ð3Þ

We thus must find two nonzero constants xsimilar and xlike that
solve this system of equations. The complex numbers provide a
natural way to solve this problem, if we set xlike = j and
xsimilar = 1 where j is the imaginary unit whose square is negative
one. The above requirements then correspond to the identities

1 = �j2
; j = 1 � j and 1 = 12.

Analogous multiplication rules for dislike and dissimilar can then
be derived by multiplying both sides by �1. For example, the case
in which a user dislikes (�j) an item dissimilar (�1) to one that he/
she is interested in (j) can be interpreted as the equation:
�j = j � (�1). In this representation, a link with real number weight
has endpoints of the same type, two users or two items, and is
always a real number. A greater value indicates more similar
endpoints. In contrast, a link with an imaginary weight must be a
user-item or item-user link, depending on the sign and interest.
For example, if user u dislikes the item i, then there is a link with
weight �j from u to i and another link with weight j from i to u.
In contrast to similar links, we can distinguish the like and dislike
only when the direction of the link and the sign of its weight are
known simultaneously. However, the weight’s modulus value can
represent the degree of like or dislike.

2.3. Extended triangle closing

With the basic triangle closings introduced in Section 2.2, the
multiplication rules can be proved to be extendable to any path
length, where the basic triangle closing is equivalent to the case
of path length two. That is, the result of multiplying the weight
of links along the path also depends only on the endpoints,
independently of the inner nodes.

Lemma 2.1. If the endpoints of a given path are two users or two
items, then the result of multiplying the weights of all links along the
path is a real number; if the endpoints are a user and an item, then the
result is a complex number.
Proof. We define k as the length of the path (a1; a2; . . . ; akþ1)
(ai 2 V) and p(k, (a1; a2; . . . ; akþ1)) as the result of multiplying the
weights of all links along the path. That is, p(k, (a1; a2; . . . ; akþ1)) =Qk

i¼1x(ai; aiþ1), where x(ai; aiþ1) (�1 or �j) is the weight of link
(ai; aiþ1). The proof using mathematical induction follows. First, if
k = 1, then the path is reduced to the link x(a1; a2), it thus satisfies
the requirements

pð1; ðu1;u2ÞÞ ¼ 1;pð1; ði1; i2ÞÞ ¼ 1;
pð1; ðu; iÞÞ ¼ j;pð1; ði;uÞÞ ¼ �j

ð4Þ

Here the dislike and dissimilar cases are ignored, because they would
not change the numeric type of the multiplication result. Then, we
assume that the requirements are satisfied when k = n:

pðn; ðu1; . . . ;u2ÞÞ ¼ 1;pðn; ði1; . . . ; i2ÞÞ ¼ 1;
pðn; ðu1; . . . ; i1ÞÞ ¼ j;pðn; ði1; . . . ; u1ÞÞ ¼ �j

ð5Þ

Consequently, when k = n + 1, the paths with length n + 1 can be
classified as: (u1; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nþ1

;u3), (u1; . . . ;u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nþ1

; i1), (i1; . . . ; i2|fflfflfflfflffl{zfflfflfflfflffl}
nþ1

;u1),

(i1; . . . ; i2|fflfflfflfflffl{zfflfflfflfflffl}
nþ1

; i3), (u1; . . . ; i1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nþ1

;u2), (u1; . . . ; i1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nþ1

; i2), (i1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nþ1

;u2),

(i1; . . . ;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nþ1

; i2). And then:
pðnþ 1; ðu1; . . . ;u2ÞÞ ¼ pðnþ 1; ðu1; . . . ;u3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nþ1

;u2ÞÞ

¼ pðn; ðu1; . . . ;u3ÞÞ � pð1; ðu3;u2ÞÞ
¼ 1 � 1 ¼ 1pðnþ 1; ðu1; . . . ;u2ÞÞ
¼ pðnþ 1; ðu1; . . . ; i1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nþ1

;u2ÞÞ

¼ pðn; ðu1; . . . ; i1ÞÞ � pð1; ði1;u2ÞÞ ¼ j � ð�jÞ ¼ 1
ð6Þ

Namely, pðnþ 1; ðu1; . . . ;u2ÞÞ = 1. Similarly, pðnþ 1; ði1; . . . ;

i2ÞÞ = 1, pðnþ 1; ðu1; . . . ; i1ÞÞ = j, and pðnþ 1; ði1; . . . ;u1ÞÞ = -j. That
is, once the paths with length n satisfy the requirements, the paths
with length n + 1 inherit that property. This proves the conclusion.
Note that we ignore the subscripts for users and items only for
descriptive convenience. h
Lemma 2.2. If the graph is bipartite, there are only user-item links.
When the length of any path k is even, its endpoints are two users
or two items; when the endpoints are a user and an item, then the
path length is odd.
Proof. If we take only the user-item interactions into account, the
user and item nodes will alternate along the path. Thus, when k is
even, the path contains k + 1 (odd) nodes. Hence the endpoints are
two users or two items. Analogously, the endpoints are different
node types for paths of odd length. h
2.4. Adjacency matrix

Let G ¼ ðV ; EÞ be an unweighted, undirected network. The adja-
cency matrix of G is defined as A 2 RjV j�jV j given by:
Aðx; yÞ ¼
1 if ðx; yÞ 2 E
0 if ðx; yÞ R E

�
ð7Þ

The adjacency matrix A is square and symmetric. Since the
number of paths connecting two nodes can be derived by
computing the powers of matrices in unweighted networks, the
number of common neighbors between two nodes x and y
(x; y 2 V) can be calculated as the square of the adjacency matrix:

Nðx; yÞ ¼ A2ðx; yÞ, which implements the basic triangle closing
and can be interpreted as the number of paths with length two
between them. That number has an important property: greater
the corresponding entry of the square of the adjacency matrix is,
the closer the two nodes will be. Equivalently, we can extend the
number of paths of any length k from node x to node y to be rep-

resented by the entry Akðx; yÞ. Thus, the closeness of two nodes
can be measured using the weighted sum of powers of the adjacen-
cy matrix A. An example of such a method for aggregating these
results is the matrix exponential:

e A ¼ I þ Aþ 1
2

A2 þ � � � ð8Þ

The contributions of this function are twofold: it takes all paths
between two nodes into account, since all powers of A are involved.
In addition, short paths are given preference over long paths, as a
result of the decreasing weights of the powers. Using the real
numbers to represent the user-user and item-item relations and
the complex numbers to describe the user-item interactions, the
adjacency matrix A of the user-item graph G has the following
property:



F. Xie et al. / Knowledge-Based Systems 81 (2015) 148–158 151
Aðx; yÞ ¼

1 if x similar y

�1 if x dissimilar y

j if x likes y or y dislikes x

�j if x dislikes y or y likes x

0 if ðx; yÞ R E

8>>>>>><
>>>>>>:

ð9Þ

where Aðx; yÞ is the value in row x and column y of matrix A. Gen-

erally, matrix A can be denoted as AUU AUI

AIU AII

� �
, where AUU ;AII are

the user and item similarity matrices, AUI;AIU are the user-item pref-
erence matrices, and AIU=-AT

UI . Obviously, the similarity matrices are
real matrices, while the preference matrices are complex matrices.
In this paper, we ignore the initial relations between users/items,
hence G is a bipartite graph and the adjacency matrix A can be

simplified to
0 AUI

�AT
UI 0

� �
. In accordance with the definition of the

adjacency matrix A(see Eq. (9)), each entry in the preference matrix
AUI has only three candidate values, j;�j, and 0. Therefore, we can

further convert A to 0 jB
�jBT 0

� �
, where B is a real matrix.

Based on the path counting in the unweighted and undirected
networks, the path counting for paths of length k can be derived

similarly using Ak. If we take only the relations between users
and items into account, Lemmas 2.1 and 2.2 can be further formu-
lated mathematically as

Ak ¼

ðBBTÞn 0

0 ðBT BÞn

" #
where k ¼ 2n

j � 0 ðBBTÞnB

�ðBT BÞnBT 0

" #
where k ¼ 2nþ 1

8>>>>><
>>>>>:

ð10Þ

Thus, any sum of the powers of the adjacency matrix A can be
split into even and odd components. Here, we again take the
matrix exponential as an example. This power sum can be applied
to A, yielding

e A ¼ I þ Aþ 1
2

A2 þ 1
6

A3 þ � � �

¼ I þ 1
2

A2 þ � � �
� �

þ Aþ 1
6

A3 þ � � �
� �

¼ I þ 1
2

BBT 0
0 BT B

" #
þ � � �

 !

þ j �
0 B

�BT 0

� �
þ 1

6
0 BBT B

�BT BBT 0

" #
þ � � �

 !
ð11Þ

We can see that the even part of the power sum can be used to
measure the similarities among users or items, while the odd part
can be used to find items of interest to users. Therefore, only paths
of odd length are suitable for recommendation. In the case of the
matrix exponential, this is further reduced to the matrix hyperbolic
sine:

sinhðAÞ ¼ Aþ 1
6

A3 þ 1
120

A5 þ � � � ð12Þ
2.5. Recommendation

Since the power sum of the adjacency matrix measures close-
ness among nodes, each entry of the top-right component express-
es how relevant any item is to a particular user. Therefore, top-N
recommendation can be generated by ranking items for each user
with these estimated scores.

Given a system with three users fu1;u2;u3g, six items
fi1; i2; i3; i4; i5; i6g, and the user ratings of items
fðu1 : i1;5; i2;1; i3;4Þ; ðu2 : i2;4; i3;2; i4;3Þ; ðu3 : i1;5; i3;5; i4;4; i6;1Þg,
if we further set three-star as the threshold for converting the dis-
crete ratings to dislike or like, depending on whether the rating is
less than the threshold, then the adjacency matrix with complex
numbers can be formulated as (see Eq. (9))

ð13Þ

where the user-user and item-item similarity matrices are zero
matrices, since we ignore them. For simplicity, the third power

(A3) of the adjacency matrix A is computed with our proposed algo-
rithm only in the prediction step, that is,

ð14Þ

The top-right part of the matrix, shown in Eq. (14), can be used
for recommendation. For each user (a line, for example, the predic-
tions for user u1 on the unrated items i4; i5, and i6 are �2j;2j, and
�2j, respectively), we rank the predictions in descending order,
with positive values indicating that the user will like the item
and negative one representing a dislike. Thus, the items with posi-
tive and greater values will be recommended to a specific user, and
these recommended items will not contain those that have been
chosen by that user before. Then, i5 will be recommended to u1,
since it receives a positive and greatest prediction value other than
the already selected items. Intuitively, we can see that user u1 and
user u3 both like items i1 and i3, as seen in the adjacency matrix A
(Eq. (13)), hence u1 will like i5 (the prediction is a positive complex
value of user u1 on item i5 in Eq. (14)), which u3 has expressed
interest in. Analogously, user u1 and user u2 expressed opposite
interests in item i2 and item i3, hence u1 would not be interested
in what u2 likes, i4 (the prediction is a negative complex value of
user u1 on item i4 in Eq. (14)), and u2 also dislikes i1 (the prediction
is also a negative complex value of user u2 on item i1 in Eq. (14))
which is liked by u1. From another perspective, this simply vali-
dates the idea of CF. Note that when two or more items receive
the same prediction, the orders between them are determined
either by their estimated scores of higher powers of the adjacency
matrix or at random. Moreover, for a top-N recommender system,
the first N items in the order other than the selected ones will be
recommended to the particular user without concern for the signs
of their predictions. Especially, returning to the example, if we
want to provide a top-2 recommendation, the recommended items



Table 1
Properties of MovieLens and AppChina datasets.

Feature/dataset MovieLens AppChina
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for user u1 will be fi5; i6g. Although u1 provides i6 and i4 with the
same prediction, only the former gets a ticket for recommendation,
since its higher rank was generated between them randomly.
#Users 943 2395
#Items 1682 2486
#Total Ratings 100,000 99,295
#Average User Popularity 106 41
#Average Item Popularity 59 40
#Sparsity Level 93.7% 98.3%
3. Experimental evaluation

To analyze the effectiveness of the proposed method, we con-
ducted extensive experiments on two datasets comparing with
several state-of-the-art methods using two quality metrics.

3.1. Datasets

The experiments were conducted on two real-world datasets,
MovieLens1 and AppChina2. The former is a publicly available movie
rating dataset collected by GroupLens from the MovieLens website.
It contains 100,000 ratings ranging from one to five by 943 users
on 1682 movies. AppChina is an Android software installation tool
that helps users download applications and games conveniently.
Users’ operations on applications, such as installation, updating,
and deleting, were collected during the three-month period from
May 1st, 2012 through July 31st, 2012. Then, the rating of a par-
ticular user on a specific application was modeled by aggregating
this information. Detailed introductions regrading how to yield the
ratings on a 1-to-5 scale are not shown here for lack of space. Finally,
an available dataset with 99,295 ratings by 2395 users on 2486
applications was generated. Table 1 summarizes the statistical prop-
erties of these two datasets, where the sparsity level [28] is derived
as

#sparsity level ¼ 1�#rating entries
#total entries

ð15Þ
3.2. Evaluation methodology

The evaluation methodology used in this paper is similar to the
one in [29]. For each dataset, ratings are divided into two subsets,
training and test. The test set contains only five-star ratings.
Equivalently, only items relevant to the respective users are con-
tained in the test set. The detailed procedure used to create the
training and test sets can be described as follows. First, we ran-
domly select 10% of the items rated by each user to form a tempo-
rary test set, with the temporary training set containing the
remaining ratings. Then, the five-star ratings in the temporary test
set are further filtered out for the final test set, and the rest of the
ratings in the temporary test set are merged into the temporary
training set for the final training set. In this case, the training set
is used to obtain estimated ratings or recommendation scores for
all user-item pairs.

In addition, rating conversion is required for the adjacency
matrix generated in our proposed algorithm, in which the ratings
in the training set are converted to �j or j, depending on whether
the rating is less than three. That is, if the rating is greater than or
equal to three, it is replaced by j, indicating that the user expresses
like for the item; analogously, when the rating is less than three, �j
is provided to represent dislike; moreover, if the (u; i) pair is not
contained in the training set, the corresponding entry of the adja-
cency matrix receives zero (see Eq. (9)). With this dataset parti-
tioning, computing the prediction error becomes less meaningful,
so we care only about how many relevant items in the test set
can be recommended to users. In addition, we focus on the overall
ratio of items recommended to all users. Therefore, the metrics
hits rate [29] and coverage [30,31] are used to measure the
1 http://www.grouplens.org/
2 http://www.appchina.com/
performance of the comparison methods. In the case of top-N rec-
ommendation, the overall hits rate and coverage are defined by
averaging all the test cases:

hits rateðNÞ ¼ #hits
j T j ð16Þ

coverageðNÞ ¼ j [u recommendðN;uÞ j
#items

ð17Þ

For each pair (u; i) in the test set, if the item i is contained
in the user u’s top-N recommendation list, it will receive one hit.
#hits is the overall number of occurrences of hit, and j T j is the
number of test pairs, with the result that hits rate can reasonably
represent the ability to recommend relevant items to users.
recommendðN; uÞ is the item set recommended to user u; therefore,
coverage corresponds to the percentage of items the system can
recommend. coverage can usually be used to detect algorithms
that, despite be highly accurate, recommend only a small number
of items. To the best of our knowledge, a high coverage value is not
only desirable, but is helpful for obtaining better trust accuracy
metric results [32]. These two metrics share the property that
greater values correspond to better algorithm performance.

3.3. Comparison methods

Some of the most popular and classical recommendation algo-
rithms that are always taken as baseline methods are used here
for comparison. Several of them perform very well in providing
accurate prediction ratings. A detailed description follows:

Average: This method computes the average score for each item,
and then recommends to users the items with greater scores. Every
user receives the same recommendation list in this case, indicating
that it is a non-personalized recommender algorithm.

Popular: Each item’s popularity is measured by the number of
users who have rated it. Greater item popularity means greater
recommendation opportunities. This is also a non-personalized
recommender algorithm, since it shows every user the same
popular items. Unpopular items are omitted.

ItemBasedPear: This is a well-known item based CF approach
[13], that calculates the similarity between two items using Pear-
son correlation measurement. Ease of use and interpretability have
resulted in it being one of the most popular recommender
methods.

SlopeOne: This is another family of algorithms used for CF [33].
Its simplicity makes it easy to implement and its prediction results
(Root Mean Square Error, RMSE) are relatively accurate, while its
storage and computation consumption are very high.

SVD++: This is the state-of-the-art method, based on the basic
matrix factorization model [34]. The method yields reasonable
prediction accuracy, but it is significantly more expensive
computationally than other methods, owing to the requirement
of iterative calculation.

CORLP: This is the proposed Complex Representation-based
Link Prediction method, which uses complex numbers to represent
the like and dislike relations between users and items. After the
adjacency matrix is derived, its weighted power sum is computed.

http://www.grouplens.org/
http://www.appchina.com/
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Then, we rank all items by their estimated scores in decreasing
order for each user. The candidate recommendations for a par-
ticular user are the top-N items that have not yet been rated by
that user.

4. Experimental results

The experimental evaluation contains five parts. First, we study
the effect of different path lengths used for recommendation by
CORLP. Second, three numbers (3, 4, 5) for determining like and dis-
like relations are used to evaluate the effects of different thresh-
olds. Third, several sequences of weighting factor are used to
aggregate different path lengths, with the aims of showing that
the sequences must be chosen carefully. Further, comparison
results with competing methods are illustrated. Finally, we observe
that the performance of CORLP is highly improved by taking user
and item degrees into account.

4.1. Effect of the path length

Intuitively, the more paths there are between two nodes and
the shorter those paths are, the stronger a relation the two nodes
will have. Therefore, the first experiment is designed to test
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Fig. 2. The hits rate and coverage comparison of CORLP with different path lengths
for recommendation, as top-N increases from 10 to 100 on MovieLens.
CORLP’s performances with different path lengths for recommen-
dation. For example, if the length is set to three, the predicted score
of user u for item i is the value of the number of positive paths (the
product of the links’ weights along the path is positive) with length
three minus the number of negative paths (the product of the links’
weights along the path is negative) with length three from u to i
regardless of other paths. Therefore, the more positive paths and
the fewer negative paths there are from user u to item i, the greater
opportunity i will have to be recommended to u. Note that the
length must be odd and no less than three. Figs. 2 and 3 illustrate
the hits rate and coverage comparison with lengths 3, 5, 7, and 9 on
the MovieLens and AppChina datasets, respectively. The corre-
sponding method is named with a combination of CORLP and the
length, such as CORLP_#Length = 3. The results show that the
hits rate and coverage increase as the number of recommended
items increases. Moreover, CORLP_#Length = 3 greatly outper-
forms the other methods, with the performance decreasing sharply
as the path length increases, but the rate of decrease in speed tends
to slow as the path length becomes large enough. Experimentally,
when the path length is greater than nine, the performance
remains almost unchanged. Furthermore, CORLP performs much
better on the MovieLens dataset than on the AppChina dataset,
because the latter is much sparser. However, it still shows
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Fig. 3. The hits rate and coverage comparison of CORLP with different path lengths
for recommendation, as top-N increases from 10 to 100 on AppChina.
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attractive performance with length three for recommendation on
the AppChina dataset.

As a similar consequence, the results with top-60 recommenda-
tion are shown separately for a clearer comparison. Fig. 4 illus-
trates these results of CORLP with lengths 3, 5, 7 and 9,
respectively. It clearly shows the mentioned conclusions.
4.2. Effect of the threshold

In our proposed methods, a rating is classified as like or dislike
link, depending on whether it is greater than a given threshold.
Because different thresholds generate different ratios between
the numbers of like and dislike, graphs will differ, consequently
influencing CORLP’s performance. Therefore, we measure CORLP’s
performance by setting the threshold to be 3, 4, and 5, respectively.
Correspondingly, the methods are denoted by combinations of
CORLP and thresholds, such as CORLP_#Threshold = 3. If there is
no special declaration, CORLP is the proposed method that uses
only length three for recommendation. The results on the Movie-
Lens dataset are shown in Fig. 5. CORLP_#Threshold = 4 achieves
a slightly better hits rate and much higher coverage than
CORLP_#Threshold = 3. Although CORLP_#Threshold = 5 achieves
greatest coverage, its extremely low hits rate deprives its coverage
MovieLens AppChina
0%

10%

20%

30%

40%

50%

60%

Datasets

H
its

 R
at

e

CORLP_#Length=3
CORLP_#Length=5
CORLP_#Length=7
CORLP_#Length=9

55.42%

49.35% 48.01% 47.91%

21.58%

14.20%
12.28% 11.80%

MovieLens AppChina
0%

10%

20%

30%

40%

Datasets

C
ov

er
ag

e

CORLP_#Length=3
CORLP_#Length=5
CORLP_#Length=7
CORLP_#Length=9

21.58%

38.05%

26.16%

22.95% 22.83%

25.50%

6.560%

3.860% 3.660%

Fig. 4. The hits rate and coverage comparison of CORLP with different path lengths
for recommendation setting top-N to 60 on both datasets.
of meaning. Therefore, CORLP performs best on the MovieLens
dataset, when the threshold is set to four. Actually, the threshold
does not change the number of links in the graph, but it influences
the ratio of like and dislike links. A better threshold for CORLP
would be one that can balance like and dislike links to some extent.
Experimentally, we conclude that CORLP performs better when the
threshold is set to the median of all ratings in the training set. The
median is four and five for MovieLens and AppChina, respectively.
Because the conclusions for the AppChina dataset are similar, those
experimental results are not shown here.

4.3. Effect of the aggregating sequence

Although CORLP achieves outstanding performance only with
length three for recommendation, it is worthwhile to try to aggre-
gate separate results with different path lengths to generate a glob-
al recommendation. A general aggregation method can be
formulated simply as

f ðBÞ ¼
Xþ1
n¼1

an � ðBBTÞnB ð18Þ

where B is the user-item preference matrix, for which the value of
entry (u; i) is 1, �1, or 0, depending on whether user u likes, dislikes,
or expresses no interest in item i, and fang is a decreasing sequence
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Fig. 5. The hits rate and coverage comparison of CORLP with different thresholds, as
top-N increases from 10 to 100 on MovieLens.



Table 2
Average and maximal values of matrices with different path lengths.

Scale/length #Length = 3 #Length = 5 #Length = 7 #Length = 9

MovieLens_Average 6:91� 102 1:17� 107 1:99� 1011 3:37� 1015

MovieLens_Maximal 3:24� 104 5:77� 108 9:81� 1012 1:66� 1017

AppChina_Average 3:70� 101 9:58� 104 2:50� 108 6:54� 1011

AppChina_Maximal 1:58� 103 4:39� 106 1:17� 1010 3:07� 1013

Table 3
Four aggregating sequences for each dataset.

Sequence/length #Length = 3 #Length = 5 #Length = 7 #Length = 9

MovieLens_Normal 10�3 10�5 10�7 10�9

MovieLens_Normal+ 10�3 10�8 10�13 10�18

MovieLens_IMaximal 1
3:24� 10�4 1

5:77� 10�8 1
9:81� 10�12 1

1:66� 10�17

MovieLens_IMaximal+ 1
3:24� 10�4 1

5:77� 10�9 1
9:81� 10�14 1

1:66� 10�20

AppChina_Normal 10�3 10�5 10�7 10�9

AppChina_Normal+ 10�3 10�7 10�11 10�15

AppChina_IMaximal 1
1:58� 10�3 1

4:39� 10�6 1
1:17� 10�10 1

3:07� 10�13

AppChina_IMaximal+ 1
1:58� 10�3 1

4:39� 10�7 1
1:17� 10�12 1

3:07� 10�16
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Fig. 6. The hits rate and coverage comparison of CORLP with different aggregating
sequences on MovieLens.
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of weighting factors guaranteeing that the estimated scores with
shorter path lengths can contribute more to the final predictions.
Because performance changes slightly, when the length is greater
than nine, the lengths 3, 5, 7, and 9 are taken into account only
for aggregation. First, it is necessary to analyze the scale of the val-
ues in matrices with different path lengths. Their average and max-
imal values are shown in Table 2. We can see that the values
increase rapidly. Especially, the maximal values of matrices with
different path lengths grow exponentially, and the approximate rate
for the MovieLens dataset is 1:7� 104, while it is 2:7� 103 for the
AppChina dataset, since the latter is much sparser than the former.

Given these observations, we designed four comparative experi-
ments using different sequences of weighting factor for each data-
set. Table 3 shows the details. MovieLens_Normal is the geometric
series for CORLP on the MovieLens dataset whose decreasing ratio
is 102, while MovieLens_Normal+ is an improved series with a
much greater decreasing ratio of 105. The only difference is that
the latter’s decreasing ratio is much greater than the increasing
ratio of the maximal values, while the inverse holds for the former.
Moreover, it is intuitive that normalization is required before
aggregating. Therefore, we use the inverse of maximal values,
MovieLens_IMaximal, as a sequence. However, the sequence of
MovieLens_IMaximal does not distinguish the degrees of impor-
tances of different path lengths. Therefore, an improved series
MovieLens_IMaximal+ is generated by multiplying MovieLen-
s_IMaximal to a geometric series (100;10�1;10�2;10�3), guarantee-
ing that shorter paths contribute more to the final results.
Equivalently, AppChina_Normal, AppChina_Normal+, AppChi-
na_IMaximal, and AppChina_IMaximal+ are defined similarly.
Figs. 6 and 7 show their results for top-10 to top-100 recommen-
dation on the MovieLens and AppChina datasets, respectively.

It is intuitive that hits rate and coverage increase when more
items are recommended to users, and the experimental results
confirm this expectation. Figs. 6 and 7 also show the same result
that the proposed methods perform better on the MovieLens data-
set than on the AppChina dataset, as derived above. Moreover, the
methods with improved aggregating sequences outperform those
with geometric series on both datasets. To explain this phe-
nomenon, taking the MovieLens dataset as an example, if we mul-
tiply the geometric series (10�3;10�5;10�7;10�9) by the vector of
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the average values (6:91� 102;1:17� 107;1:99� 1011;3:37� 1015)
shown in Table 2, we obtain (6:91� 10�1;1:17� 102;1:99�
104;3:37� 106), which implies that the part with length nine will
dominate the final estimated scores in this case of aggregation.
Consequently, the performance tends to be similar to that of the
case in which only length nine is taken into account. However,
with MovieLens_Normal+, the result of multiplication is
(6:91� 10�1;1:17� 10�1;1:99� 10�2;3:37� 10�3), which guaran-
tees that the results with shorter length will contribute more to
the final predictions. Naturally, it will yield more accurate recom-
mendations using the improved aggregating sequences.
Mathematically, we define the average number of co-rated items
of each user pairs as Com item, with Per user and Per item being
the average number of items rated per user and the average
number of users who have rated each item, respectively. Then,
the average value of odd powers 2nþ 1 of the adjacency matrix
can be estimated approximately as

Avgð2nþ 1Þ � Com item � ðPer item � Per userÞn�1 � Per item ð19Þ

Therefore, Eq. (19) can be a useful reference for generating aggre-
gating sequences. The alternative method to generate aggregating
sequences is firstly to normalize each power of the adjacency
matrix using the inverse of maximal values so that the scale of each
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Fig. 7. The hits rate and coverage comparison of CORLP with different aggregating
sequences on AppChina.
matrix is equivalently mapped to 0;1½ �. Then a decreasing
sequences is adopted to aggregate the normalized values.
MovieLens_IMaximal+ and AppChina_IMaximal+ are two examples,
which can achieve comparable or even better performance than the
improved geometric series. Besides, MovieLens_IMaximal+ and
AppChina_IMaximal+ also greatly outperform MovieLens_IMaximal
and AppChina_IMaximal in hits rate and coverage, since the latter do
not take account of the importance of path lengths.

4.4. Comparison with other methods

Because CORLP can achieve high performance only with length
three, the subsequent experiments for the proposed method take
only length three into account. Fig. 8 shows the hits rate and cover-
age comparison with the recommender methods introduced in
Section 3.3 on the MovieLens dataset.

CORLP outperforms other methods by hits rate and has relative-
ly high coverage. ItemBasedPear suffers from low hits rate, while its
coverage is very high, because it cannot make accurate recommen-
dation when the dataset is sparse, resulting in a low hits rate. In
this case, its coverage becomes less meaningful, since a high cover-
age value is desirable for comparable accuracy. Moreover, it is sur-
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Fig. 8. The hits rate and coverage comparison of the comparison methods on
MovieLens. Average and Popular are two non-personalized methods that recom-
mend the same items to users, so their coverage values are the same with two
overlapping curves.
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prising that the method that recommends only popular items to
users obtained greater hits rate than ItemBasedPear and SlopeOne.
This is a result of the fact that popular items will have high prob-
abilities of appearance in the test set using the random partition
method.

Fig. 9 illustrates similar results on the AppChina dataset. We can
conclude that the proposed algorithm, CORLP, not only has higher
recommendation accuracy, but also provides better coverage.
Table 4
Entry comparison of complex number based algorithms.

Entry/method CORLP CORLP_Item CORLP_User CORLP_User&Item

like j jffiffiffiffiffiffiffiffiffiffi
jNuðiÞj
p jffiffiffiffiffiffiffiffiffiffi

jNiðuÞj
p jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jNuðiÞj�jNiðuÞj
p

dislike �j � jffiffiffiffiffiffiffiffiffiffi
jNuðiÞj
p � jffiffiffiffiffiffiffiffiffiffi

jNiðuÞj
p � jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jNuðiÞj�jNiðuÞj
p

4.5. Effect of the user and item degrees

Using the basic link prediction approach based recommenda-
tion algorithm with complex numbers, we propose a series of
improved methods. The basic method simply takes the number
of paths and corresponding lengths between node pairs into
account, assuming that more paths and shorter path lengths will
result in closer node pairs. However, it does not take account of
the importance of paths with the same length. Intuitively, the low-
er-degree (or popularity) nodes along the path would be expected
to contribute more to the measurement of the closeness of two
endpoints than those with higher-degree nodes. Here, we propose
the CORLP_Item, CORLP_User and CORLP_User&Item methods.
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Fig. 9. The hits rate and coverage comparison of the comparison methods on
AppChina. Average and Popular are two non-personalized methods that recom-
mend the same items to users, so their coverage values are the same with two
overlapping curves.
These improved algorithms differ slightly from the basic one,
CORLP, in adjacency matrix modeling, while calculating of powers
of the adjacency matrix and providing the final recommendation in
the same manner. We define j NiðuÞ j and j NuðiÞ j as the degree of
user u and item i, respectively. Then, each entry (u; i) of the adja-
cency matrix can be formulated as in Table 4.

Fig. 10 shows the experimental results of four variants of CORLP
by hits rate and coverage, as the number of items recommended for
users ranges from 10 to 100 for the MovieLens dataset (similar
results for the AppChina dataset are not provided). These algo-
rithms share the property that the hits rate and coverage increase
as the growth of the number of recommended items, and the
improved ones achieve a higher hits rate than the basic CORLP
method. We can also see that the recommended items will be more
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Fig. 10. The hits rate and coverage comparison of the complex number based
algorithms on MovieLens dataset.
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relevant to users, when user and item degree are taken into
account simultaneously, a result that derives from the fact that
the CORLP_User&Item method outperforms other methods by
hits rate.

Moreover, it can be determined that CORLP_Item obtains sig-
nificantly better performance than CORLP_User by both hits rate
and coverage, because user degree is less meaningful than item
degree as a result of user subjectivity. In real-world cases, some
users who have seen many movies might prefer not to provide
comments. Hence considering their degrees to be small would be
wrong. On the contrary, popular items will receive more ratings,
while unpopular ones will receive fewer. Consequently, item
degree appears to be more reliable. Note that even though the
CORLP_User&Item method receives higher hits rate than CORLP_I-
tem, its coverage appears to be much poorer.

5. Conclusions and future work

This paper proposed a link prediction based item recommenda-
tion method, CORLP. Using a complex representation for link
weights in a graph, result in five contributions. First, CORLP can
distinguish similar and like links efficiently, enabling the conve-
nient reuse of previous link prediction approaches without any
modifications. Second, experimental results indicated that CORLP
outperforms state-of-the-art algorithms for the MovieLens and
AppChina datasets for the hits rate and coverage metrics. Third,
experimental results verified that recommendation is more effi-
cient with shorter path lengths, and several methods were provid-
ed for aggregating the results from different path lengths to
achieve better recommendations. Moreover, it was observed that
the performance of CORLP is influenced substantially by the
threshold set for classifying like and dislike links, and based on
the experiment, we suggested choosing the median value as the
most suitable one. Finally, to improve CORLP’s performance, the
user and item degrees were taken into account to recognize the
importance of paths with the same length. The experimental
results are extremely good, suggesting that item degree is more
valuable than user degree.

The power of matrix calculation is time and space consumption
as the number of users and items grows. It is essential to parallelize
this method, to enable it to run on the AppChina.com website for
application recommendation in the future. Moreover, the
improved CORLP methods achieve relatively high performance,
suggesting that it is worthwhile to continue developing futher fac-
tors to increase the power of CORLP.
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