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TST: Threshold Based Similarity Transitivity Method in Collaborative
Filtering with Cloud Computing
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Abstract: Collaborative filtering solves information overload problem by presenting personalized content to

individual users based on their interests, which has been extensively applied in real-world recommender systems.

As a class of simple but efficient collaborative filtering method, similarity based approaches make predictions by

finding users with similar taste or items that have been similarly chosen. However, as the number of users or

items grows rapidly, the traditional approach is suffering from the data sparsity problem. Inaccurate similarities

derived from the sparse user-item associations would generate the inaccurate neighborhood for each user or

item. Consequently, its poor recommendation drives us to propose a Threshold based Similarity Transitivity (TST)

method in this paper. TST firstly filters out those inaccurate similarities by setting an intersection threshold and

then replaces them with the transitivity similarity. Besides, the TST method is designed to be scalable with

MapReduce framework based on cloud computing platform. We evaluate our algorithm on the public data set

MovieLens and a real-world data set from AppChina (an Android application market) with several well-known

metrics including precision, recall, coverage, and popularity. The experimental results demonstrate that TST copes

well with the tradeoff between quality and quantity of similarity by setting an appropriate threshold. Moreover, we can

experimentally find the optimal threshold which will be smaller as the data set becomes sparser. The experimental

results also show that TST significantly outperforms the traditional approach even when the data becomes sparser.
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1 Introduction

Information overload problem stemmed from the fact
that the increasing amount of data (also called Big
Data) makes users harder and take more time to
find their preferred items. This situation has promoted
the development of recommender systems[1, 2], which
is one of the most promising information filtering
technologies that match users with the most appropriate
items by learning about their preferences.

Different from content based recommender
approaches[3, 4], Collaborative Filtering (CF)[5-7]

is domain free, which can address data aspects
that are often elusive and difficult to profile
using content filtering. Nowadays, CF has been
successfully implemented to recommend movies[8, 9],
TV shows[10, 11], and Web pages[12] relying only on past



Feng Xie et al.: TST: Threshold Based Similarity Transitivity Method in Collaborative � � � 319

user behaviors, for example, previous transactions or
item ratings.

Generally, CF can be classified into similarity based
methods[13, 14] and model based methods[15-17]. Due
to its simple algorithm and good interpretation for
recommendations compared to model based methods,
similarity based methods have been widely applied,
which predict a user’s interest for an item based on
the weighted combination of ratings of the similar
users on the same item or the user on the similar
items. The similar users are other users who tend to
give similar rating on the same item, while the similar
items are the items that tend to get similar rating from
the same user. Therefore, the recommendation quality
would mainly depend on the accuracy of similarity
measurement for users and items.

However, as the system scale becomes large
with millions of users and items recently, similarity
based CF methods are facing more and more
serious data sparsity problem[18-20]. The sparse data
depresses the accuracy of similarity measurement
and poor recommendations may generate through
these inaccurate similarities[7]. Besides, such methods
tend to recommend popular items which are usually
chosen by similar users or are similar to those
previously chosen by users, thus, the recommendation
diversity would be low. Furthermore, the computational
complexity is quadratic in the number of users or items,
therefore, similarity based methods also suffers from
the limitation of system scalability.

Recently, many approaches have been proposed
to alleviate the data sparsity problem. The most
representative approach is the one using dimensionality
reduction techniques, such as Singular Value
Decomposition (SVD)[21] and Principle Component
Analysis (PCA)[22], to remove unrepresentative
or insignificant users or items to reduce the
dimensionalities of the user-item matrix, then, the
similarity between two users is measured by the
representation of the users in the reduced space. This
approach can deal with scalability problem and quickly
generate good quality recommendations especially
for the incremental SVD CF algorithm[23] , but useful
information may be lost after the dimensionality
reduction and recommendation quality may be
degraded finally[13, 18]. Moreover, clustering CF
algorithms[24, 25] can address the scalability problem
by firstly clustering users into different groups and
then choosing similar users for recommendation only

from each group not the entire set of users, but there
are still tradeoffs between scalability and prediction
performance. Several graph-based recommendation
algorithms[26-28] have been demonstrated to improve
diversity of recommendation, but the algorithmic
computational complexity is very sensitive to the
statistic properties of the data sets[29].

Since collaborative filtering has been extensively
applied in real-world systems, it is meaningful
to find other ways to improve its algorithmic
performance. Therefore, we propose a Threshold based
Similarity Transitivity (TST) method, in which the
similarity between two users is not directly computed if
their intersection is less than the set threshold and will
be replaced by the transitivity similarity. Figure 1 shows
an illustration of the user intersection network, where
there is only one commonly selected item between
users B and C, obviously, the similarity measured
directly from the insufficient intersection might be
inaccurate. An alternative method is to derive the
similarity between users B and C from the similarity
between users A and B, and the one between users A
and C with similarity transitivity. Statistically speaking,
it is unreliable to identify whether two users are similar
or not when less intersection between them.

Therefore, we can improve the quality1 of similarities
by setting a proper intersection threshold, and increase
the similarity quantity benefiting from similarity
transitivity. The experimental results on the public data
set and the real-world data set show that the TST
method is much more accurate and provides more
diverse recommendations especially on the sparser data
set. Moreover, the TST method is developed to be
scalable with MapReduce[30] , which is a programming
paradigm that comes with a framework to provide to the
programmers an easy way for parallel and distributed
computing.

2 TST method

A recommender system always comprises users and
items which are denoted as the user set U D

fu1; u2; � � � ; umg and the item set I D fi1; i2; � � � ; ing,
and the user-item associations can be fully described
by an adjacent matrix A D faij g 2 Rm�n, where
aij D 1 if user ui has chosen item ij , otherwise
aij D 0. The system sparsity level is the proportion

1Quality is defined as the accuracy of the similarity, while the
subsequent quantity describes the number of similarities.
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Fig. 1 An example of the user intersection network (Letters
on the line are the item labels that are commonly selected by
both ends of users, for example, user A and user C have three
commonly selected items, c, d, e).

of zero elements in the matrix and the bigger the value
is, the sparser the system will be. More specially, the
sparsity level[18] can be expressed as Eq. (1) using
aforementioned notations:

sparsitylevel D 1 �

mX
iD1

nX
jD1

aij

m � n
(1)

2.1 Traditional user based CF

The traditional user based CF directly measures the
similarity between users ui and uj using the well-
known cosine distance method[2, 31] :

s1
ij D

nX
kD1

aik � ajkvuut nX
kD1

aik �

nX
kD1

ajk

(2)

When more commonly selected items between two
users and fewer items are chosen by each user, the
value of s1

ik
would be bigger and both of users are more

similar. After all other users’ similarities to certain user
ui are calculated, the prediction pij of this user on her
unselected item ij (i.e., aij D 0 ) is formulated as[32] :

pij D

mX
kD1

s1
ikakj

mX
kD1

s1
ik

(3)

The recommendations for user ui are those items
which have high predictions.

2.2 TST method

As described above, the similarity directly calculated
using Eq. (2) is inaccurate when the intersection is little
due to sparse data. We therefore set an intersection
threshold t in TST method. If the intersection between
two users ui and uj is not less than the threshold,

the similarity between them is computed directly using
Eq. (2); otherwise, the similarity is formulated as:

s2
ij D

1

jUi

T
Uj j

X
k2Ui

T
Uj

0BBB@s1
ik �

s1
kjX

o2Uk

s1
ko

1CCCA (4)

where Ui is the set of users who share at least t
commonly selected items with user ui , and whose
similarities to the given user are calculated directly
using Eq. (2). Uj is defined similarly. Therefore,
jUi

T
Uj j is the number of users who simultaneously

share at least t commonly selected items with users
ui and uj . If jUi

T
Uj j equals to zero, the similarity

between users ui and uj cannot be derived from
similarity transitivity and zero will be replaced in
this situation. Therefore, the unified expression for
similarity measurement in TST can be depicted as:

sij D

8̂<̂
:
s1

ij ; j 2 Ui I

s2
ij ; j … Ui and Ui

T
Uj ¤ ˚ I

0; j … Ui and Ui

T
Uj D ˚

(5)

The prediction process is similar to the one
introduced in traditional similarity based CF, thus we
evaluate the predicted score pij for the user ui on her
unselected item ij is given as:

pij D

mX
kD1

sikakj

mX
kD1

sik

(6)

Obviously, the traditional user based CF and TST
have similar process, but the latter filters out inaccurate
similarities to enhance similarity quality and increases
similarity quantity through similarity transitivity (see
Eq. (4)).

2.3 Scalable TST method

As each user has to be compared with every other
user for similarity measurement, the complexity of the
user based CF approach is quadratic in the number of
users. In order to improve the scalability of TST, it
needs to modify TST to be a parallel algorithm so that
the runtime of the similarity computation process can
approximatively speedup proportional to the number of
machines in the cluster. First, we denoteAi as the rating
vector of user ui , where A is the adjacency matrix of
the user-item associations.

Ai D .ai1; ai2; � � � ; ain/; i D 1; 2; � � � ; m (7)
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Next, the function is defined to compute the sum of
all elements from a vector:

num.Ai / D

nX
kD1

aik (8)

Followed by the function of the dot product of two
vectors:

dot.Ai ; Aj / D Ai � Aj (9)

Finally, if the intersection between users ui and uj is
not less than the threshold, namely, dot.Ai ; Aj / > t , the
function sim1./ will be used to compute the similarity
between them:
s1

ij D sim1.num.Ai /; num.Aj /; dot.Ai ; Aj //

D
dot.Ai ; Aj /p

num.Ai / � num.Aj /

(10)

Inspired by these functions, we partition A by its
rows (the users) and store it in the Hadoop Distributed
File System (HDFS). Each map function reads a row-

pair out of
m.m � 1/

2
pairs which is named as one job,

computes the similarity with aforementioned functions,
and returns the result, then the reduce function simply
has to aggregate the results from different computation
nodes. It generates an initiate similarity matrix S1 D

fs1
ij g 2 Rm�m after all jobs are finished, where s1

ij

equals to zero when the intersection between users
ui and uj is less than the threshold, otherwise it is
computed with Eq. (10).

Actually, the similarity transitivity process in
TST can similarly be designed for MapReduce
framework. We define S1

i to be the similarity vector of
user ui , where S1 is the initial similarity matrix.

S1
i D .s

1
i1; s

1
i2; � � � ; s

1
im/; i D 1; 2; � � � ; m (11)

The sum of the similarities for each user to other users
in S1 can be computed using Eq. (8):

num.S1
i / D

mX
kD1

s1
ik (12)

We preprocess vector S1
i to be bS1

i , where:

bS1
ik D

S1
ik

num.S1
k
/
; k D 1; 2; � � � ; m (13)

Furthermore, the function intersection./ is used to
count the number of users whose initial similarities to
the input users are non-zeros, simultaneously:

intersection.S1
i ;

bS1
j /

D sizefS1
ik ¤ 0;

bS1
jk ¤ 0jk D 1; 2; � � � ; mg

(14)

Then, similarity derived from the similarity

transitivity process is expressed as:

s2
ij D

dot.S1
i ;

bS1
j /

intersection.S1
i ;

bS1
j /

(15)

Therefore, if we define the row-pair for map function
in this process to be two vectors S1

i and bS1
j , where

s1
ij D 0. The map and reduce functions in the initial

similarity computation process can be reused.

3 Evaluation

Experiments are conducted on the cloud computing
platform, which is based on Apache Hadoop and
Mahout. There are about 30 physical servers, and
the storage reaches about 40 TB, which is also used
in Internet forensic analysis[33]. The map and reduce
functions has been introduced in the previous section. In
this section, the data sets and metrics are described. The
experimental results are shown as follows.

3.1 Data sets

The publicly available data set MovieLens2 and a real-
world data set from AppChina3 are used. The former
consists of 100 000 ratings of 943 users on 1682 movie
items. Each rating is an integer values ranging from 1 to
5. Every user has rated more than 20 movies. However,
in the real-world situation, users are usually reluctant or
forgetful to give ratings after buying a cloth, seeing a
movie or listening to a piece of music. To address this,
a more commonly used way is to infer whether an item
(i.e. a cloth, a movie, or a piece of music) is chosen
by a user or not from the user’s abundantly implicit
records. More specially, a movie is set to be chosen by a
user only if the given rating is not less than 3. Therefore,
the MovieLens data set is preprocessed and 85 250 user-
item associations remain.

The other data set is obtained from AppChina,
a company aims to make users download Android
applications conveniently through its Android software
installation tool. Once a user runs this assistance
tool, his/her operations (i.e., installation, upgrade and
deletion) on applications are recorded. We collect about
1 TB logs (zipped, and the original files above 10 TB)
during the three-month period from May 1st, 2012 to
July 31st, 2012. Totally there are about 200 K active
users and 10 K Android applications. Then a model is
built to infer whether an application is chosen by a
user or not (The online A/B test results of the most

2(http://www.grouplens.org/)
3(http://www.appchina.com/)
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Table 1 Statistical properties of MovieLens and AppChina
data sets.

MovieLens AppChina
#Users 943 2395
#Items 1682 2486
#Total associations 85 250 95 803
#Per user 90 40
#Per item 51 39
#Sparsity level 94.6% 98.4%

relevant application recommendation on the website,
appchina.com, verify the efficiency of this model,
which will be discussed in another paper).

Finally, we extract a section of data set including
95 803 user-item associations with 2395 users and 2486
application items. The statistical properties of these two
data sets are summarized in Table 1. #Per user is the
average number of items chosen by per user, while #Per
item represents that per item would be chosen by the
average number of users. #Sparsity level is defined in
Eq. (1).

3.2 Evaluation metrics and methodologies

Both of the data sets are randomly divided into the
training set with 80% of the data, and the test set
with the remaining 20% of the data. The algorithmic
accuracy is measured by two well-known metrics,
precision and recall, while the coverage and popularity
are used as the metrics for the measurement of
algorithmic diversity. For a top-N recommendation,
each user will get N most relevant items. The most
relevant items are those which have not been chosen by
him/her before and are predicted to be rated high by the
given user. If a user-item association in the test set is
included in the recommendations, there is a hit. Then,
the overall precision[34-36] is defined as the ratio of all
hits to recommendations:

precision D
#hits

#recommendations
D

#hits
N#Users

(16)

The overall recall[34-36] represents how many
associations in test set can be recommended to users,
which is the ratio of all hits to all user-item associations
for testing:

recall D
#hits

#Test associations
(17)

Precision and recall are usually used to evaluate
the algorithmic accuracy in area of information
retrieval. The high precision and recall values are
expected.

The coverage[37, 38] is the overall ratio of

recommended individual items to all items in the
system, which corresponds to the percentage of items
the system is able to recommend.

coverage D
#Recommended items

#Items
(18)

It is meaningful to measure algorithmic capability
to recommend unpopular items. Thus, the overall
popularity[37, 38] represents the average #Per item of
recommended items.

The higher coverage and lower popularity values
show that the algorithm can recommend diverse items to
users and these items are surprising. These two metrics
can be used to evaluate the algorithmic diversity.

3.3 Experimental results

In order to analyze the effectiveness of the proposed
TST method, extensive evaluation experiments have
been conducted on two data sets and comparision has
been made with the state-of-art solution user based CF
in four quality metrics.

3.3.1 Influence of threshold
Since different thresholds will produce different
qualities and quantities of similarity, it is valuable
to experimentally find the optimal one. Intuitively,
if the threshold is set to be low, the inaccurate
similarities cannot be efficiently filtered out, therefore,
the algorithmic accuracy will be affected by those low-
quality ones. Besides, high threshold will result in
fewer similarities for the similarity transitivity process,
thus, low performance will derive from low quantity
of similarities. In the real-world situation, 10 quality
recommendations to users are enough. Therefore we
use top-10 recommendation to test the influence of
threshold.

The experimental results in Fig. 2 show that an
appropriate threshold (i.e. 6 for MovieLens and 3
for AppChina) can be found to obtain the highest
accuracy. It also infers that conservative and radical
thresholds are not effective in TST. Besides, the optimal
threshold value will be lower as the data set becomes
sparser, for example, the optimal threshold is 3 for
AppChina, while it is 6 for MovieLens.

Obviously, when the threshold is set to 6 for
MovieLens, TST does not achieve the best performance
in coverage and popularity (see Table 2). Analogously,
TST gets lower coverage and higher popularity with
threshold 3 than some of the other thresholds (i.e.,
threshold 4). Although the property derived from the
precision and recall measurements does not appear
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(a) Precision and recall of TST on MovieLens

(b) Precision and recall of TST on AppChina

Fig. 2 Recommend 10 items to each user with TST.

Table 2 Summarization of the coverage and popularity of
TST on two data sets with variable thresholds.

MovieLens AppChina
threshold Coverage /% Popularity threshold Coverage/% Popularity

2 5.3 5.04 1 11.5 4.38
4 7.2 5.01 2 22.1 4.22
6 9.8 4.97 3 37.5 4.03
8 12.3 4.94 4 62.2 3.82

10 14.0 4.92 5 58.1 3.73
15 14.4 4.84 10 46.0 3.19
20 14.8 4.76 20 12.9 3.19

in the coverage and popularity measurements, TST
still has comparable performance when the optimal
threshold for the highest accuracy (i.e. 6 for MovieLens
and 3 for AppChina). Moreover, high coverage and low
popularity are meaningful only when high accuracy is
achieved. Actually, there is a tradeoff between accuracy
and diversity. Therefore, the subsequent experiments
are based on the optimal threshold in TST.

3.3.2 Comparison with user based CF
As mentioned above, we set the threshold as 6 on
MovieLens and 3 on AppChina. Extensive experiments
are conducted to compare the performance of TST to
User based CF (UCF) in accuracy and diversity metrics
with the number of items recommended to each user
varying from 10 to 100.

Figures 3 and 4 illustrate that TST outperforms

Fig. 3 The precision comparison on MovieLens data.

Fig. 4 The precision comparison on AppChina data set.

UCF in precision on both of data sets. The accuracy
of prediction affects the rank of recommendation list
for each user. The precision will be sensitive to the
rank when few items are recommended to each user,
intuitively, high precision is achieved if all items related
to a user in the test set are ranked high. On the contrary,
a long recommendation list may contain all items which
appear in user’s test list, although they are ranked
behind. In this situation, the algorithmic precision may
not be affected by the accuracy of prediction. This is
the reason why the difference tends to be inconspicuous
as top-N increases. Moreover, the precision degrades
with the increasing top-N values because the number
of recommendations increases much faster than the
number of hits does in Eq. (16).

Figures 5 and 6 show that TST also outperforms UCF
in recall on both of data sets. Different from precision,
the recall grows as top-N becomes big. This is because
of that more hits will derive from bigger top-N while
the test associations are static in Eq. (17).

TST can recommend much more individual
items to users with higher coverage than UCF
in Figs. 7 and 8. TST provides more diverse
recommendation. Obviously, the coverage increases
when more items recommended to each user just as the
illustratration in aforementioned figures.
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Fig. 5 The recall comparison on MovieLens data set.

Fig. 6 The recall comparison on AppChina data set.

Fig. 7 The coverage comparison on MovieLens data set.

Fig. 8 The coverage comparison on AppChina data set.

Figures 9 and 10 illustrate that the average popularity
of items recommended by TST is lower than the one of
UCF. It infers that TST has the capability to recommend

Fig. 9 The popularity comparison on MovieLens data set.

Fig. 10 The popularity comparison on AppChina data set.

surprising items to users. It also suggests that TST
improves the diversity of recommendation. The
extensive experiments introduced above conclude
that TST outperforms UCF in accuracy and
diversity. Especially, the improvement is more notable
on AppChina which is sparser. Therefore, it can also
conclude that TST can cope with data sparsity problem
to a certain extent. Besides, it is worthwhile to note that
high diversity is meaningful and expected only when
the algorithmic accuracy is high. In real-world case,
there always exists a tradeoff between accuracy and
diversity.

4 Conclusion and Future Work

Similarity based collaborative filtering makes
recommendation by finding similar users or items
with similarity computing, which possesses simple and
efficient characteristics. But directly using insufficient
intersection between two users to compute similarity
will result in inaccurate result. In this paper, we
proposed a threshold based similarity transitivity
method to filter out those low-quality similarities and
replaced them with transitivity similarities to increase
similarity quantity. TST is evaluated in the well-known
data set MovieLens and an Android application market
AppChina data set. The significant performance
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improvement on two data sets demonstrates that the
TST method can well balance the tradeoff between
quality and quantity of similarity. Moreover, the TST
method has been implemented with MapReduce which
enhances the algorithmic scalability. In the future work,
it would be attractive to theoretically find the optimal
threshold value, although we have experimentally
inferred that it must exist. Intuitively, the optimal
threshold will become smaller as the data set becomes
sparser.
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