Real Time Control Plane Verification

Yifan Li
Research Institute of Information Technology (RIIT)
Beijing, China
liyifan18@mails.tsinghua.edu.cn

Xiaohe Hu
Research Institute of Information Technology (RIIT)
Beijing, China

ABSTRACT

In cloud datacenters, network configuration changes frequently,
thus fast control plane verification is demanded to validate the
changes before deployed. However, existing control plane verifica-
tion tools are all based on static analysis of network configuration,
so that the configuration need to be reverified completely when
edited. Inspired by the real time data plane verification, we propose
an incremental control plane verification. Its implementation based
on an existing work demonstrated supeior performance.

CCS CONCEPTS

+ Networks — Network management.

KEYWORDS

network, verification, control plane

ACM Reference Format:

Yifan Li, Jake Jia, Xiaohe Hu, and Jun Li. 2019. Real Time Control Plane Veri-
fication. In ACM SIGCOMM 2019 Workshop on Networking and Programming
Languages (NetPL’19), August 23, 2019, Beijing, China. ACM, New York, NY,
USA, 1 page. https://doi.org/10.1145/3341561.3349591

1 INTRODUCTION

Datacenter networks are more likely to fail on account of configura-
tion error than malicious attacks. Existing control plane verification
tools, including ARC, Minesweeper, statically analyze network con-
figuration, hence they need to verify the configuration all over
again even if there is only a minor change. Therefore, they are not
suitable for real time verification.

As data plane changes much more often than control plane, some
real time data plane verification tools have already been proposed,
such as Netplumber. They inspired us to design a verification layer
to record the existing control plane configuration, and only verify
the incremental changes of the configuration when it is modified.
We implement an incremental algorithm called the Back-Forward
Algorithm to verify the reachability based on ARC, which is the
fastest existing control plane verification tool.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

NetPL’19, August 23, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6877-3/19/08.

https://doi.org/10.1145/3341561.3349591

Jake Jia
Research Institute of Information Technology (RIIT)
Beijing, China
jcjl8@mails.tsinghua.edu.cn

Jun Li
Research Institute of Information Technology (RIIT)
Beijing, China

2 DESIGN

ARC is a control plane verification tool that works with static
network configuration scripts. It converts network configuration
into a weighted directed graph where vertexes are network devices
and subnets and the edges are possible connections each has a
capacity of 1 or inf. ARC uses the augmenting path algorithm to
calculate the max flow from the source vertex S to the destination
vertex T. If the max flow > 0, T is reachable from S.

The augmenting path algorithm used by ARC can be summarize
as finding a path from the source vertex and the destination vertex,
augmenting the flow to the capacity limit of this path, add adding
an inverse path to the graph. The algorithm continues until there
is no path from the source vertex to the destination vertex.

Frequent minor changes of network configuration may cause
an edge added to or deleted from the graph. In this case however,
ARC will have to redo a complete path augmenting all over again
for even a minor configuration change. To reduce the time cost, we
store the augmenting result. When an edge is added to the graph,
we only need to run the augmenting algorithm from the stored
result. When an edge is removed, we need to judge whether it is
on the max flow path. If not, it does not matter to the reachability.
Otherwise, if the removed edge is (A, C), the source vertex is S, and
the destination vertex is T, we need to augment A to S, and T to
C, and finally S to T. We name it as the Back-Forward Algorithm
(the BFA), as when an edge is removed, the algorithm augment
backward twice, then forward once.

3 EVALUATION

Tested on various datesets provided by ARC Github project, the
BFA reduces the verificaiton time by about 80% when an edge is
add, and about 60% when an edge is removed. The detailed result
is shown in Table 1.

Table 1: Augmentation Computing Time (ms)

Dataset Original | BFA Adding | BFA Deleting
batfish-nsdi 29.40 4.72 9.14
bgp_length 25.94 5.48 9.77
bgpospfchain 23.75 5.58 11.97

The datasets provided by ARC are all quite small. The cost time
of max flow calculating grows quadratically when the network
scale grows. Therefore, the time cost reduction introduced by our
proposed BFA will be much more significant in practice.

https://doi.org/10.1145/3341561.3349591
https://doi.org/10.1145/3341561.3349591

	Abstract
	1 Introduction
	2 Design
	3 Evaluation

