BitMiner: Bits Mining in Internet Traffic Classification

Zhenlong Yuan*, Yibo Xuet* and Mihaela van der Schaar!
*Department of Automation, Tsinghua University, Beijing, China
IDepartment of Electrical Engineering, UCLA, Los Angeles, CA, USA
fTsinghua National Lab for Information Science and Technology, Beijing, China
tResearch Institute of Information Technology, Tsinghua University, Beijing, China
yuanzl11@mails.tsinghua.edu.cn, yiboxue@tsinghua.edu.cn, mihaela@ee.ucla.edu

ABSTRACT

Traditionally, signatures used for traffic classification are
constructed at the byte-level. However, as more and more
data-transfer formats of network protocols and applications
are encoded at the bit-level, byte-level signatures are losing
their effectiveness in traffic classification. In this poster, we
creatively construct bit-level signatures by associating the
bit-values with their bit-positions in each traffic flow. Fur-
thermore, we present BitMiner, an automated traffic min-
ing tool that can mine application signatures at the most
fine-grained bit-level granularity. Our preliminary test on
popular peer-to-peer (P2P) applications, e.g. Skype, Google
Hangouts, PPTV, eMule, Xunlei and QQDownload, reveals
that although they all have no byte-level signatures, there
are significant bit-level signatures hidden in their traffic.

CCS Concepts

eNetworks — Network management;

Keywords

Traffic classification, bit-level signatures, bits mining

1. INTRODUCTION

Signature based traffic classification has been playing an
important role in a broad range of network operations and
security management, such as quality-of-service control and
intrusion detection. However, due to the increasing number
of network applications and their frequent updates, it is be-
coming more challenging to keep track of the signatures. To
address this challenge, a number of existing solutions have
focused on automatically extracting signatures at the byte-
level [4, 5], which first divide packet payloads into groups
of consecutive bytes and then analyze to get the possible
signatures. However, those solutions have two major limi-
tations. Firstly, they are unable to discover signatures at
the more fine-grained bit-level granularity. Note that pre-
vious work [1, 2] have revealed that bit-level characteristics

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
(© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOL: http://dx.doi.org/10.1145/2785956.2789997

93

(group of 4 bits, less than 1 byte) are of great importance
in identifying a few P2P applications. Secondly, they con-
fine signatures to groups of consecutive bytes and thus are
hard to discover the signatures that consist of inconsecu-
tive bytes (e.g. 1 byte) in packet payloads. In this poster,
we propose the novel bit-level signatures, and present an
automated traffic mining tool (BitMiner) that can mine sig-
natures at the most fine-grained bit-level granularity.

2. BITMINER

In this poster, we have two observations. The first is that
an application signature should be robust enough to sup-
port per-flow identification due to the prevalence of asym-
metric routing. For this reason, a favorable application sig-
nature should be one of the most frequent patterns in cap-
tured traffic after running an application for plenty of times.
Therefore, our goal can turn into mining the most frequen-
t patterns® in the application traffic. The second is that
the bit-value of a bit-position in a flow often determines the
bit-values of other bit-positions in this flow. Therefore, we
are motivated to associate all the bit-values with their bit-
positions in a flow for frequent pattern mining.

1st byte of 1st packet
A

7 Bit-order A

[ofoJoTofol7]1] ...
Last item of 1st byte

[oToTolofoT1T0] ...

——
oJo[oToToTo]t
=}

Packet-order Bit-value

[ofolofofolol0] ... [oToTololol8T1] ... [oTiTofolololo]

}TID]
T T T

TID 2
Ist item of Ist byte Ist item of 2nd byte Ist item of 2nd packet}

}TIDS

All items of 1st packet

\0003001 \0000011/

Y
2nd item of 1st byte

Transaction Database
A

OJAILIBICIDf1] ...

Item

Figure 1: Format Traffic Flows to Transactions

As shown in Figure 1, we can take a bit-value with it-
s position in a flow as an item and take all the bit-values
with their individual positions in this flow as a transaction.
Notice that we use only two hexadecimal characters to rep-
resent an item’s packet-order in a flow because application
signatures are generally required to achieve early identifica-
tion in practical use and the first 256 (0x00~0xFF) packets
of a flow are sufficient enough. Similarly, we use four hex-
adecimal characters to represent one item’s bit-order in a

'From here, we start using some terms in Data Mining.

Applications Application Signatures Support (Recall)

Skype ~A(002_0x02)+(002_0_0 & 002_4_1 & 002_5_1 & 002_6_0 & 002_7_1)*$ 100.00%

Xunlei (Thunder) A(001_0_0 & 003_0_0 & 003_1_1 & 003_2_0)*$ 100.00%
~(000_0_0 & 000_4_0 & 001_0_0 & 001_4_0 & 000_6_0 & 001_1_0 & 001_5_0) | (000_0_0 &

eMule 100.00%

000_4_0 & 001_0_0 & 001_4_0 & 000_6_1 & 001_1_1 & 001_5_1)*$

Google Hangouts A(000_0_1 & 000_1_0 & 001_1_1 & 001_3_0)*$ 100.00%
. ~(007_0_0 & 007_1_0 & 007_2_0 & 007_3_0 & 008_0x00 & 009_0_0 & 009_1_0 & 009_2_0

PPTV (PPLive) 100.00%

& 009 3 0 & 009_6_0 & 00A_0_0 & 00A_1_0 & 00A_2_0 & 00A_3_0)*$

A(000_1_1 & 000_2_1 & 000_5_1 & 000_7_0 & 001_0_0 & 001_1_0 & 002_0_0 & 002_1_0 &

QQDownload 100.00%

002_7_0 & 003_0_0 & 004_0_0 & 005_0_0 & 007_5_0 & 009_0_0 & 00A_1_0)*$

Table 1: The Generated Bit-level Signatures

packet payload because the MTU of an IP packet over Eth-
ernet networks is 1500-byte where 1 byte has 8 bit-orders.

Transaction Database
TID | Original Items
01 | 14,1517,18
02 | 14,16,17,19
03 | 1,12,13,15
04 | 1,12,13,17
05 | 11,12,13,15,19 | 11,
06 | 14,15,17,18 T , 18
11,12, 13, 19
17,14, 19, 16
11,12, 13, 16
17, 14, 15, 18

Sorted Items
17,14, 15,18
17, 14,19, 16
11,12, 13, 15

Drop due to the
confidence threshold (0.8)
a

07 11,12, 13, 19
08 14,16, 17, 19
09 11, 12, 13, 16
10 14,15,17,18

Drop due to the
support threshold (0.2) ~

!
W -

The signature in RegExp is (I, 1,((IsIg) | (Ig15))) | (1,1, 13)

Figure 2: An Example of How BitMiner Works

BitMiner consists of two parts: Bit-table and Miner-tree.
Figure 2 shows an example of how BitMiner works. Bit-table
is a hash table used for hashing and storing all the items read
from a transaction database. In this process, Bit-table will
read the transaction database twice. For the first time, Bit-
table will count the support of every item. For the second
time, Bit-table will remove the items whose support is below
the initially set support threshold and sort the remaining
items in every transaction by their supports (maximum to
minimum). After that, all the sorted transactions will be
entered into Miner-tree as a new transaction database.

Miner-tree is a prefix tree of the new transactions, which
takes idea from the FP-tree [3] but is different. Note that
there are probably multiple tasks running within an appli-
cation and thus the signature could be a regular expres-
sion. Considering a transaction (flow) can only belong to
one of the tasks, all the transactions are divided into mul-
tiple clusters to represent different tasks. Since the items
in each transaction have been sorted by their supports, it is
extremely fast to construct the Miner-tree.

After constructing the Miner-tree, there will be a prun-
ing process controlled by two thresholds: minimum support
and minimum confidence. Particularly, the support (defined
as the proportion of transactions in a node from the whole
transaction database) will be checked for every single node.
Moreover, the confidence (defined as the proportion of trans-
actions in all the child-nodes of a node from the node itself)
will be checked for every parent node. In this way, it can be
determined whether a branch should be removed or a par-
ent node should stop splitting. Finally, the branches of the
pruned Miner-tree are the target signature.

3. EVALUATION
BitMiner has been tested on the UDP traffic of six pop-

94

ular applications. As shown in Table 1, every signature is
generated by BitMiner within a few seconds. The “(p)” rep-
resents a pattern (p) matching within one packet’s payload,
the “"*(p)” represents this matched packet is the first packet
of a flow, the “(p)$” represents this matched packet is the last
packet of a flow, the “(p)+” represents this matched pack-
et appears one or more times in succession within a flow,
the “(p)+” represents this matched packet appears zero or
more times in succession within a flow, the “002_0x02” rep-
resents the third byte value of a packet’s payload is 0x02,
the “002_4_1" represents the fifth bit value of the third
byte is 1, the “p&p” represents two patterns matching with
one packet’s payload simultaneously and the “(p)|(p)” repre-
sents either one matched packet appears within a flow. For
instance, the third byte values of the first one or more pack-
ets of a Skype flow are always 0x02 while five bit values of
the third bytes of all the other packets are fixed. Special-
ly, we also examine the other bits adjacent to the mined
ones, such as the ‘second, third and fourth’ bits of the third
bytes of Skype flows and the ‘fourth, fifth, sizth, seventh and
eighth’ bits of the fourth bytes of Thunder flows. The re-
sults show that those bit-values are completely random (i.e.
uniformly distributed). Also as shown in Table 1, the sup-
port represents the proportion of flows matched with the
mined signature, which is equivalent to the recall in traf-
fic classification. In addition, a longer signature generally
means a better precision. For example, if we check the first
10 packets of a Thunder flow, the signature used for match-
ing is totally 40 bits long, which may be robust enough to
get a high precision in real-world situations.

4. ACKNOWLEDGEMENT

This work was supported by the National Key Technology
R&D Program of China under Grant No.2012BAH46B04.

5. REFERENCES

[1] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli.
Revealing skype traffic: when randomness plays with you. In
ACM SIGCOMM, 2007.

[2] A. Finamore, M. Mellia, M. Meo, and D. Rossi. Kiss: stochastic
packet inspection classifier for udp traffic. IEEE/ACM
Transactions on Networking, 2010.

[3] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In ACM SIGMOD, 2000.

[4] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker.
Unexpected means of protocol inference. In ACM SIGCOMM
IMC, 2006.

[5] Z. Zhang, Z. Zhang, P. P. Lee, Y. Liu, and G. Xie. Proword: an
unsupervised approach to protocol feature word extraction. In
IEEE INFOCOM, 2014.

