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Bits Learning: User-adjustable Privacy versus
Accuracy in Internet Traffic Classification
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Abstract—During the past decade, a great number of machine
learning (ML) based methods have been studied for accurate
traffic classification. Flow features such as the discretizations of
the first five packet sizes (PS) and flow ports (FP) are considered
the best discriminators for per-flow classification. For the first
time, this letter proposes to treat the first n-bits of a flow
(BitFlow) as features and compares its overall performance with
the well-known ACAS (Automated Construction of Application
Signatures) that takes the first n-bytes of a flow (ByteFlow) as
features. The results show that BitFlow achieves not only a higher
classification accuracy but also 1∼3 orders of magnitude faster
speed than ACAS in training and classifying. More importantly,
this letter also proposes to treat the first n-bits of each of the
first few packet payloads (BitPack) as features, which enables a
user-adjustable trade-off between user privacy protection and
classification accuracy maximization. The experiments show that
BitPack can significantly outperform BitFlow, PS and FP.

Index Terms—Traffic classification, ML, bits as features.

I. INTRODUCTION

TRAFFIC classification is fundamental to a broad range
of network operations and management, e.g. quality-of-

service (QoS) control and intrusion detection [11], [12]. Due
to the prevalence of asymmetric routing, traffic classification is
required to support per-flow identification (i.e. deal with unidi-
rectional flows). Early work in ML-based traffic classification
by Moore and Zuev [10] proposed to apply the supervised
Naı̈ve Bayes techniques using discriminators derived from
packet headers for categorizing traffic. Afterwards, a variety
of ML based methods using various sets of characteristics
were investigated to get a higher classification accuracy. The
discretizations of PS and FP are considered by far the best
discriminators for ML-based traffic classification, regardless
of what ML algorithms are used [9]. Besides that, the first
n-bytes of a flow (ByteFlow) were also used as features to
Automatically Construct Application Signatures (ACAS) [7].
Compared with payload-based approaches (e.g. [7]), statistics-
based approaches (e.g. [4]) can deal with encrypted traffic and
do not have to entail the privacy or legal concerns associated
with traffic classification. However, payload-based approaches
are still playing the most important role in today’s traffic
classification since they are considered more reliable [5].

Previous research [9], [13] found that, in traffic classification
problems, different ML algorithms using the same set of
features can achieve similar classification accuracy. Therefore,
feature selection has been considered far more important than
the selection of ML algorithms in improving the classification
accuracy. In addition, due to the requirements of real-world
deployment, computational performance (i.e. training time and

classification speed) has become another important consider-
ation for ML-based traffic classification. For the first time,
this letter proposes two novel discriminators that use bits of
payload as features for traffic classification, which improve
both classification accuracy and computational performance.
The contributions of this letter are as follows.

Firstly, this letter proposes to treat the first n-bits of a flow
(BitFlow) as features for ML-based traffic classification. The
experiments show that this leads to a significant improvement
by using the bit-level information (i.e. BitFlow) instead of the
byte-level information (i.e. ByteFlow) when constructing the
features, which not only greatly improves the classification
accuracy but also performs 1∼3 orders of magnitude faster
than ACAS in training models and classifying traffic.

Secondly, this letter proposes an enhancement to BitFlow,
namely BitPack, that uses the first n-bits of each of the first few
packet payloads as features for ML-based traffic classification.
The experiments show that BitPack significantly outperforms
PS and FP [9] in terms of classification accuracy. The results
also show that the classification accuracy increases with the
amount of payload bits used, which indicates that BitPack
enables a user-adjustable trade-off between user privacy pro-
tection and classification accuracy maximization.

Thirdly, this letter proposes to combine BitPack with PS and
FP for ML-based traffic classification. This is different from
conventional methods that use either statistics derived from
packet headers or payload-based signatures. The experiments
show that such a combination can achieve nearly 100%
classification accuracy on both TCP and UDP traces. This
suggests that combining BitPack with PS and FP can be a
general solution for accurate traffic classification.

II. BITFLOW AND BITPACK

BitFlow and BitPack both encode the raw application level
data of a unidirectional flow as a feature vector, which take
each bit as a feature for ML-based traffic classification. As
illustrated in Fig.2, BitFlow takes every bit of the first n-
bits of a flow as a feature where n is a tunable parameter.
Note that using BitFlow as features for ML algorithms is
essentially a way to automatically construct bit-level signatures
for applications. This is similar to ACAS which uses ByteFlow
as features for automatically constructing byte-level signatures
[7]. As an enhancement to BitFlow, BitPack takes every bit of
the first n-bits of each of the first few packet payloads as a
feature where n is a tunable parameter as well. Moreover, if
any bit of the first n-bits of BitPack does not exist, it will be
replaced with ‘-1’ in the feature vector. Consequently, each
feature has three possible vaules (i.e. ‘0’, ‘1’ and ‘-1’). Since
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Fig. 1: Features Comparisons: BitFlow vs. ACAS

BitPack only uses the first n-bits of each of the first few packet
payloads without accessing the whole payload content, it is
particularly suitable for dealing with packet payloads that have
been truncated to the first few bytes (bits) due to the privacy
and legal concerns from network operators or governments.
More importantly, BitPack only uses the first few packets of a
flow and hence, it enables early identification of traffic, which
is crucial for timely network operations and management.
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Fig. 2: Feature Constructions: BitFlow and BitPack

The rationale of using bits instead of bytes of the payload
as features is that bits are more fine-grained than bytes in
application traffic and may contain signatures that cannot be
detected by methods using byte-level features. As a key obser-
vation, the data-transfer formats of more and more protocols
and applications have been encoded at the bit-level granularity
instead of the byte-level granularity (e.g. DNS operates at the
bit-level granularity), and as a consequence, there might be
only bit-level signatures existing in their traffic without any
byte-level signatures. As illustrated in Fig.1, this letter presents
two simple examples of constructing features for BitFlow and
ACAS, respectively. As described in [7], ACAS uses the first

n (64 or 256) bytes of a flow as features and encodes them
into a feature vector v with n∗256 elements (all components
of v are initialized to 0, then for each byte of payload, the
component i∗256 + c[i] is set as 1, where i represents the
position of a byte with value c[i] in a flow). Different from
ACAS, BitFlow treats a bit as a feature and thus, the same first
n bytes (n∗8 bits) can be encoded into a feature vector with
only n∗8 elements, which is 1/32 of ACAS. Fig.2 (a) shows
that when two applications have one distinct byte value (i.e.
“10101010” and “01010101”) in their traffic samples, both
ACAS and BitFlow can properly construct the 1-byte (8-bits)
signature for distinguishing their traffic. However, as shown
in Fig.2 (b), when two applications only have one distinct bit
value in their traffic samples (i.e. the value of the second bit-
position is ‘0’ or ‘1’), only BitFlow can properly differentiate
their traffic by constructing the 1-bit signature because the
other 7 bits with randomly distributed values make the byte-
level methods (e.g. ACAS) impossible to construct the 1-byte
signature. It is evident that constructing features at the bit-
level (BitFlow) should perform equally as or better (cannot be
worse) than doing that at the byte-level (ACAS).

III. EVALUATION

A. Experimental Setup

Both publicly available and privately captured traffic traces
are used to evaluate the classification performance with various
features. The statistics of the datasets are summarized in Table
I. The TCP Dataset contains traffic traces from the publicly
available WITS Project [3]. In this dataset, packet payloads
following the transport header have been truncated to 4 bytes
due to the privacy concerns. Six TCP applications (i.e. FTP-
Control, SSH, SMTP, HTTP, Pop3 and HTTPS) are extracted
based on their well-known ports as well as in [4], [6], [7],

TABLE I: Two Datasets for Performance Evaluation
Dataset Application Port Training Set (# of Flows) Test Set (# of Flows) PayloadClient→Server Server→Client Total # Client→Server Server→Client Total #

TCP Dataset

FTP Control 21 119 210 329 119 210 329 4 Bytes
SSH 22 952 778 1,730 952 778 1,730 4 Bytes

SMTP 25 422 441 863 422 441 863 4 Bytes
HTTP 80 197 4,962 5,159 197 4,962 5,159 4 Bytes
Pop3 110 960 2,536 3,496 960 2,536 3,496 4 Bytes

HTTPS 443 543 1,147 1,690 543 1,147 1,690 4 Bytes

UDP Dataset

Skype – 280 220 500 280 220 500 Full
Xunlei – 302 198 500 302 198 500 Full
PPTV – 250 250 500 250 250 500 Full

RTMFP – 250 250 500 250 250 500 Full
eMule – 250 250 500 250 250 500 Full

QQDownload – 250 250 500 250 250 500 Full
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Fig. 3: Training Time Comparisons

 !"#$%&'()*+%*,-'.)"")*'"/01'%*'0"'$)0-"')230$$4'"%'56578

9:;

9<;

=:;

=<;

>:;

><;

?::;

? @ A = ?B C@ BA ?@= @<B

6
$0
-
-
!+
!D
0
"!
%
1
'5
D
D
3
*0
D
4

#!*-"'1E.4")-'F1G=E.!"-H'%+''0'+$%&

5657FI6JH

 !"#$%&FI6JH

5657FKLJH

 !"#$%&FKLJH

FnH

Fig. 4: Accuracy Comparisons
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Fig. 5: Classification Time Comparisons
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Fig. 6: Accuracy Comparisons
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Fig. 7: BitPack on TCP Dataset
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Fig. 8: BitPack on UDP Dataset

[13] since these applications are still mainly using their default
port numbers. Since only very limited payload data in public
datasets can be accessed, the letter also builds a UDP Dataset
that contains privately captured traffic traces. These traces
are from 6 popular P2P applications (i.e. Xunlei(Thunder),
Skype, PPTV(PPLive), RTMFP, eMule and QQDownload)
with full packet payloads (i.e. the whole payload content
of each packet is preserved and not truncated). Their traffic
samples are captured and manually labeled in three different
network scenarios (including two university campuses and
a networking company) located in the US and China. We
used a number of machines for generating the real-world
application traffic. For both datasets, the letter uses half of the
unidirectional flows of each application for training and the
other half for testing. The experiments are repeated 10 times
by randomly shuffling the datasets. The average results of these
experiments are reported in the subsequent sections. This letter
uses the WEKA [2] machine learning software suite, which
is widely adopted in existing works [6], [8], [9], [10], [13],
[14] on traffic classification. To make the comparison fair, this
letter uses the AdaBoost algorithm (with C4.5 being the base
classifier [1]) as in ACAS for all the experiments. Once a
training set and a test set in ARFF format are imported into
the Weka tool, we select Adaboost (with C4.5 being the base
classifier) as the classification algorithm and use all the other
default configuration parameters for the classification tasks.

B. BitFlow vs. ACAS

This letter first compares the overall performance of ACAS
and BitFlow. Fig.3 shows the training time of ACAS and
BitFlow on the TCP Dataset and UDP Dataset, respectively.
Note that the TCP Dataset has been truncated to only 4 bytes
in each packet payload. Therefore, at most the first 4 bytes
(32 bits) of a flow can be used to construct features. We can
see that BitFlow is 1∼3 orders of magnitude faster than ACAS
in training the ML models. This significant improvement is a

result of the reduced size of the feature vectors of BitFlow,
which is 1/32 of ACAS. Fig.4 shows the classification accuracy
of ACAS and BitFlow, although the benefit of using BitFlow is
not obvious on the TCP Dataset, BitFlow outperforms ACAS
on the UDP Dataset. The reason for the tie on the TCP Dataset
is that traditional TCP applications can be easily distinguished
by byte-level signatures without the need for more fine-grained
bit-level signatures. However, applications in the UDP Dataset
are more sophisticated and often operate at the finest bit-level
granularity. Therefore, only bit-level signatures exist in the
traffic of these applications. Interestingly, while the accuracy
of BitFlow always increases with more payload data, the
classification accuracy of ACAS drops when more payload
data is used. The latter is consistent with the observation in
[7]. In addition, Fig.5 shows the classification time of BitFlow
and ACAS. As can be seen, BitFlow performs 1∼2 orders of
magnitude faster than ACAS in classifying the traffic, which
is crucial for a real-world traffic classification system.

C. BitPack vs. BitFlow

In Fig.6, this letter compares the classification accuracy of
BitPack and BitFlow by using a total of n*8-bits as features.
For BitPack, this letter uses the first 4 packets and hence,
for each packet, BitPack uses the first 2*n-bits so that the
total number of bits used is n*8. As we can see, BitFlow
performs better than BitPack when the amount of payload data
used is small. However, when accessing more payload data,
BitPack performs much better than BitFlow on both the TCP
Dataset and UDP Dataset. In particular, on the UDP Dataset,
the best classification accuracy of BitPack reaches 97.8%
while BitFlow can only achieve 90.4%. Note that BitPack has
realized an improvement of 12.2% in classification accuracy
compared with ACAS which was shown in Fig.4.

In addition, this letter shows the impact of using differ-
ent numbers of packets on the classification accuracy for
BitPack. Fig.7 and Fig.8 show the results by using the first
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Fig. 9: Comparisons on TCP Dataset
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Fig. 10: Comparisons on UDP Dataset
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Fig. 11: Comparisons of Combinations

one to four packets for the TCP Dataset and UDP Dataset,
respectively. As can be seen, BitPack can already approach
the best accuracy with only two packets. Moreover, BitPack
performs better with more bits of each packet payload. This
suggests that a higher classification accuracy can be achieved
by BitPack by using more payload data. Thus, BitPack enables
a user-adjustable trade-off between user privacy protection and
accuracy maximization by tuning the amount of payload data
accessed. It is worth nothing that although the TCP Dataset
has been truncated to 4 bytes in each packet payload, BitPack
can still achieve 99.9% accuracy by using the few packets.

D. BitPack vs. PS and FP

The discretizations of PS and FP have been considered by
far the best discriminators for ML-based traffic classification,
regardless of what ML algorithms are used [9]. Therefore in
this subsection, this letter compares the classification accuracy
of BitPack (uses the first four packets) and PS (uses the first
five packets)/FP on the TCP Dataset and UDP Dataset, as
shown in Fig.9 and Fig.10. Since the TCP Dataset is built
through filtering application traffic based on their default ports,
the letter only performs FP on the UDP Dataset. From Fig.9,
we can see that BitPack outperforms PS, even with only the
first 8 bits. Moreover, as shown in Fig.10, BitPack performs
much better than PS and FP by using more than 64 bits
of the payloads on the more difficult UDP Dataset. This
improvement is up to 4.5% against PS and 12.3% against FP.

Different from existing methods using either payload-based
signatures or header-derived characteristics for accurate traffic
classification, this letter proposes to integrate them together for
ML-based traffic classification. This letter first combines the
features (e.g. BitPack, PS and FP) to construct a new feature
set and then uses the new feature set for the ML algorithm.
From Fig.9, we can see that BitPack and PS combined can
perform better than just using any single discriminator, and
achieves almost 100% classification accuracy. As shown in
Fig.11, this letter evaluates the classification accuracy of all
the possible combinations of BitPack, PS and FP on the
UDP Dataset. We can see that the combinations of BitPack
and PS or FP can outperform the well-known combinations
of PS and FP [9] by using more than 16 bytes (128 bits).
Moreover, the combination of the three discriminators (i.e.
BitPack, PS and FP) always performs the best among all the
combinations, which achieves 99.33% classification accuracy.
More importantly, as BitPack, PS and FP all use at most the
first five packets of a flow, their combination can be a general
solution for accurate and timely traffic classification.

IV. CONCLUSION

For the first time, this letter proposes to use the bits
of payload as features for ML-based traffic classification.
In particular, this letter designs two novel discriminators,
i.e. BitFlow and BitPack, which are essentially two ways
for automatically constructing application signatures at the
finest bit-level granularity. The experiments show that BitFlow
significantly outperforms ACAS in terms of both classification
accuracy and training and classification speed. Moreover, as
an enhancement to BitFlow, BitPack enables a user-adjustable
trade-off between user privacy protection and classification
accuracy maximization. The experiments show that BitPack
performs better than the two well-known discriminators, i.e.
PS and FP. Furthermore, the letter also shows that the combi-
nation of BitPack with existing discriminators (i.e. PS and FP)
can further improve the classification accuracy, which can be
a general solution for accurate and timely traffic classification.
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