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ABSTRACT

Existing network data plane verification approaches check
network correctness with different models and algorithms.
A network operator needs to try a number of dazzling ver-
ification approaches to find a proper one with sufficient
functionality and suitable performance for his/her network
and intents. The inconsistent input and output of existing
verification tools also cause problems for operators. With re-
spect to a specific scenario, it is hard to judge which network
model is the most efficient one, because existing verification
approaches are implemented with different languages and
evaluated against different datasets on different hardware
platforms in their papers. To solve the problems above, we
propose a division scheme that can divide approaches into
general modules. Based on this division scheme, we propose
a generic data plane verification framework, Mahjong. We
refactor three classic verification approaches by modular pro-
gramming and merge them into the Mahjong framework to
perform easy use and fair comparison as examples. We also
propose a uniform input format and a module configuration
file for easy use. With the well-defined interfaces, future new
approaches can be merged into Mahjong conveniently.

CCS CONCEPTS

- Networks — Error detection and error correction; »
Computing methodologies — Modeling methodologies.
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1 INTRODUCTION

Network verification has been intensively studied to ensure
the correctness of networks. Figure 1 shows an overview of
network verification. The verification methods can be classi-
fied into three categories by the network targets: (1) teleme-
try checks the consistency of packet behavior and high-level
intents [12][5][17]; (2) data plane verification checks the
consistency of firmware rules/functions, e.g., forwarding,
firewall, and high-level intents; (3) control plane verification
checks the consistency of control protocol configurations,
e.g., BGP policies[4], and high-level intents[2][16].

The focus of this study is on data plane verification, which
checks the reachability and invariants of a network by stat-
ically analyzing the network state snapshots. We use the
network shown in Figure 2 as a basic example to show the
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Figure 1: An Overview of Network Verification
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Figure 2: An simple example network

basic concept of data plane verification. The network oper-
ator wants to add a new rule(rule 0) to the switch R1. To
check whether S1 and S2 still reach each other, the operator
applies a data plane verification tool. The tool then finds the
rule 0 drop the packets send from S1, therefore this buggy
insertion is prevented.

Compared to telemetry, data plane verification is done of-
fline, and can find failures in routing synchronization which
can not be found by control plane verification. Data plane
verification has a relatively long history back to 2005[14] and
is still rapidly progressing[20]. Various data plane verifica-
tion tools have been proposed, such as Anteater[11], HSA[8],
APVerifier[15] and others[10][19][9][7][6].

The question is which data plane verification approach is
suitable when a network operator prepares to verify a net-
work. Previously proposed methods are based on different
network models and choose different algorithmic solutions.
Moreover, these verification tools have their own implicit
input constraints. It is usually infeasible to directly deploy
the original verification implementation. Therefore, large
Internet companies tend to re-develop the verification tool
by themselves, and small and medium-sized institutions have
no appropriate tools, adopting network verification slowly.

We use some examples to show the versatility of verifica-
tion tools. HSA[8] cannot deal with large-scale networks due
to its time costing header space set operations and the large
state space on which its transfer function, i.e., an algorithm
to simulate the network packet processing procedure, have
to search. Anteater[11] uses the SMT solver as its transfer



function, hence it can only find a single path between two
ports. However, the performance of Anteater is far better
than HSA in large-scale networks. BDD[1] header expression
used by APVerifier[15] supports fast header space set opera-
tion, and whereas BDD makes header-rewrite representation
complex. To find all possible paths in a large network with-
out packet header rewriting, the composition of BDD Header
expression and HSA transfer function is a better choice.

Therefore, with a framework which unifies existing data
plane verification approaches and switches between different
modules of different approaches flexibly, operators can find a
suitable data plane verification solution for a specific scenario
conveniently and precisely. To realize this idea, we need to
tackle the following challenges:

o Clear division. The data plane verification structure
needs to be explicitly defined to support all data plane
verification tools. In this structure, verification tools
are divided into modules, such as header expression
and transfer function model.

o Flexible composition. Network operators should be able
to customize verification solutions according to their
requirements. All the compositions should have a uni-
form input format, and hence operators can navigate
these compositions conveniently.

In this paper, we present Mahjong, a generic framework
for flexibly compositing network data plane verification solu-
tions. To address the aforementioned challenges, the main
approaches of Mahjong are as follows. First, Mahjong an-
alyzes the function and performance of data plane verifi-
cation by divided modules instead of scattered tools. Then,
Mahjong defines the general interfaces of divided modules
and is implemented with modular programming. The follow-
ing summarizes our main contributions:

e Verification approach division scheme. We propose a
modular division scheme for data plane verification
approaches, including header expression, rule set, and
transfer function. We refactored three classic data plane
verification approaches based on our modular scheme,
proving the universality of the scheme.

o Generic data plane verification framework. We propose
a generic framework, Mahjong, which defines inter-
faces between divided modules with abstract classes.
Operators can use the Mahjong framework to com-
pose verification solutions with these modules through
a simple configuration file. The interfaces are well-
defined and future new verification tools can be easily
merged into the framework.

The rest of this paper is organized as follows. Section II
summarizes and analyzes related works, and states the prob-
lem Mahjong going to solve. Section III proposes the design
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of Mahjong, including the module division and pipeline pro-
cedure. The implementation of Mahjong is presented in Sec-
tion IV. Section V shows the evaluation results of Mahjong.
Section VI concludes this paper.

2 BACKGROUND

Since static reachability analysis has been proposed by Xie
et al. in 2005[14], data plane verification research has gone a
long way. Existing works are mostly devoted to designing
data plane verification tools with more comprehensive func-
tions and faster computation speed. Typical data plane veri-
fication approaches and their theoretical models are shown
in Table 1. We analyze representative approaches in detail
as follows:

e HSA uses a bit array to express a packet header. To
be exact, it uses two physical bits to express one logi-
cal bit in packet headers which is implemented by int
arrays in code. Then the header match procedure is cal-
culated by int AND operation. Rules in HSA have the
same match field as that of the network device snap-
shot. They may overlap with each other but assigned
different priorities. The transfer function is the same
as proposed in static reachability analysis[14], which
uses a graph search algorithm and pushes packets to
flow from the source node to the destination node.
Anteater uses two bit arrays to express one packet
header. One is used for match fields and the other
is used for mask fields. The original rules are con-
verted to non-overlapped rules, lifting the priority con-
straint. And the transfer function is expressed by an
SMT solver.

APVerifier uses BDD to express packet headers. The
original rules are converted to atomic equivalent classes.
An equivalent class represents a set of packet head-
ers which are processed identically, and is physically
expressed by one bit. During preprocessing, headers
are also cast into equivalent classes. Therefore, packet
matching can be done by comparing equivalent bit
arrays. The transfer function is also static reachability

analysis with a graph search algorithm.

The development of data plane verification lacks conti-
nuity on network models and verification algorithms. Some
subsequent data plane verification approaches are completely
new methods and have no common theatrical foundations
with the previous ones. As a result, network operators are
easily confused by these dazzling solutions and researchers
can hardly grasp the developing progress of data plane verifi-
cation works. It is quite guideless and directionless to choose
and deploy verification tools. Therefore, a generic data plane
verification framework which makes solution selection con-
venient and precise is necessary and urgent for network
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Table 1: The comparison between existing network data plane verification works

Tool Header expression Rule Set Transfer Function Remark

HSA[3] Wildcard Priority Static reachability analysis

Anteater[11] Bitmask Uncovered SMT solver

APVerifier[15] BDD Atomic Static reachability analysis

NoD[10] BDD/Wildcard naive 174

Libra[19] IP/Prefix length Subnet slicing Graph algorithm Use MapReduce to speed up
APKeep[20] BDD PPM Static reachability analysis

NetPlumber[7] Wildcard Equivalent class Static reachability analysis Incremental

Veriflow[9] Bitmask Equivalent class SMT solver Incremental

Delta-net[6] IP/Prefix Edge labeling Static reachability analysis Incremental

Jinjing[13] BitVec Equivalent class SMT solver Only ACL. Gives fix advice.

operators. Mikado[18] is proposed to solve the difference
between network testing tools, but there is no solution for
network verification tools yet.

3 DESIGN

By analyzing existing data plane verification tools, we find
that all data plane verification tools are composed of the
three pillar modules to statically analyze the packet forward
procedure in a network:
o Header expression. A way to represent packet headers.
In this way, packet header intervals can present set
operations such as intersection, subtraction, and equal.
o Rule Set. A way to record rules. A rule should have
its match fields, input ports, and actions. The actions
contain forward, drop or rewrite, and so on.
o Transfer Function. A set of algorithms that can use the
rules and given input packet header to calculate how
the network deals with this packet.

Figure 3 is an example showing how the above three mod-
ules are linked in a traditional data plane verification tool.

Packet 1 “TNetwork

srcaddr: 10.10.10.0/24 RUTE1

dstaddr: 20.20.20.0/24 match:
srcport: any action®” forward
dstport: any privrity:0
protocol:6(TCP) inport: switch a 1/0
- outport: switch a 7/0

m

+
Loop(Packet p, port src) {.}
/

Transfer function
(static reachablity analysis)
network:[ Network |
Reachabjility(Packet p, port src,
; port dst){
whiVe(portlist){
for(rule in network){
if(rule.inport in portlist &&
p in rule.match){
portlist.append(rule.dstport);

BlackHole(Packet p, port src) {.}

Header Expression Rule Set Transfer Function

Figure 3: How header expression, rules and transfer
functions are linked[14].

With the three modules, the high-level Mahjong frame-
work is shown in Figure 4. Mahjong decomposes verifica-
tion approaches into modules, each of which has a series of
related operations or functionalities. The input data plane

states and network operator configurations are processed
by Mahjong pipeline procedure, and then the verification
results and procedure performance are exported.

i
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Figure 4: The high-level framework of Mahjong

The following subsections will elaborate on the pillar mod-
ules and pipeline procedure of Mahjong.

3.1 Pillar Modules

The HSA, Anteater, and AP Verifier are all classic and influ-
ential data plane verification tools. The analysis in section II
shows that their algorithms hugely differ. Therefore we take
these three tools as examples to illustrate the feasibility of
our module division. The following modules are extracted
from them.

Header expression

01x wildcard uses two physical bits to represent one logical
bit in packet headers. In detail, it uses physical 10 to present
logical 1, 01 to present logical 0, 11 to present x which is
logical all, 00 to present logical none. Packet header intersect
operation is performed by bit AND operation. However, it
is annoying to express non-continuous intervals, which is
common in packet header subtract operation.

017 bitmask uses two bitvectors to represent a packet
header: one bitvector represents match bits and the other
represents mask bits. The packet header processing, such as
intersect, is more complex than 01x wildcard, but there is
no need to add packet header non-empty constraint when
using 01* bitmask with SMT solver.



BDD uses bool conditions to represent a packet header. It
is efficient to express non-continuous packet header inter-
vals by adding a branch in the diagram. The packet header
operations are implemented by logical bool operations.

Rule Set

Priority records the whole rule match field, and applies
rules to packets in priority order. If a packet header matches
a high priority rule, low priority rules will do nothing to it.

Non-overlapping subtracts the high priority rule match
fields from the low priority rule match fields to make rule
match fields uncovered.

Atomic. Use the non-overlapping rules to calculate the
greatest common divisor of all rule match fields in the whole
network. Each divisor is projected to an integer index and
rule match fields and packet headers are projected to integer
sets. The rule match action is implemented by set operations.

Transfer Function

Static reachability analysis. Given a source port and a desti-
nation port, the transfer function use rules to calculate which
packets will reach the next port start from the source port.
Then use a graph search algorithm to figure out which pack-
ets reach the destination port. Recording the visited port,
this transfer function can also locate loops and black holes.

Static reachability analysis inversely. Similar to static reach-
ability analysis, the difference is the path search starts from
the destination port and ends at the source port. It achieves
better performance in some specific topologies.

SMT solver encodes rules and constraints into an SMT
model and uses an SMT solver like Z3 to find a possible solu-
tion. For example, in Figure 1, the policy dstAddr 10.10.10.101
send to 1/0 can be encoded as (R1y/0;n OR R13/9in) AND p ==
10.10.10.101 implies R11 jgou:. The reachability to S2 is encoded
as assert R15/00,:. The encoding way is not monopolized. The
way used by Anteater can find loops, black holes, and one
possible path but cannot find all possible paths between 2
ports.

3.2 Pipeline Procedure

The detailed design of Mahjong is shown in Figure 5. The
verification pipeline flows from the input data plane poli-
cies and module configurations to rule set processing, and
then to the network transfer function for global simulation,
and finally to the output results. Each of the three modules
has its corresponding selection mechanism. Preprocessing
optimizations, such as slicing and symmetry, are applied to
the network rule set, therefore the preprocessing stage is
contained within the rule set module.

Note that some verification approaches perform unique
preprocessing optimizations such as APKeep and Libra, and
the rule set calculation procedure in other approaches may
overlap. The raw input rules from network devices are prior-
ity rules. Non-overlapping rules are calculated from priority
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Figure 5: The detailed framework of Mahjong

rules, and atomic rules are calculated from non-overlapping
rules. It is more efficient to process the rules with a serialized
function pipeline and choose a position to break rather than
build mutually exclusive rule modules.

To solve the partly-sequential rule granularity and total-
mutual header expression and transfer function, we design
the module selection mechanism in different ways as a solu-
tion.

e For header expression and transfer function, different
modules have different basic data structures and basic
operations. Therefore, headers and transfer functions
are implemented with mutually exclusive modules.
Rule match and rewrite operation depend on intersect
and equal operations implemented in header expres-
sion, therefore the data structure of a single rule is no
need to refactor. Instead, we differ the rule granularity
by the choice of preprocessing functions applied to the
whole network rule set.

As mentioned above, we need to implement various header
expressions and transfer functions but only one rule expres-
sion. The header expressions and transfer functions are mutu-
ally exclusive, while the rule granularity which is determined
by the preprocessing procedure has both mutually exclusive
alternatives and serialized processing.

With module division, we can analyze functionality in the
granularity of modules, and the function of the whole verifi-
cation tool can be calculated by intersecting the function of
modules. For example, in the calculation of reachability, 01x
wildcard and atomic rules support finding all possible paths
and finding one path, but SMT solver (with Anteater encod-
ing) only supports finding one path. Therefore, if we build a
verification tool with 01x wildcard, atomic rules, and SMT
solver, this tool only supports finding one path. In conclusion,
Analysis in module granularity helps researchers to find the
bottleneck of verification tools, and make improvements.
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4 IMPLEMENTATION

As Mahjong is built to facilitate operators to easily switch
among modules, we choose to implement the framework
with the idea of modular programming. Modular program-
ming is a software design technique that emphasizes separat-
ing the functionality of a program into independent, inter-
changeable modules, such that each contains all necessary
to execute only one aspect of the desired functionality [3].
The interfaces expressing the elements that are provided and
required by the module need to be defined first.

o Header expression: Set operations include intersect,
complement, add, minus, rewrite, contains, and isempty.

® Rules: Only a general rule class is needed. It contains
elements including in_ports, out_ports, match, rewrite
mask, rewrite value, action.

o Network: The network class contains port set and rule
set.

o Network preprocessing: This stage is implemented as
static functions, whose input is a network and returns
a preprocessed network.

e Transfer function: A transfer function has an element,
network. The interfaces are verification functions, e.g.,
find reachability, find loops, and verify all. The outputs
of the interfaces are verification results.

There are several programming languages which provides
interface classes, for example, C++, C#, Java, etc. Consid-
ering the portability and performance, we choose Java to
implement the Mahjong. We then describe problems and
corresponding solutions in Mahjong implementation.

4.1 Mechanism gap in transfer functions

# forward rules

# action$inport$match$outport
fwd$[10001]$11x$[10002]
fwd$[10001] $xxx$[10003]

# config file
public class TypeConfig{
public static String HEADER_TYPE =
"APHeader";//BDD
public static String TF_TYPE =
# rewrite rules "Z3";
# action$inport$mask$rewrite
rw$[10001]$01x$11x }
# links
# action$inport$outport
1ink$[10002]$[20001]. ..

(a) Uniform inout format (b) Module choose config file

Figure 6: Code pieces

Transfer functions mainly have two types. One is gener-
ating constraints according to rules first and then getting
the verification result in one breath, including model check-
ing ways like SMT solver, pZ, and equivalent class graph
algorithm used by Libra. The other is using rules to get a
temporary result at each step and get the final result by iter-
ation. A typical example is static reachability analysis used
by HSA and APVerifier. It is difficult to meet these two types
of methods, while the base data structure used by header

expression should not expose to transfer functions. To bridge
the gap, we defined constraint generation function and rule
apply function in the rule class separately.

4.2 Input format

Existing data plane verification approaches mainly use data
plane snapshots directly dumped from network devices as
inputs. These devices are made by various providers and the
formats of snapshots also vary. Writing parsing modules for
each of them is an artificial job and hardly contributes to
the framework. To keep the framework clean, we choose
to define a uniform input format recording the general rule
data structure shown in Figure 6(a).

The priority is recorded by the line order. We write an
example script which can parse data plane snapshots of Cisco
devices and generate an input file of the uniform input format.
In this way, other network devices can easily be merged into
the framework by adding parsing scripts.

4.3 Module selection

To select modules, operators only need to modify a config
file like Figure 6(b). We use the factory design concept in
Java to implement instantiation based on the config.

To add new modules to the Mahjong, developers only need
to add a class to the project and register the module in the
factory class. The project is open-source and a module merge
instruction is provided to potential developers.

We need to mention that we can’t assert the combination
of 01x wildcard, priority rules, and static reachability analysis
has the same performance as HSA because minor details in
implementation can cause a huge performance difference.
Here is an example. In the 01x wildcard header expression
we implemented, there is a reorganization function which
can simplify the result of add or minus operation, such as
transform xx — 10— 11 to 0x, and then speed up the following
add or minus operation. However, sometimes it will brings
huge time cost, such as transform xxx — 111 — 000 to 110 +
101 + 011 + 100 + 010 + 001. When the rule list is tedious,
the calculation time will be unacceptable and worse than
HSA. If an intelligent optimization algorithm is applied to
this function, the performance may be better than HSA.

5 EVALUATION

Our evaluation aims to answer whether Mahjong makes the
development and customization of data plane verification
tools more convenient, and how a network operator adjusts
a verification tool precisely suitable for her/his network.
All experiments are conducted on a commodity server with
16GB memory and Intel i5 8400 CPU. Currently, Mahjong
contains three header expressions, three rule granularity,
and three transfer functions mentioned in Section IIL
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Figure 8: LoC cost of each module.

Convenience. First, We count the lines of code(LoC) of
the specific modules and the reusable general framework.
As shown in Figure 8, the whole program is built with over
30,000 LoC, while implementing a new module only needs
several hundred LoC. It proves Mahjong hugely shortens the
iteration cycle of data plane verification technology.

Then, we modify the config file to prove the convenience
of module composition. We evaluate the 3% 3 %3 = 27 compo-
sitions of all implemented modules with a fat-tree network.
The verification objective we choose is all-pair reachability.
Evaluation results are shown in Figure 7.

All of the compositions work correctly. Their performances
differ and are consistent with theoretical analysis. For exam-
ple, the BDD header performs well with static reachability
analysis but performs worst with SMT solver, because it uses
pointers to perform intersect with static reachability but is
transformed into bool expression in SMT constraints.

Table 2: Composition to verify Stanford backbone

Header Rule
expression granu.

Transfer
func.

01x wildcard Priority Static reachability analysis
BDD Priority Static reachability analysis
01x wildcard Priority SMT Solver

Precision. We choose an example calculating reachability
between a pair of ports on the Stanford backbone network to
simulates a module choose tweaking procedure in practice.

Table 3: Experiment on Stanford backbone dataset

Combination Cost time

01x wildcard + priority rules +

. s . More th
0 static reachability analysis ore than one day
01x wildcard + priority rules +
1 SMT solver 1315.6 ms
5 BDD + priority rules + 3716 ms

static reachability analysis

The dataset is generated from Cisco data plane snapshot pars-
ing. Compositions are shown in Table 2. Evaluation results
are shown in Table 3.

In the beginning, the composition 0 cannot give a result
in a reasonable time. One possible solution is switching the
transfer function to SMT constraints. The SMT solver only
finds one path, and hence it is faster, proved by the result.
This is a way of sacrificing functionality for performance.
Another solution is switching the header expression from
01x wildcard to BDD. In this way, the time-consuming reor-
ganization during minus operations is eliminated. Then the
verification time becomes reasonable.

6 CONCLUSION

This paper proposes Mahjong, a generic network data plane
verification framework, which allows operators to compose
verification solutions with functional modules. Mahjong is
designed with a modular division scheme. The interfaces of
the modules are well defined, and different modules with the
same functionality used by different verification approaches
can be re-composed and work together. Leveraging Mahjong,
researchers can evaluate the functionality and performance
of verification approaches, and improve the approaches in
module granularity. We implemented 9 modules divided from
3 representative works HSA, Anteater and APVerifier as ex-
amples and benchmarks. We also defined a uniform network
snapshot input format and the modules can be easily chosen
and combined by a configuration file.
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