ACISM: Aho-Corasick with Interleaved Arrays

Mischa Sandberg, 2010

For large sets of strings, Aho-Corasick multi-string search implementations typically must make a time/space trade-off. ACISM is an
Aho-Corasick implementation that proves that you can have your cake and eat it, minimizing both space and scanning time, with an
O(n) compile-time. The representation is simple to persist and share between processes. In a 32-bit implementation, ACISM can
handle about 10MB of pattern text. It averages under 4 bytes per pattern character and under 20 machine instructions per input
byte. For a comparison with other implementations of Aho-Corasick state machines, see NOR04.

Aho-Corasick Algorithm

Aho-Corasick is a multi-string search algorithm with excellent worst-case behaviour: it performs a bounded (small) amount of work
for each input-text character. Bounded worst-case behaviour is particularly important in the hostile environment of network intrusion
detection systems, where a denial-of-service attacker can tune exploits against published data and algorithms.

Aho-Corasick amounts to a DFA state machine, implemented by adding back links to nodes of a prefix tree. Each node of a prefix
tree corresponds to a prefix of some pattern string(s). A back link connects node X to the node Y, when Y is the longest suffix of X
that is a prefix of some other string in the set. The search follows a back link when there is no forward link; when there is neither
forward nor back link, the search returns to the root.

For example, Fig.1 is the Aho-Corasick tree for ['op', 'open', 'retorts', 'tort', 'stop'l

I:I Match . 4— Prefix-tree forward link
T) . - — = = Aho-Corasick back link
= | Suffix
- P Radundant back link to child of raot
= _I Match and suffix S * === Prunable back link
il State id ' - - — Replacement for pruned link from same node

in) Pattem id

Fig.1 Aho-Corasick Prefix Tree with PSEARCH Optimizations

(The apparently arbitrary state id numbers are a result of ACISM's interleaved-array optimization; see below.)
State [11] corresponds to matching sto. The longest suffix of sto, that is also a prefix in this tree, is to, as in tort. So a back link
connects [11]—[9].

Suppose the target text is store. The scan processes sto, moving forward via [0]—[19]—[22]—[11]. r does not match any
forward link from [11], so the scan follows the back link to [9], matches r, and moves to [10]. The next text character is e, which
does not match any forward link from [10], so the scan follows the back link to [1], matches e and moves to [14].

http://doc/?docid=0AXY-_mX7NZlsZGQ5NTV6bTZfMWY0NXMzamZm&hl=en_GB#%5BNOR04%5D
http://en.wikipedia.org/wiki/Aho-Corasick
http://en.wikipedia.org/wiki/Prefix_tree

Algorithm

The fastest state machine possible is one that uses a state-transition matrix, indexed by [state,code], to determine the next state.
ACISM represents such a matrix as an interleaved array. The information normally associated with a state is either stored in the
transition to that state, or in a hash table that maps non-leaf matches (e.qg. [3]) to pattern-vector indices (string numbers).

A state may match multiple strings that are suffixes of one another. For example, both stop and op match at [15]. In typical Aho-
Corasick implementations, there would be an explicit record of the match-set; e.g. a link [15]—[3]. ACISM does not store such links,
because the list of multiple matches will always be a subset of the back link chain. ACISM sets a match bit in each transition to a
match state; it also sets a suffix bit, in each transition with a match higher up the back link chain. For example, the string retort,
leading to [16], is not a match; but a suffix of that string (tort) is a match. For such a node the suffix bit is set, so scan follows the
back link chain to find [17], which is a match. Since [17]'s suffix bit is not set, the backward search stops there.

ACISM also implements a minor enhancement of Aho-Corasick: pruning useless back links. For example, in the above diagram,
[13]—[9]—[4] is a standard back link chain. However, if a match fails at [13], then it will necessarily fail at [9], since the only
transition from [9] is r, which was also a transition from [13]. ACISM changes this to a link [13]—[4], since [4] has a transition other
than r. ACISM does not prune a link such as [12]—[10] if it needs it to find a suffix match. In practice, about 5% of backlinks are
prunable.

Interleaved Arrays

ACISM interleaves the sparse rows of the state-machine matrix in one flat vector. Each non-leaf state is assigned a unique
base offset in the vector. The back link, if any, and child links, are stored at offsets from that base: the back link is stored at
offset 0 and the transitions offset by the character codes (1..N). Rows may overlap, as long as they do not collide on any
transition. Elements contain their own offset from their state base, to distinguish which of the overlapping rows (states) to
which they belong. Treating the back link like another child in the state-machine row means that no space is wasted if there
is no back link. No space is wasted in mapping states to strings: for leaf nodes, the next field contains the string number; for
non-leaf nodes, a hash table maps the state to the string number.

Interleaved arrays amount to S.J. Ziegler's "row-displacement" method; see TAR78. Ziegler decided that the rows should be
inserted in descending order of size, following the metaphor of how to fill a bucket with sand, gravel and rocks (rocks first...). That
produces near-ideal packing, but O(n2) execution time. Random order of insertion, with the B,y hint array described below,
produces packing with less than 1% waste, with O(n“’) execution time.

Representation
Let P be the input set of pattern strings.The state machine comprises:

e C: a vector that maps input byte values [0..255] to a smaller range of code values. C maps the byte values found in P to the
code values [1..N]; C maps all other input bytes to 0. Using codes instead of bytes saves bits in a transition, and makes the
common scan case (input byte occurs nowhere in P) as small and cache-friendly as possible.

e X: avector of interleaved sparse arrays of transitions with the following bit-packed fields:

o code: the code to which the transition corresponds; or O for a back link.
o match: a bit flag indicating the end of a matched string.
o suffix: a bit flag indicating the end of some matched suffix(es) of the current string.
o next: a back link if code is 0; the next state (number), if next < size(X);
otherwise the X element corresponds to a leaf node, and next - size(X) is the matching string number. t =
TRANSITION(state,code) is a valid transition iff t.code = code.
e H: a hash table that maps non-leaf match offsets in C to string numbers (P indices).

For P of about 10MB or less, a transition fits in 32 bits. H maps the location of a transition to the value (P index) of a non-leaf match
in X. That location uniquely identifies the pattern; and the interleaved-array construction ensures that locations are essentially
random. Hash table probes are guaranteed to find a value; so open addressing is reasonable with a table 1.2 x size(P). If the code
value is stored in the lowest K bits of a transition value, then the low K bits of (transition XOR code) will be 0 for a valid transition or
back link.

Execution

Let T be a text string to be scanned for matches. The scan algorithm starts at the first byte of T, and traverses the prefix tree from
the root, following forward links corresponding to successive characters in T. When it reaches a node marked as match or suffix, it
reports the match(es). When it reaches a node with no branch corresponding to the next character in T, it uses the back link to jump
to a prior node at a shallower depth, in effect advancing the start-of-string index. When there is no back link, scan restarts from the
tree root, at the next byte in T. Fig.2 is the pseudo-code for this scan.

Fig 2. Scan routine

state — 0

for i « 0 to length(T)-1
code « CI[T[i]]
if code =0

state — 0
continue

while IVALID(t < TRANSITION(state,code))

and VALID(back < TRANSITION(state,0))

state « back.state

if not VALID(t)

state — 0
continue

if not t.match and not t.suffix

s « state

state « t.next
continue

state — t.isleaf ? 0 : t.next

repeat

if VALID(t)
if t. match
p < t.isleaf ? t.pattno: SEARCH(H, state+code)

PROCESS(p, i)

if state = 0 and not t.isleaf
state « t.state
if state != 0 and not t.suffix
break
ifs=0
break
back «— TRANSITION(s,0)

s « VALID(back) ? back.state: 0
t « TRANSITION(s, code)

Comments

"0" is the root node state.

T[i] is a character not found in any pattern string.

On average, this loop executes once.

No more links, return to root.

Successful forward transition, but no complete match
yet.

Found a match and/or suffix-match.

(t) is always valid on the first iteration. For a leaf node,
t.next is a P index.

Perform action for each match.

Find a relevant back link, in the course of following the
chain of possible suffix matches.

Compilation

Construct (C, X, H) in these steps:

1.

Compute C. There is a small compilation performance advantage to assigning codes in descending order of frequency of
occurrence in P: nodes with more than one child are more likely to use and advance the same entry in B; see "Allocate X
offsets" below.

Build T: a prefix tree of P. T will have no more nodes than there are characters in P, and usually many less. Each node will
eventually contain:

o sibling, first_child: tree structure implemented in linked lists.

o code: the code leading to this state node.

o pattern_id: the P index of the matching string, or a null value for non-match nodes.
o backlink: Aho-Corasick back link.
)
)

suffix: true if the back link chain from this node contains a match.
refcount: reference count of back links pointing at this node.
o state: offset in X.
Add Aho-Corasick DFA information to T (backlink, suffix, refcount) for each node. This uses a breadth-first (level-by-level)
tree traversal. Any one level of the tree can have no more than size(P) elements. backlink is a pointer from a branch node to
some other (shallower) node. Most backlinks point to root(T). suffix is true if a match can be found by following the chain of
back link pointers. It is used in the scan to identify multiple matches by different strings at the same endpoint.

Prune backlinks in T. If a node is not the target of any back links, and its backlink points at a target node whose children are
a subset of the first node's children, and the target isn't the parent of a match or suffix node, then the backlink can be
changed to the target's backlink, and the process repeated. When changing a backlink, the old target's refcount value is
decremented and the new target's refcount value is incremented. If the old target's refcount value is decremented to 0, then
the old target is an immediate candidate for pruning.

Allocate X offsets (states), setting the state field of T nodes. See Fig.3. The root node is always allocated at offset 0. This
step uses matrix B, to track the first position where a search could find an available place for a non-leaf node whose first
child code is c; earlier positions having been proven invalid by previous searches. b is 1 for a hode with a back link, and 0 for
a node without. T is traversed breadth-first, as in (3), to improve memory cache behaviour, by allocating nodes near the root
of the tree densely together.

Populate X by traversing T, using the state offsets.

Populate H by traversing T, adding (match id, pattern id) to H for non-leaf matches. In this implementation, the hash table is
filled in two passes, the first pass only inserting non-colliding entries.

Fig.3 Interleaved Allocation
USED =1, BASE =2

root.state < 0

for c in root.child

U[root.state + c.code] — USED

fori—1toN

B[i,0] < BI[i,1] « 1

for nin nodes

first « n.child[0].code
found « false

if n.back = root

else

repeat

until fits

need — BASE
base « Bffirst,0]

need «— BASE + USED
base «— max(Bfirst,0], B[first,1])

while U[base] & need
base « base + 1
fits — 1
for ¢ in n.child
fits « U[base + c.code] & USED
if fits =0
break
if not (found or ¢ = n.child[0])
found < true
B[first, need & USED] « base + fits

n.state < base

U[base] += need

for c in n.child

U[base + c.code] += USED

Comments

Bit constants. USED means 'filled', BASE
means allocated as a state base-offset.

Allocate places for the root's children.
Initialize starting points for base searches to 1.

Traverse all non-leaf nodes, breadth-first.

Find the start of a search for an unused base.

Find the start of a search for an unused base
that is also free to hold a back link.

Advance to an unallocated base position, that
is also an unoccupied element if n has a back
link.

Record state base for next step.
Mark base allocated and possibly used.
Mark child positions as used.

The interleaved array for the example (Fig.1) is shown in Fig.4. For clarity, the state that "owns" an element is shown; for example,
Xg contains the transition from [4] for p. The code values are also shown as their original characters. In this case, the children of [0]
are in X3, Xs, Xg and X;. The back link and the one child node for [9] are in Xg and Xy4, respectively. Back links have a 0 code value.
The largest field can contain a patt index (leaf hence match), a next link (non-leaf state) or a back link (for code=0 only). In this
example, X; and Xy are unused; the interleaving algorithm could not fit anything else in them, so they are left empty/invalid (0). X
is always unused. Leaf nodes for Py P1, Py, Ps encode the pattern ids (0..3) in the Next field by adding size(X) -- i.e. 27 -- to them.
The hash table H contains the single pair (8,0) for the non-leaf node which identifies ([4],p) as matching Pyi.e. op.

Fig.4: Interleaved state transition array (X)

Index| Base|Code|Match|Suffix Patt
State or Next
or Back

1 11 O
2 1 e 14
3 0 o 4
4 3 e 18
5 0 r 1
6 0 s 19
7 0 t 20
8 4 p Y 3
9 9 O 4
10 10[O 1
11 11 O 9
12 12| O 10
13 13 O 4
14 9 r 10
15 11 p Y Y |3+27=30

16

17 10| t Y 2+27=29
18 13| r 12
19 12 ¢ Y 16
20 18 n Y 0+27=27|
21 14 + 21
22 16| s Y 1+27=28
23 20 o 9
24 21 o 13

25

22

11

26

22

Performance

The basic per-byte search loop, compiled with gcc 4.2.1 -03 for ia86-32 , averages 20 machine instructions, with 2 look-ups in X and 3
jumps. The worst-case for the loop through back links is a pattern set such as [b, ab, aab, aaab, ...] being matched against aaaa...aaac.
The effort is bounded by the length of the longest pattern string; in practice, the longest back link chain is far shorter. On the test
machine, running fgrep -xf /usr/share/dictiwords takes 1.8 secs, versus 1.2 secs for ACISM to compile and execute, most of the time
being in compilation.

Fig 5. Performance statistics for compiling /usr/share/dict/words

Statistic Count
Size(P) 479,829
Total chars in P 4,473,870
Unique chars in P 70
Non-leaf nodes in T 1,060,024
Size(X) 2,514,975
Unused elements in X 20,086
Size(H) 131,086
Pruned back links 79,125
Innermost loop iterations in interleave 160,673,264
References

[NORO4] Optimized Pattern Matching for IDS; Marc Norton, 2004
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf
[TAR78] Storing a Sparse Table; Robert Tarjan, 1978
http://historical.ncstrl.org/litesite-data/stan/CS-TR-78-683.pdf

http://cdn.intechopen.com/pdfs/14369/InTech-Graphics_processor_based_high_performance_pattern_matching_mechanism_for_network_intrusion_detection.pdf
http://cdn.intechopen.com/pdfs/14369/InTech-Graphics_processor_based_high_performance_pattern_matching_mechanism_for_network_intrusion_detection.pdf
http://historical.ncstrl.org/litesite-data/stan/CS-TR-78-683.pdf

