
ParaSplit: A Scalable Architecture on FPGA for Terabit Packet Classification

Jeffrey Fong∗, Xiang Wang∗, Yaxuan Qi†, Jun Li† and Weirong Jiang‡

∗Research Institute of Information Technology, Tsinghua University, Beijing, China
†Tsinghua National Lab for Information Science and Technology, Beijing, China

‡Ericsson Inc., San Jose, CA, USA

Abstract—Packet classification is a fundamental enabling
function for various applications in switches, routers and
firewalls. Due to their performance and scalability limitations,
current packet classification solutions are insufficient in ad-
dressing the challenges from the growing network bandwidth
and the increasing number of new applications. This paper
presents a scalable parallel architecture, named ParaSplit, for
high-performance packet classification. We propose a rule set
partitioning algorithm based on range-point conversion to re-
duce the overall memory requirement. We further optimize the
partitioning by applying the Simulated Annealing technique.
We implement the architecture on a Field Programmable Gate
Array (FPGA) to achieve high throughput by exploiting the
abundant parallelism in the hardware. Evaluation using real-
life data sets including OpenFlow-like 11-tuple rules shows
that ParaSplit achieves significant reduction in memory re-
quirement, compared with the-state-of-the-art algorithms such
as HyperSplit [6] and EffiCuts [8]. Because of the memory
efficiency of ParaSplit, our FPGA design can support in the
on-chip memory multiple engines, each of which contains up to
10K complex rules. As a result, the architecture with multiple
ParaSplit engines in parallel can achieve up to Terabit per
second throughput for large and complex rule sets on a single
FPGA device.

Keywords-packet classification; terabit; OpenFlow; FPGA

I. INTRODUCTION

The rapid growth of the Internet has led to a great demand

for the Internet to provide higher bandwidth, lower latency

and better security. In order to achieve these goals, network

devices need to identify the data or packets being transmitted

at high speed. The process of categorizing packets based

on predefined rules is known as packet classification, a

fundamental technique used by switches, routers, firewalls

and network intrusion detection systems (NIDS). A packet is

classified based on multiple fields extracted from its packet

header. These fields are matched against predefined rules or

filters to determine the type of actions (e.g. drop or forward)

to be taken on the packet.

Although it has been extensively studied, traditional

packet classification is used only for access control and

firewall with relatively small static rule sets [1]. Most of

existing methods do not meet the requirements for emerging

applications on the Internet. For example, current data

center networks require fine-grained flow control in order

to route traffic efficiently. This brings a whole new set

of requirements and challenges. First, the network devices

within large-scale data centers already have Terabit per

second (Tbps) switching and routing capacity [2]. It is a

challenge for packet classification to meet such extremely

high bandwidth. Second, as the numbers of new applications

and protocols arise, the rule sets are becoming increasingly

large and complex. Large-scale enterprise networks need

fine-grained flow control over thousands of physical and

virtual machines, while new network protocols such as

OpenFlow [3] employ complex rule specifications containing

more than 10 header fields. Thus the second challenge is to

support a large number of complex rules.

The predominant industrial solutions today are based

on multi-core or Ternary Content Addressable Memory

(TCAM) platforms. Multi-core based solutions are cheap

but they are limited in performance due to memory I/O

bottlenecks [4]. Even high-end multi-core based platforms

are limited to a classification rate of 10 Gbps which is

significantly lower than the 100 Gbps links emerging in the

Internet backbones and data centers. TCAM-based solutions

are widely used because of their ability to process packets at

high speed. However, TCAMs are expensive, and suffer from

scalability and high power consumption [5]. TCAMs only

supports prefix matching which means a rule represented in

range must be converted into prefixes. Such range-to-prefix

conversion may exponentially increase the number of rules.

On the other hand, Field Programmable Gate Array

(FPGA) has recently become an attractive option for im-

plementing packet classification engines [4], [5]. FPGA

combines the flexibility of software with the performance

of hardware. Although some existing designs can achieve

high performance [4], [5], they are still limited to small and

simple rule sets due to the large consumption of on-chip

resources such as memory. Memory consumption is largely

dependent on the complexity and the size (i.e. the number

of rules) of the rule set [6]. Take the publicly available rule

sets [7] as an example. It has been shown that with the same

number of rules, the IP Chain (IPC) and Firewall (FW) rules

consume 10–1000 times more memory than Access Control

List (ACL) [6]. Because of the high memory consumption,

current solutions need to store rules in external DRAM and

thus cannot meet the throughput requirements.

This paper presents a scalable architecture, named ParaS-

plit, which is capable of classifying packets at Terabit

throughput by allowing multiple engines implemented on

a single FPGA device. The scalability is achieved by using

an optimized rule set partitioning algorithm that increases

parallelism while reducing memory requirement. The main

contributions include:

• We propose a rule set partitioning algorithm to reduce

rule set complexity, which leads to memory reduction.

By incorporating the range-point conversion, the algo-

rithm converts rules to points and utilizes clustering al-

gorithms for effective partitioning. Simulated annealing

is then applied to find an optimal partitioning. Com-

pared with the algorithms without rule set partitioning,

our algorithm achieves on average 100-fold reduction

in memory. Compared with EffiCuts [8] which is the

state-of-the-art algorithm with rule set partitioning, our

algorithm achieves 20%–500% reduction in memory.

• We design a parallelized decision-tree-based architec-

ture to achieve high throughput. We employ the Hyper-

Split algorithm to build the decision tree for each rule

subset. All decision tree are searched in parallel. The

results from each decision tree is aggregated to obtain

the final result. We pipeline the tree traversal to achieve

the high throughput of one packet per clock cycle.

• We implement the ParaSplit architecture on a Xilinx

Virtex 5 FPGA. It takes advantage of the dual-port

Block RAM (BRAM) available on modern FPGAs to

double the throughput. The design can classify 64-byte

packets at a throughput up to 120 Gbps, while support-

ing 10K FW rules. To the best of our knowledge, this

is the first FPGA design that supports 10K FW rules

while sustaining over 100 Gbps throughput. With the

new-generation FPGAs, over 10 ParaSplit engines can

be placed on a single device to provide an aggregated

throughput over 1 Tbps for 10K complex rules.

• We evaluate our algorithm using OpenFlow-like 11-

tuple rule sets from real-life enterprise users. Prelimi-

nary results show that ParaSplit consumes up to three

orders of magnitude lower memory than HyperSplit.

The rest of the paper is organized as follows. Section

II introduces the background. Section III presents the rule

set partitioning algorithms. Section IV describes the parallel

search architecture and the FPGA design. Section V provides

performance evaluation results. Section VI concludes the

paper and discusses the future work.

II. BACKGROUND

A. Problem Statement

Packet classification is to find the best matching rule from

a predefined rule set for a packet. Each rule R contains F

fields. Each field has a range that a packet could match.

From a geometric point of view, each R represents a hyper

rectangle in F -dimensional space. If a packet p matches a

particular rule R, the point represented by p falls into the

hyper-rectangle specified by R. Hence packet classification

can be treated as a point location problem in computational

geometry. For N rectangles in F -dimensional space, it has

been shown that the best bounds for locating a point is

either Θ(logF−1 N) time with Θ(N logF−1 N) space, or

Θ(F logN) time with Θ(NF) space [6], [9]. Therefore, the

mathematic complexity of packet classification is extremely

high as the number of rules or dimensions increase. For-

tunately, packet classification rules in real-life applications

have structural redundancies [6], [8]. Although different

types of rules have various statistical characteristics [10],

the complexity of real-life rules is far less than the theoret-

ical bounds. Therefore, packet classification algorithms can

exploit such redundancies and achieve practical search speed

with modest memory usage.

B. Packet Classification Algorithms

A lot of algorithms have been proposed for packet classifi-

cation [1]. They can generally be categorized into two major

schemes: decomposition-based and decision tree -based [5].

Decomposition-based algorithm such as RFC [15] and

HSM [16] are considered to provide good performance at

the expense of high memory consumption [1], [8]. These

algorithms perform independent searches on each field and

finally combine the search results from all fields. But they

are memory-inefficient for large rule sets.

Decision tree based algorithms [6], [10], [11] are con-

sidered as the most popular algorithms for packet classifi-

cation. They work by recursively cutting the search space

into smaller subspaces. This is repeated until a predefined

number of rules are contained by each subspace. Such a

recursive process builds a decision tree. An incoming packet

would traverse the tree until it reaches the leaf node that

stores the matching rule. There are a few variations of

the decision tree, differing on the method of cutting the

space. HiCuts [10] makes multiple evenly-spaced cuttings

on a single dimension at each internal node. HyperCuts [11]

extends HiCuts by allowing multiple dimensions to be cut

simultaneously to reduce the height of the decision tree. To

avoid rule replication by equal-sized cuts, HyperSplit [6]

uses non-equal sized cuts for more efficient memory usage.

However, even with the optimized binary space cutting

(like HyperSplit), the memory usage of decision tree based

algorithms still grows exponentially as the number of rules

increases. As shown in Figure 1(a), the HiCuts algorithm

cuts the search space into two equal-sized subspaces. The

rules R2 and R3 are replicated in the respective subspaces.

By aligning the cuttings at the edges of the rules, the Hy-

perSplit algorithm is able to reduce rule replication (Figure

1(b)). However, HyperSplit still cannot eliminate all rule

replication, especially for complex rule sets. For instance,

using HyperSplit on the 10K FW rule set fw1 10K from

[7], some rules are replicated by up to 7,000 times.

Observing the above problem in decision tree based meth-

ods, the EffiCuts algorithm [8] is proposed to reduce rule

R3

Search Space

Rule List

R2

R3

Rule List

R1

R2

R3

R2
R1

R3

Search Space

Rule List

R2

R3

Rule List

R1

R3

R2
R1

(a) (b)

Figure 1. (a) Unaligned cut point (causing replication of R2); (b) Aligned
cut point to the boundary of R1 and R2 (reducing replication)

replication through categorizing rules into separate trees.

The idea is to group overlapping rules separately and build

independent decision trees. The results show a significant

reduction in rule replication. As a result, the memory usage

is reduced by a factor of 57 compared with HyperCuts.

However, the grouping algorithm used by EffiCuts is not

scalable because it results in Θ(2F) groups. For a typical

5-tuple IPv4 packet header (i.e. F = 5), EffiCuts would

generate up to 32 subsets of rules. Although EffiCuts pro-

posed selective tree merging to reduce the number of trees,

the merging is computation-intensive and difficult to adopt

for higher dimensional rules. For example, applying EffiCuts

on OpenFlow 12-tuple rules will generate over 4000 groups.

C. FPGA Solutions

The majority of the FPGA-based packet classification

solutions are hardware implementation of traditional packet

classification algorithms. Because decomposition-based al-

gorithms search each dimension independently, they suit

the parallel nature of the hardware [12], [13]. However,

these designs suffer from large memory consumption and

cannot support large and complex rule sets such as 10K

FW or IPC rule sets. Recent work [4], [5] is focused

on decision tree based algorithms. By pipelining the tree

traversal, these designs are capable of classifying multiple

packets at the same time. [5] implements an optimized

HyperCuts on a Xilinx Virtex 5 FPGA and achieves over 80

Gbps throughput. It extends the HyperCuts tree into a two-

dimensional tree to reduce memory usage. Through deep

pipelining, it is able to achieve high throughput at the cost of

high latency. [4] proposes three optimization methods for the

HyperSplit algorithm and implements it on a Xilinx Virtex 6

FPGA. The optimization techniques reduces pipeline depth

to achieve lower latency. The implementation sustains over

100 Gbps for the ACL rule set.

Although decision tree based solutions provide efficient

mapping to hardware through pipelining, they still suffer

large memory consumption due to rule replication. While

they may classify 10K ACL rules while sustaining 100 Gbps,

they have difficulty in implementing complex rule sets such

as FW or IPC. Even the smallest FW 1K rule set would

consume 4 times more memory than the largest ACL 10K

rule set.

III. RULE SET PARTITIONING

A. Motivation

As the number of overlapping rules or the number of di-

mensions increases, the complexity of the rule set increases

exponentially. On the other hand, the amount of memory

resources available on FPGA is limited. Since the rules

are stored in the on-chip BRAM of the FPGA, a more

memory-efficient algorithm means that the FPGA design can

support larger, more complex rule sets. Hence, we propose

an optimized rule set partitioning algorithm to reduce the

complexity of the rule set and thus the memory requirement.

B. Rule Set Complexity

With N overlapping rules with F fields, it may require up

to (2N +1)F non-overlapping hyper rectangles in the worst

case. Hence the space complexity of the rule set is Θ(NF)
[14]. As the number of rules or the number of dimensions

increases, the complexity increases exponentially. The goal

of rule set partitioning is to reduce this complexity through

intelligent grouping of rules. Assuming that the rule set R

is divided evenly into K groups (i.e. S1, S2, S3, . . ., SK)

such that each group has N
K rules. The overall complexity of

the rule set becomes Θ(K · (NK)F) = Θ(NF

KF−1). Hence by

partitioning the rules into K groups, the space complexity

can be reduced by a factor of KF−1.

Since overlapping rules cause rule replication during the

cutting of the search space in decision tree based algorithms,

a good rule set partitioning can reduce the rule replication

by removing overlapping rules. However, finding an optimal

solution for grouping is difficult. Grouping the rules can

be seen as a combinatory mathematic problem. Given N

differentiable rules and M non-differentiable groups, the

number of different grouping choices is equal to:

S(N, 1) + S(N, 2) + · · ·+ S(N,M), N ≥M

S(N, 1) + S(N, 2) + · · ·+ S(N,N), N ≤M

where S(N, x) is the Sterling number. For example, there

are more than 9.0×1074 different ways to partition 100 rules

(N = 100) into 6 groups (M = 6). This number increases

exponentially with the number of rules (N) and the number

of different groups (M). Furthermore, the performance/cost

curve is not smooth and thus it is difficult to apply tradition

optimization techniques for finding the global optimal par-

titioning. We study two algorithms to partition the rule set

so that the complexity of the rule set is minimized. The first

algorithm is to approximate the optimal partitioning through

clustering. The second algorithm is to employ simulated

annealing to approach the optimal partitioning. We propose

to combine these two algorithms to obtain the optimal

partitioning at low computation cost.

C. Clustering with Range-Point Conversion

It is difficult to cluster the F -dimensional hyper-rectangle

rules directly. Since the point location problem is a dual

problem with range search, a hyper rectangle in F -

dimensional space can be converted to a point in 2F -

dimensional space [9]. The range-point (RP) conversion has

been proven to be a dual-problem in computation geometry.

This is accomplished by treating the starting point and the

ending point of each field as separate dimensions. For a

rule with its range represented by a < x < b, the mapping

is done such that (+a) is mapped to dimension xs and (−b)

is mapped dimension xe. Hence, for an incoming packet, x,

to satisfy a rule, a < x < b, it must satisfy:

(a < x) & (x < b) ≡ (a < x) & (−b < −x).
The condition of (a < x) and (−b < −x) represents

a region formed by the line xs = a and xe = −b. So all

rules, represented as points, that satisfy the incoming packet,

must be enclosed by the region. Table I shows a sample 1-

dimensional rule set with 2 rules and 2 incoming packets to

be classified. Rule 1 represents the range [2, 3] on Field-x,

while Rule 2 represents [1, 6] on that same field. So for

packet A whose value is 3 on Field-x, it matches both Rule

1 and Rule 2. Another packet, B, whose Field-x value is 5,

matches only Rule 2. Figures 2 and 3 depict the geometric

views of the rules and packets before and after range-point

(RP) conversion, respectively. As shown in Figure 3, both

Rule 1 and Rule 2 are enclosed by the region formed by

packet A. This corresponds to that packet A matches both

Rule 1 and Rule 2.

Table I
SAMPLE RULES AND PACKETS

Field-x Start (s) End (e)

Rule 1 2 3

Rule 2 1 6

Field-x Matched rules

Packet A 3 Rules 1, 2

Packet B 5 Rule 2

������

������

 0 1 2 3 4 5 6

s

s

Field x

e

e

�	
����
 �	
�����

Figure 2. Traditional View

Once the rules are represented as points in 2F -

dimensional space, we employ the K-means clustering al-

gorithm to group the rules. A number of grouping heuristic

can be used to partition the rule set, such as:

F
ield

 x
e

Rule 1

Rule 2

0 1 2 3 4 5 6

Field xs

0
 1

 2
 3

 4
 5

 6

Packet A

Packet B

Figure 3. Range-Point Conversion View

1) Minimum distance: For rule Ri, select set Sj

such that the summation of average distance

between rules within all sets is minimized,

minj(
∑K

l=1
avg dist(Ri ∪ Sj)). This is to group

similar rules together, i.e. the subset contains rules

with similar values in each field.

2) Maximum distance: For rule Ri, select set Sj

such that the summation of the average distance

is maximized (i.e. minimizing the inverse distance),

maxj(
∑K

l=1
avg dist(Ri ∪ Sj)). The idea is to re-

move overlapping rules by grouping together rules that

are far from each other.

3) Distance from origin: For rule Ri, select set Sj such

that the distance from the origin in 2F space is similar.

This aims to balance between similar and dissimilar

groups.

After the rule set is partitioned into multiple groups,

each group is built into a decision tree. We choose the

HyperSplit algorithm [6] as the decision tree algorithm

for its superior memory efficiency (consuming at least an

order of magnitude less memory) compared with other

existing work. Based on our experiments, the first heuristic

(Minimum distance) is chosen for its excellent reduction in

memory usage for the HyperSplit algorithm.

D. Optimal Partitioning with Simulated Annealing

The clustering with range-point conversion cannot guaran-

tee an optimal partitioning. Also note that not all overlapping

rules cause replication if the rules are not broken into

smaller segments. In fact, some rules are better grouped

together even though they have overlapping. It is difficult

to identify good overlapping rules from bad ones. We apply

the Simulated Annealing (SA) technique to find the optimal

rule set partitioning.

First, we consider the simulated annealing algorithm with-

out the clustering. After defining the rule set and the number

of groups, the simulated annealing algorithm works by first

setting the initial temperature of the system and making the

initial grouping of the rules randomly. Then the algorithm

calculates the cost of the system and then randomly selecting

2 sets, Si and Sj . There are three possible actions that could

operate on the two groups:

1) Move Ri from Si to Sj

2) Swap Ri from Si with Rj from Sj

3) Move Rj from Sj to Si

Actions 1 and 3 are to allow uneven number of rules within

a group. An optimal grouping may have unevenly distributed

rules in the groups. If only swapping rules is allowed, the

number of rules in each group is restricted to the same

initial number which is determined by the initial grouping

algorithm. After performing the action, the new cost of the

system is then calculated. The algorithm accepts this new

system state with a probability of Paccept = e−∆D/T , where

∆D is the change in cost (= new cost - initial cost) and T

is the temperature of the system. The algorithm then repeats

the process of selecting groups, and swapping rules until

the system reaches a satisfactory cost or a predetermined

number of iterations. To reduce the memory usage, the cost

function is chosen to be the number of leaf nodes produces

by the tree which the algorithm tries to minimize.

Because of the randomness in simulated annealing, as well

as the large search space, it takes a long time for simulated

annealing to reach an acceptable solution. We propose to

combine the clustering and the simulated annealing algo-

rithms: We use the clustering with range-point (RP) conver-

sion to obtain the initial groups and then apply the simulated

annealing (SA) to approach the optimal partitioning. This

helps finding the optimal partitioning with faster conver-

gence. We conduct experiments using fw1 1K rule set from

[7]. Figure 4 shows that, by using the combined scheme

(RP+SA), 5,000 to 10,000 iterations are sufficient to find an

optimal partitioning where the cost reaches an asymptote. On

the other hand, the algorithm with only simulated annealing

(SA) requires 15,000 to 20,000 iterations before reaching

the initial cost of the combined scheme. Note that the result

of RP+SA with 0 iteration is equal to that of RP without SA.

Thus we can see that SA can improve the cost of clustering

with RP by approximately 15%.

IV. ARCHITECTURE AND IMPLEMENTATION

A. Overview

With the near-optimal rule set partitioning, each group

(i.e. subset) is built into a separate decision tree using the

HyperSplit algorithm. Each decision tree is mapped onto a

dedicated pipeline. As an incoming packet arrives, the packet

header is fed to all decision tree pipelines. Because a packet

may match a rule in the different decision trees, a hardware

3000

4000

5000

6000

7000

8000

9000

0 5000 10000 15000 20000

C
o

st
 (

#
 o

f
Le

a
v

e
s)

of Iterations

Set Partitioning

SA

RP+SA

Figure 4. Simulated Annealing (SA) only vs. Range-Point (RP) + SA

module is required to select the highest priority rule from

the possibly multiple matching rules.

B. Tree Mapping

We use the HyperSplit algorithm to build the decision tree

for each rule subset. The tree traversal can be pipelined in

the hardware to achieve high throughput [4], [5]. A decision

tree is mapped into hardware by collecting all the nodes

in each level of the tree and mapping them into a stage.

Each stage contains the decision tree processing logic and

a separate RAM storing the tree node information. The

processing logics are the same for all stages with the only

difference being the size of the BRAM allocated. Different

stages can process different packets at the same time so that

the overall throughput of the design is one packet per clock

cycle. Because of the simplicity of the processing logic, the

pipeline can run at high clock frequency. Each stage relies on

the information provided by the previous stage to determine

the traversal of the incoming packet.

C. FPGA Implementation

The dual-port BRAM on the FPGA can complete two

reads per clock cycle. It can be used to implement two

pipelines (i.e. dual-pipeline) without requiring any additional

BRAM resources. The only cost is slightly higher logic

usage. So on every clock cycle, two packets can be fed to

the engine. Hence, the throughput is doubled.

Furthermore, due to low resource usage of the design,

multiple engines can be implemented onto a single FPGA to

achieve even higher performance. The throughput achieved

by such a design is 2 ∗ P ∗ F ∗ 64 ∗ 8 Mbps, where P

denotes the number of engines and F the frequency of the

engine (MHz). The overall architecture of the multi-engine,

dual-pipeline design is shown in Figure 5.

D. Incremental Update

Incremental update is extremely important for highly

dynamical applications and environments such as switching

or routing. Incremental update such as rule insertion can

be accomplished by inserting the rule into the group so

that the memory usage is minimized. This may involve

Single Engine

Single Engine

Single Engine

Priority Resolver

Single Engine

Engine

Packet In
Packet In

Packet In
Packet In

Packet In
Packet In

Packet In
Packet In

Matched Rule Out
Matched Rule Out

Matched Rule Out
Matched Rule Out

Matched Rule Out
Matched Rule Out

Matched Rule Out
Matched Rule Out

Figure 5. Multiple engines each with dual-pipeline

rebuilding multiple decision trees for each rule insertion.

Rule removal can be completed by removing the rule from

the associated group and rebuilding the decision tree for

that group. However, a large number of rule insertion and

removal could potentially move the rule set partitioning out

of the optimal. Hence after a certain number of insertion

and/or deletion, the algorithm should perform a complete

update of the grouping.

On-the-fly update to the hardware can be done through

inserting write-bubbles into the respective pipeline [5]. This

allows the decision tree to be altered on-the-fly without

halting the classification engine. However, for large scale

changes to the data structure, a more efficient method called

the back buffer engine. This method builds an extra pipeline

and populates the extra pipeline with the new data set

during dynamic update. Once the pipeline is ready, swap

the pipelines. This method sacrifices extra FPGA logic and

RAM for more efficient on-the-fly updates.

V. PERFORMANCE EVALUATION

A. Test Bed and Data Set

We conduct experiments using publicly available 5-tuple

packet classification rule sets [7] to evaluate the effectiveness

of our algorithms and hardware architecture. Only the IP

Chain (IPC) and Firewall (FW) rules have been used for

testing because they are the most representative of complex

rule sets. The number of rules contained in these rule sets

ranges from 100 to 10,000.

The FPGA device used for our implementation is the

Xilinx Virtex-5 (model: XC5VSX240T) containing 4,200

Kb of Distributed RAM and 18,576 Kb of BRAM. All the

experimental results are obtained through the post place and

route simulation.

We also evaluate our algorithm for OpenFlow-like 11-

tuple rule sets. The rule sets are generated based on 216 real-

life 11-tuple rules from enterprise customers. The 11 tuples

include (1) source IPv6, (2) destination IPv6, (3)source

MAC, (4) destination MAC, (5) 32bit input port, (6) 32bit

time stamp, and the traditional 5 tuples. The number of rules

ranges from 400 to 2,000.

B. Algorithm Evaluation

We consider the following two performance metrics:

• Average memory required per rule: This is, on average,

the amount of memory required per rule. This is com-

puted by dividing the total memory requirement by the

number of rules.

• Worst-case tree height: This is the height of the deepest

decision tree. As the pipeline depth (i.e. the number of

stages) is determined by the tree height, a shorter tree

reduces latency and the amount of hardware logic.

For evaluating the rule set partitioning algorithm, different

numbers of subsets have been tested. To determine the best

number of subsets, 1 to 26 subsets have been tested. Results

show that using 8 groups provides good balance between

the number of trees and the memory usage and tree height.

For this reason, we choose 8 groups for the majority of

performance evaluation.

The ParaSplit algorithm (which builds multiple Hyper-

Split trees after rule set partitioning) is first compared with

the original HyperSplit. The results are shown in Figures

6 and 7. FW and IPC both benefit greatly from rule set

partitioning with memory reduction of more than 2 orders of

magnitude for the fw1 10K rule set. ParaSplit always out-

performs the original HyperSplit on all rule sets. On average,

rule set partitioning reduces the memory consumption by an

average of 150 fold. Rules that previously require several

hundreds of megabytes to a gigabyte memory can now fit

into the few megabytes of BRAM of a single FPGA.

1

10

100

1000

10000

100000

1000000

ipc1 ipc1_100 ipc1_1K ipc1_5K ipc1_10K

B
y

te
 p

e
r

R
u

le

Rule Set

Memory Requirement on IPC rules

ParaSplit-8

HyperSplit

HiCuts_1

HiCuts_8

HSM

Figure 6. ParaSplit vs. well-known algorithms on IPC rules

Figures 6 and 7 also compare ParaSplit with other

well-known packet classification algorithms such as HiCuts

and HSM. We evaluate both HiCuts with linear search

1

10

100

1000

10000

100000

1000000

fw1 fw1_100 fw1_1K fw1_5K fw1_10K

B
y

te
 p

e
r

R
u

le

Rule Set

Memory Requirement on FW rules

ParaSplit-8

HyperSplit

HiCuts_1

HiCuts_8

HSM

Figure 7. ParaSplit vs. well-known algorithms on FW rules

(HiCuts 8) and HiCuts without linear search (HiCuts 1).

Most decision tree based algorithms allow the tree leafs to

contain more than 1 rule. A threshold is defined to stop

decision tree algorithm from cutting the search space once

the number of rules within the search space is less than

this value, named binth. The leaf node stores a pointer to a

list of rules which is searched linearly to determine which

rule is matched. binth = 8 for HiCuts 8. For large and

complex rule sets such as ipc1 10K and fw1 10K, HSM

and HiCuts 1 both fail to generate data structure due to

exhaustion of memory (over 4GB). However, with ParaSplit,

the data structure consumes 2.2MB and 1.6MB, respectively,

for ipc1 10K and fw1 10K. Hence it can easily fit within

the 2.5MB BRAM available on the FPGA. Note that ParaS-

plit supports the decision tree with linear search, which is

not implemented in our design because linear search will

significantly increase the processing latency for high speed

packet classification. Actually there is no need to use the

linear search, as the ParaSplit algorithm already generates a

data structure small enough to fit within the FPGA.

0

20

40

60

80

100

120

ipc1 ipc1_100 ipc1_1K ipc1_5K ipc1_10K

B
y

te
s

p
e

r
R

u
le

Rule Set

Memory Requirement on IPC rules

ParaSplit-26

EffiCuts-26

Figure 8. ParaSplit-26 vs. EffiCuts-26 on IPC rules

We then compare ParaSplit with EffiCuts [8] which is

the state-of-the-art algorithm with rule set partitioning. The

number of groups is 26 for both ParaSplit and EffiCuts.

Because EffiCuts is not publicly available, we implement the

EffiCuts scheme without tree merging. HyperSplit is used

0

50

100

150

200

250

300

350

fw1 fw1_100 fw1_1K fw1_5K fw1_10K

B
y

te
s

p
e

r
R

u
le

Rule Set

Memory Requirement on FW rules

ParaSplit-26

EffiCuts-26

Figure 9. ParaSplit-26 vs. EffiCuts-26 on FW rules

to build the decision trees for all the groups to isolate the

grouping performance. Results are shown in Figures 8 and

9. ParaSplit requires 20% to 500% less memory than the

EffiCuts scheme. This is because ParaSplit achieves more

optimal rule set partitioning.

Table II compares the worst-case tree height achieved

by different decision tree algorithms on various rule sets.

Compared with HyperSplit, ParaSplit reduces the tree height

dramatically. ParaSplit using only 8 groups achieves the

similar or even better results than EffiCuts with 26 groups.

Table II
WORST-CASE TREE HEIGHT

Rule set ParaSplit-8 HyperSplit EffiCuts-26

ipc1 100 12 18 16

ipc1 1K 17 26 19

ipc1 5K 21 32 23

ipc1 10K 25 35 24

fw1 100 12 20 13

fw1 1K 16 28 20

fw1 5K 20 34 26

fw1 10K 25 37 27

C. FPGA Results

The performance and the resource utilization for the dif-

ferent rule sets are shown in Table III. Because the algorithm

is optimized to suit the FPGA architecture, it is able to

maintain high throughput and low memory consumption

even with large and complex rule sets. The bottleneck

of this architecture is the memory rather than the logic

utilization. Our design can support up to 10K FW rule

sets while sustaining over 100 Gbps throughput for a single

ParaSplit engine. To the best of our knowledge, this is the

first FPGA design that supports 10K FW rule sets while

sustaining 100 Gbps throughput. Current Xilinx Virtex-7

FPGAs have up to 85 Mb of BRAM. Hence more than

ten ParaSplit engines can fit within a single FPGA chip to

achieve over terabit throughput (Table IV). Even for the large

and complex fw1 5K rule set, ParaSplit can provide 1.18

Tbps throughput.

Table III
PERFORMANCE AND RESOURCE USAGE WITH A SINGLE ENGINE

Rule set Max freq. Max thrupt Tree # slice # BRAM

(MHz) (Gbps) height

fw1 100 120.86 123 12 7270 48

fw1 1K 118.02 120.8 16 10274 151

fw1 5K 105.52 108.0 20 13834 253

fw1 10K 100.23 102.6 25 12095 399

Table IV
PERFORMANCE WITH MULTIPLE ENGINES

Rule set BRAM usage # Engines Aggregated

per engine Throughput (Tbps)

fw1 100 1.6% 60 7.38

fw1 1K 5.2% 19 2.29

fw1 5K 8.7% 11 1.18

fw1 10K 13.9% 7 0.72

D. Scalability with OpenFlow-like Rules

We conduct experiments using 11-tuple rule sets of dif-

ferent sizes. Table V compares the performance between

ParaSplit (with 8 groups) and HyperSplit. ParaSplit achieves

up to 3 orders of magnitude lower memory consumption than

HyperSplit. The worst-case tree height of ParaSplit is also

at least 30% smaller than that of HyperSplit.

Table V
PERFORMANCE WITH 11-TUPLE RULE SETS

of ParaSplit-8 HyperSplit

rules Bytes/rule Tree height Bytes/rule Tree height

400 1.25 4 8.75 16

800 2 11 196.25 23

1200 3.625 15 559.5 23

1600 5.625 16 10141.5 29

2000 17.625 20 14401.5 30

VI. CONCLUSION AND FUTURE WORK

This paper presents ParaSplit, a scalable packet classi-

fication architecture that achieves high throughput while

supporting complex rule sets. We develop a rule set parti-

tioning algorithm based on range-point conversion to reduce

memory consumption. We further improve the partitioning

algorithm by employing the Simulated Annealing technique.

We design the high-throughput architecture upon the pipelin-

ing of decision trees. Multiple pipelines are built for different

rule subsets to increase parallelism. The result is a FPGA-

based packet classification engine capable of classifying a

large number of complex rules, which previously is not

possible. This design is extensible to future applications

where larger, higher dimensional rule sets are used.

Future work includes FPGA implementation for

OpenFlow-like rule sets and using heterogeneous

classification engines. In the current design, each group

builds a decision tree. However, it may be better to group

rules according to the best method of classification. One

group may classify better using decomposition method

while other groups may classify best using decision tree

based methods. FPGA provides the unique flexibility to

classify different sets of rule differently according to the

best classification method for each set. FPGA can support

heterogeneous classification and can be used to improve

both memory efficiency and classification throughput.

REFERENCES

[1] P. Gupta and N. McKeown, Algorithms for packet clas-

sification, IEEE Networks, vol. 15(2), Mar/Apr 2001,

pp. 24-32.

[2] Juniper Networks Inc. www.juniper.net

[3] OpenFlow. www.openflow.org

[4] Y. Qi, J. Fong, W. Jiang, X. Bo, J. Li, and V.

Prasanna, Multi-dimensional Packet Classification on

FPGA: 100Gbps and Beyond, Proc. Intl. Conf. on Field-

Programmable Technology (FPT ’10), Dec. 2010.

[5] W. Jiang and V. Prasanna, Large-scale wire-speed packet

classification on FPGAs, Proc. ACM/SIGDA Interna-

tional Symp. on Field programmable gate arrays (FPGA

’09), Feb. 2009.

[6] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, Packet

classification algorithms: from theory to practice, Proc.

IEEE Conf. on Computer Communications (INFOCOM

’09), Apr. 2009, pp. 648-656.

[7] http://www.arl.wustl.edu/∼hs1/PClassEval.html

[8] B. Vamanan, G. Voskuilen, T. N. Vijaykumar, Effi-

Cuts: optimizing packet classification for memory and

throughput, Proc. SIGCOMM ’10, Oct. 2010, pp. 207-

218.

[9] M. Overmars and A. Stappen, Range searching and

point location among fat objects, Journal of Algorithms,

vol 21(3), Nov. 1996, pp. 240-253.

[10] P. Gupta and N. Mckeown, Packet Classification using

Hierarchical Intelligent Cuttings, Proc. Hot Intercon-

nects, 1999, pp. 34-41.

[11] S. Singh, F. Baboescu, G. Varghese and J. Wang, Packet

classification using multidimensional cutting, Proc. SIG-

COMM ’03, Aug. 2003, pp. 213-224.

[12] H. Song and J. W. Lockwood, Efficient packet clas-

sification for network intrusion detection using FPGA,

Proc. FPGA ’05, 2005, pp. 238-245.

[13] Gajanan S. Jedhe, Arun Ramamoorthy, and Kuruvilla

Varghese, A Scalable High Throughput Firewall in

FPGA, Proc. FCCM ’08, 2008, pp. 43-52.

[14] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel,

Fast and Scalable Layer Four Switching, Proc. SIG-

COMM ’98, Sept. 1998, pp. 191-202.

[15] P. Gupta and N. McKeown. Packet classification on

multiple fields, Proc. SIGCOMM ’99, August 1999, pp.

147-160.

[16] Bo Xu, Dongyi Jiang, and Jun Li; HSM: a fast packet

classification algorithm, Proc. AINA ’05, March 2005,

pp. 987-992.

