
SANS: A Scalable Architecture for Network Intrusion

Prevention with Stateful Frontend
Fei He1, Yaxuan Qi1, Yibo Xue1,2 and Jun Li1,2

1
Research Institute of Information Technology, Tsinghua University, Beijing, China

2
Tsinghua National Lab for Information Science and Technology, Beijing, China

hefei06@mails.tsinghua.edu.cn, {yaxuan, yiboxue, junl}@tsinghua.edu.cn

ABSTRACT

Inline stateful and deep inspection for intrusion prevention is

becoming more challenging due to the increase in both the

volume of network traffic and the complexity of the analysis

requirements. In this work, we pursue a novel architectural

approach, named SANS, which takes both the advantage of new

generation network processors for packet-header-based processing

and the advantage of commodity x86 platforms for packet payload

data processing. A session table scheme is designed for the

stateful frontend in SANS to achieve wire speed inline processing.

Categories and Subject Descriptors

C.2.0 [Security and Protection]

General Terms

Security

Keywords

Stateful Inspection, Deep Inspection, Network Processors,

Intrusion Prevention, Session Table.

1. INTRODUCTION
The difficulties of building high performance network intrusion

prevention systems (NIPS) stem mainly from the fact that NIPS

needs to analyze not only packet headers but also packet payload,

and that the operations to be performed on each packet is growing

with the continuous evolving of network attacks. NIPS is both

memory-usage and memory-bandwidth intensive.

The two dimensional growth in both data rate and analysis

complexity (number of attack signatures) is outpacing the speed at

which memory technologies advance. Therefore, high-

performance NIPSes are now commonly implemented using

cluster-based or chassis-based architectures, which can scale up

with the growth by adding additional backend detection engines.

However, the traditional cluster-based architectures using simple

frontend have some limitations. First, it is complicated to

implement inline intrusion prevention in this kind of architectures.

Second, since some correlation information (e.g. to detect port

scanning, flows of one host are correlated, and should not be

dispatched to different backend nodes) is lost at the time of traffic

distributing, traditional cluster-base NIPS needs an inter-

detection-engine communication scheme which brings in a

substantial amount of overhead. Even so, in order to be deployed

on the backend nodes, existing intrusion prevention software,

such as Snort and Bro, needs to be modified to support

coordination.

In this work we pursue a different architectural approach, which

uses network processors (NP) as a stateful inline device, and

several general-purpose CPU platforms as backend nodes to

perform deep inspection. The goal is to utilize the advantage of

the new generation NPs in packet-header-based processing to

reduce the workload and complexity of backend detection engines.

We argue that a stateful frontend maintaining per-flow state offers

not only the feasibility of the inline intrusion prevention

functionality, but also provide several other architectural

advantages to be described in the following section.

Session table is the key component that determines the throughput

of the stateful frontend. In the multi-core network processor base

environments, traditional flow table using chained hashing is less

appealing as its use of dynamic memory allocation and indirection

causes poor cache performance with mutual exclusive operations

degrading performance furthermore. We design a session table

scheme by combining the chained hashing with a small cache of

the forwarding decision of active flows. This scheme achieves a

33~86 percent throughput improvement, while an increase of only

2.5-20MB of memory for one million concurrent sessions.

2. THE SANS ARCHITECTURE
The SANS based NIPS can be divided into two types of

components: The stateful frontend nodes and the backend

detection nodes. The frontend nodes act as an inline forwarding

engine, as well as, a traffic dispatcher for a set of backend

detection engines. The backend nodes, acting as the network

intrusion detection engines, perform traffic analysis and update

follow-state in the frontend nodes via fabric channel.

The main architectural choice is that the frontend needs to be

stateful and active, rather than acting as a passive load balancing

component. The stateful packet forwarding engine is the key

component in SANS architecture. All incoming traffic that arrives

at the system enters the forwarding engine. When a packet enters

the forwarding engine, the engine looks up the session table with

the usual 5-tuple of source and destination IP address, source and

destination ports, and transport protocol (TCP or UDP). The

packet is processed according to an associated action stored in the

corresponding session state. The action includes forward, drop,

and inspect. The inspect action can even be extend to a sequence

of detections, called detection chain. If the packet is the first

packet of a flow, a series of operations, including policy lookup,

route lookup, correlation analysis, initial load balancing decision,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ANCS'09, October 19-20, 2009, Princeton, New Jersey, USA.

Copyright 2009 ACM 978-1-60558-630-4/09/0010...$10.00.

ANCS 2009

181

need to be performed. The results of all these operations are

recorded in the session state of the corresponding session. After

examining a packet, the detection engine will update the

corresponding session state based on the detection result.

Session table is the most important component for achieving high

performance in frontend, as it enables fine-grained, per-session

decision-making instead of per-packet decision-making. Based on

per-flow state management, several functions and optimizations

can be implemented on the frontend. These optimizations include:

1) correlation analysis, 2) policy enforcement, 3) pre-filtering [1]

and normalization [2], and 4) adaptive load balancing. These

optimizations improve NIPS overall performance, reduce the

complexity of backend nodes while increase the flexibility of

backend nodes.

Unlike traditional cluster-based architecture, existing open source

system such as Snort and Bro can be deployed on the backend

detection engines with minor modification. In most of the

traditional cluster-base NIPSes, simple hash-based load

distributes packets with malicious payload over several different

detection engines, and thus makes it difficult and computationally

expensive to merge results from these multiple engines and

recognize the attack. Given the stateful frontend traffic dispatcher

in SANS, most of the correlation analysis is done at the frontend.

Furthermore, a sophisticated load balancing scheme can support

not only homogeneous backend detection engines, but

heterogeneous engines. Thus, the configurations of backend

detection engines are much more flexible.

3. THE STATEFUL FRONTEND DESIGN
Hash tables are often attractive implementations for session table

since they result in constant-time, O(1), query, insert and delete

operations. We present the basic form of session table design

called Basic Session Table (BST) in Figure 1. A session entry

contains two parts: the first part (called wing) for direction-related

states and the second part containing session-level information. A

wing, which consists of 5-tuple of one direction of the session and

direction-related information such as routing information, is the

item actually inserted into the hash table. Each session entry has a

master session pointer, pointing to its correlated session.

The BST design using chained hashing allows the load balancing

module, correlation analysis module, and other modules to access

correlated flows through one session table lookup. However, its

use of dynamic memory allocation causes poor cache performance.

Moreover, even through readers-writers locks are employed to

achieve fine-grained synchronization, mutual exclusions add

overhead in a multi-core environment. Most packets entering the

frontend require only a lookup operation on the session table

while only several packets at the beginning of a flow need to

update the session table. Based on this observation, a session table

scheme, called Active Flow Buffered Session Table (AFST), is

designed to optimize for common cases. AFST employs a

compact hash table without collision resolving mechanism as a

buffer of active flows, i.e. Active Flow Buffer (AFB). The entry

stored in the AFB only consists of 5-tuple, route entry and action

which consume 20 bytes. When a packet does not match an entry

in the AFB, a lookup is continued in the BST. Experiments using

LBNL enterprise traces [3] show that when the load factors (size

of AFB divided by number of concurrent flows) are 1, 0.5, 0.25,

and 0.125, the miss ratios of AFB are 7.85%, 11.60%, 17.02%,

and 24.84% respectively.

The performance of the BST and AFST is evaluated on a Cavium

Octeon 5860 multi-core network processor, which has 16 MIPS

cores, 2 MB L2 cache shared by the 16 cores, and 4 GB DDR2

memory. Figure 2 shows that the BST reaches 7.8 Gpbs

throughput for 64-Byte packets. Figure 3 shows that the AFST

achieves about 33~86 percent speedup over the BST using 8 cores

for the AFB miss ratio from 40% to 10%. The extra memory

needed by the AFB for a session table supporting one million

concurrent session is only 2.5 MB for a load factor of 0.125, 20

MB for a load factor of 1.

4. ACKNOWLEDGMENTS
This work was supported by National High-Tech R&D 863

Program of China under grant No. 2007AA01Z468.

5. REFERENCES
[1] Sourdis, I., Dimopoulos, V., Pnevmatikatos, D. and

Vassiliadis, S., 2006. Packet Pre-filtering for Network

Intrusion Detection. ANCS 2006.

[2] Handley, M., Paxson, V. and Kreibich, C. 2001. Network

intrusion detection: evasion, traffic normalization, and end-

to-end protocol semantics. SSYM 2001.

[3] LBNL/ICSI Enterprise Tracing Project,

http://www.icir.org/enterprise-tracing/index.html .

rwlock

rwlock

rwlock

...

hash table

rwlock

5-tuple(orig)

session 1

nexthop

5-tuple(repl) nexthop

rwlockmaster timer entry

lb stateaction others

5-tuple(orig)

session 2

nexthop

5-tuple(repl) nexthop

rwlockmaster timer entry

lb stateaction others

5-tuple(orig)

session 3

nexthop

5-tuple(repl) nexthop

rwlockmaster timer entry

lb stateaction others

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

64 128 256 512 1024
T

h
ro

u
g

h
p
u
t (

1
0
0
%

 =
 1

0
G

b
p

s
)

Packet size

BST Throughput with different corenum

1 core

2 cores

4 cores

8 cores

16 cores

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 2 4 8

T
h

ro
u
g

h
p
u
t S

p
e
e
d

u
p

Number of Cores

AFST Throughput Speedup (packet size: 64B)

Miss Ratio = 10%

Miss Ratio = 20%

Miss Ratio = 30%

Miss Ratio = 40%

Fig1. Data Structure of BST Fig2. Throughput of BST Fig3. AFST Throughput Speedup over BST

182

http://www.icir.org/enterprise-tracing/index.html

