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ABSTRACT 

Inline stateful and deep inspection for intrusion prevention is 

becoming more challenging due to the increase in both the 

volume of network traffic and the complexity of the analysis 

requirements. In this work, we pursue a novel architectural 

approach, named SANS, which takes both the advantage of new 

generation network processors for packet-header-based processing 

and the advantage of commodity x86 platforms for packet payload 

data processing. A session table scheme is designed for the 

stateful frontend in SANS to achieve wire speed inline processing. 

Categories and Subject Descriptors 

C.2.0 [Security and Protection] 

General Terms 

Security 
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Intrusion Prevention, Session Table. 

1. INTRODUCTION 
The difficulties of building high performance network intrusion 

prevention systems (NIPS) stem mainly from the fact that NIPS 

needs to analyze not only packet headers but also packet payload, 

and that the operations to be performed on each packet is growing 

with the continuous evolving of network attacks. NIPS is both 

memory-usage and memory-bandwidth intensive.  

The two dimensional growth in both data rate and analysis 

complexity (number of attack signatures) is outpacing the speed at 

which memory technologies advance. Therefore, high-

performance NIPSes are now commonly implemented using 

cluster-based or chassis-based architectures, which can scale up 

with the growth by adding additional backend detection engines. 

However, the traditional cluster-based architectures using simple 

frontend have some limitations. First, it is complicated to 

implement inline intrusion prevention in this kind of architectures. 

Second, since some correlation information (e.g. to detect port 

scanning, flows of one host are correlated, and should not be 

dispatched to different backend nodes) is lost at the time of traffic 

distributing, traditional cluster-base NIPS needs an inter-

detection-engine communication scheme which brings in a 

substantial amount of overhead. Even so, in order to be deployed 

on the backend nodes, existing intrusion prevention software, 

such as Snort and Bro, needs to be modified to support 

coordination. 

In this work we pursue a different architectural approach, which 

uses network processors (NP) as a stateful inline device, and 

several general-purpose CPU platforms as backend nodes to 

perform deep inspection. The goal is to utilize the advantage of 

the new generation NPs in packet-header-based processing to 

reduce the workload and complexity of backend detection engines. 

We argue that a stateful frontend maintaining per-flow state offers 

not only the feasibility of the inline intrusion prevention 

functionality, but also provide several other architectural 

advantages to be described in the following section.  

Session table is the key component that determines the throughput 

of the stateful frontend. In the multi-core network processor base 

environments, traditional flow table using chained hashing is less 

appealing as its use of dynamic memory allocation and indirection 

causes poor cache performance with mutual exclusive operations 

degrading performance furthermore. We design a session table 

scheme by combining the chained hashing with a small cache of 

the forwarding decision of active flows. This scheme achieves a 

33~86 percent throughput improvement, while an increase of only 

2.5-20MB of memory for one million concurrent sessions. 

2. THE SANS ARCHITECTURE 
The SANS based NIPS can be divided into two types of 

components: The stateful frontend nodes and the backend 

detection nodes.  The frontend nodes act as an inline forwarding 

engine, as well as, a traffic dispatcher for a set of backend 

detection engines. The backend nodes, acting as the network 

intrusion detection engines, perform traffic analysis and update 

follow-state in the frontend nodes via fabric channel.  

The main architectural choice is that the frontend needs to be 

stateful and active, rather than acting as a passive load balancing 

component. The stateful packet forwarding engine is the key 

component in SANS architecture. All incoming traffic that arrives 

at the system enters the forwarding engine. When a packet enters 

the forwarding engine, the engine looks up the session table with 

the usual 5-tuple of source and destination IP address, source and 

destination ports, and transport protocol (TCP or UDP). The 

packet is processed according to an associated action stored in the 

corresponding session state. The action includes forward, drop, 

and inspect. The inspect action can even be extend to a sequence 

of detections, called detection chain. If the packet is the first 

packet of a flow, a series of operations, including policy lookup, 

route lookup, correlation analysis, initial load balancing decision, 
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need to be performed. The results of all these operations are 

recorded in the session state of the corresponding session. After 

examining a packet, the detection engine will update the 

corresponding session state based on the detection result.  

Session table is the most important component for achieving high 

performance in frontend, as it enables fine-grained, per-session 

decision-making instead of per-packet decision-making. Based on 

per-flow state management, several functions and optimizations 

can be implemented on the frontend.  These optimizations include: 

1) correlation analysis, 2) policy enforcement, 3) pre-filtering [1] 

and normalization [2], and 4) adaptive load balancing. These 

optimizations improve NIPS overall performance, reduce the 

complexity of backend nodes while increase the flexibility of 

backend nodes. 

Unlike traditional cluster-based architecture, existing open source 

system such as Snort and Bro can be deployed on the backend 

detection engines with minor modification. In most of the 

traditional cluster-base NIPSes, simple hash-based load 

distributes packets with malicious payload over several different 

detection engines, and thus makes it difficult and computationally 

expensive to merge results from these multiple engines and 

recognize the attack. Given the stateful frontend traffic dispatcher 

in SANS, most of the correlation analysis is done at the frontend. 

Furthermore, a sophisticated load balancing scheme can support 

not only homogeneous backend detection engines, but 

heterogeneous engines. Thus, the configurations of backend 

detection engines are much more flexible. 

3. THE STATEFUL FRONTEND DESIGN 
Hash tables are often attractive implementations for session table 

since they result in constant-time, O(1), query, insert and delete 

operations. We present the basic form of session table design 

called Basic Session Table (BST) in Figure 1. A session entry 

contains two parts: the first part (called wing) for direction-related 

states and the second part containing session-level information. A 

wing, which consists of 5-tuple of one direction of the session and 

direction-related information such as routing information, is the 

item actually inserted into the hash table. Each session entry has a 

master session pointer, pointing to its correlated session.  

The BST design using chained hashing allows the load balancing 

module, correlation analysis module, and other modules to access 

correlated flows through one session table lookup. However, its 

use of dynamic memory allocation causes poor cache performance. 

Moreover, even through readers-writers locks are employed to 

achieve fine-grained synchronization, mutual exclusions add 

overhead in a multi-core environment. Most packets entering the 

frontend require only a lookup operation on the session table 

while only several packets at the beginning of a flow need to 

update the session table. Based on this observation, a session table 

scheme, called Active Flow Buffered Session Table (AFST), is 

designed to optimize for common cases. AFST employs a 

compact hash table without collision resolving mechanism as a 

buffer of active flows, i.e. Active Flow Buffer (AFB). The entry 

stored in the AFB only consists of 5-tuple, route entry and action 

which consume 20 bytes. When a packet does not match an entry 

in the AFB, a lookup is continued in the BST. Experiments using 

LBNL enterprise traces [3] show that when the load factors (size 

of AFB divided by number of concurrent flows) are 1, 0.5, 0.25, 

and 0.125, the miss ratios of AFB are 7.85%, 11.60%, 17.02%, 

and 24.84% respectively.  

The performance of the BST and AFST is evaluated on a Cavium 

Octeon 5860 multi-core network processor, which has 16 MIPS 

cores, 2 MB L2 cache shared by the 16 cores, and 4 GB DDR2 

memory. Figure 2 shows that the BST reaches 7.8 Gpbs 

throughput for 64-Byte packets. Figure 3 shows that the AFST 

achieves about 33~86 percent speedup over the BST using 8 cores 

for the AFB miss ratio from 40% to 10%. The extra memory 

needed by the AFB for a session table supporting one million 

concurrent session is only 2.5 MB for a load factor of 0.125, 20 

MB for a load factor of 1.  
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Fig1. Data Structure of BST Fig2. Throughput of BST Fig3. AFST Throughput Speedup over BST 
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